第二章控制系统的数学模型

第二章控制系统的数学模型
第二章控制系统的数学模型

第二章控制系统的数学模型

习题及答案

2-1 试建立如图所示系统的微分方程。其中外力F(t)为输入量;位移y(t)为输出量;k为弹性系数,f为阻尼系数,质量为m。

解:以平衡状态为基点(不考虑重力影响),对m进行受力分析,根据牛顿定理可写出

整理得

2-2 求如图所示有源网络的传递函数Uc(s)/Ur(s)。

解:

2-3.试求题如图所示控制系统的传递函数:

,,,。

解:求得传递函数如下:

2-3 计算如图所示RC网络的传递函数G(s)=Uc(s)/Ur(s)。

解:由图可写出

(1)

(2)

(3)

联立式(1)、(2)、(3),消去中间变量可得

微分方程为

2-4.试用梅逊公式求图示系统的传递函数C(s)/R(s)。

解:信号流图

;;;;;

;;;

(可以用方框图简化方法进行验证)

2-5.试用梅逊公式求图示系统的传递函数C(s)/R(s)。

[答案]

2-6 试用梅逊增益公式求下图系统信号流图的传递函数x5/x1。

[答案]

2-7 系统结构图如图所示,试求闭环传递函数。

解:经结构图等效变换可得闭环系统的传递函数

2-8 已知控制系统结构图如图所示,求输入r(t)=3* 1(t) 时系统的输出c(t)。

解:由图可得

又有R(s)=3/s,因此

2-9 试用梅逊增益公式求下图系统的闭环传递函数。

解:利用梅逊公式:

,,,,,

,,,

,。

本章教材作业题:2-2(a)(c)、2-3、2-5(2)、2-7、2-11、2-13、2-14、2-17(a、c、e)、

数学建模第二章作业答案章绍辉(新)

习题2作业讲评 1. 继续考虑 2.2节的“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议?(“两秒准则”,即后车司机从前车经过某一标志开始,默数2秒之后到达同一标志,而不管车速如何. 刹车距离与车速的经验公式 20.750.082678d v v =+,速度单位为m/s ,距离单位为m ) 解答 (1)“两秒准则”表明前后车距与车速成正比例关系. 引入以下符号: D ~ 前后车距(m );v ~ 车速(m/s ); 于是“两秒准则”的数学模型为22D K v v ==. 与“一车长度准则”相比是否一样,依赖于一车长度的选取. 比较2 0.750.082678d v v =+与2D v =,得: ()0.082678 1.25d D v v -=- 所以当15.12 m/s v <(约合54.43 km/h )时,有d时,有d>D ,即前后车距小于刹车距离的理论值,不够安全. 也就是说,“两秒准则”适用于车速不算很快的情况. 另外,还可以通过绘图直观的解释“两秒准则”够不够安全. 用以下MATLAB 程序把刹车距离实测数据和“两秒准则”都画在同一幅图中(图1).

v=(20:5:80).*0.44704; d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,418 20,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2; k1=0.75; k2=0.082678; K2=2; d1=[v;v;v].*k1; d=d1+d2; plot([0,40],[0,K2*40],'k') hold on 51015 2025 303540 车速v (m/s ) 距离(m ) 图1

什么叫串级控制系统

1.什么叫串级控制系统?画出一般串级控制系统的典型方块图。 答:串级控制系统是由其结构上的特征而得名的。它是由主、副两个控制器串接工作的。 主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。 2.串级控制系统有哪些特点?主要使用在哪些场合? 答串级控制系统的主要特点为: (1)在系统结构上,它是由两个串接工作的控制器构成的双闭环控制系统; (2)系统的目的在于通过设置副变量来提高对主变量的控制质量} (3)由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响; (4)系统对负荷改变时有一定的自适应能力。 串级控制系统主要应用于:对象的滞后和时间常数很大、干扰作用强而频繁、负荷变化大、对控制质量要求较高的场合。 3.串级控制系统中主、剧变量应如何选择? 答主变量的选择原则与简单控制系统中被控变量的选择原则是一样的。 副变量的选择原则是:. (1)主、副变量间应有一定的内在联系,副变量的变化应在很大程度上能影响主变量的变化; (2)通过对副变量的选择,使所构成的副回路能包含系统的主要干扰; (3)在可能的情况下,应使副回路包含更多的主要干扰,但副变量又不能离主变量太近; (4)副变量的选择应考虑到主、副对象时间常数的匹配,以防“共振”的发生 4.为什么说串级控制系统中的主回路是定值控制系统,而副回路是随动控制系统? 答串级控制系统的目的是为了更好地稳定主变量,使之等于给定值,而主变量就是主回路的输出,所以说主回路是定值控制系统。副回路的输出是副变量,副回路的给定值是主控制器的输出,所以在串级控制系统中,副变量不是要求不变的,而是要求随主控制器的输出变化而变化,因此是一个随动控制系统。 5.怎样选择串级控制系统中主、副控制器的控制规律?

过程控制系统第2章 对象特性 习题与解答

过程控制系统第二章(对象特性)习题2-1.什么是被控过程的数学模型? 2-1解答: 被控过程的数学模型是描述被控过程在输入(控制输入与扰动输入)作用下,其状态和输出(被控参数)变化的数学表达式。 2-2.建立被控过程数学模型的目的是什么?过程控制对数学模型有什么要求? 2-2解答: 1)目的:○1设计过程控制系统及整定控制参数; ○2指导生产工艺及其设备的设计与操作; ○3对被控过程进行仿真研究; ○4培训运行操作人员; ○5工业过程的故障检测与诊断。 2)要求:总的原则一是尽量简单,二是正确可靠。阶次一般不高于三阶,大量采用具有纯滞后的一阶和二阶模型,最常用的是带纯滞后的一阶形式。 2-2.简述建立对象的数学模型两种主要方法。 2-2解答: 一是机理分析法。机理分析法是通过对对象内部运动机理的分析,根据对象中物理或化学变化的规律(比如三大守恒定律等),在忽略一些次要因素或做出一些近似处理后推导出的对象特性方程。通过这种方法得到的数学模型称之为机理模型,它们的表现形式往往是微分方程或代数方程。 二是实验测取法。实验测取法是在所要研究的对象上,人为施加一定的输入作用,然后,用仪器测取并记录表征对象特性的物理量随时间变化的规律,即得到一系列实验数据或实验曲线。然后对这些数据或曲线进行必要的数据处理,求取对象的特性参数,进而得到对象的数学模型。 5-12 何为测试法建模?它有什么特点? 2-3解答: 1)是根据工业过程输入、输出的实测数据进行某种数学处理后得到数学模型。

2)可以在不十分清楚内部机理的情况下,把被研究的对象视为一个黑匣子,完全通过外部测试来描述它的特性。 2-3.描述简单对象特性的参数有哪些?各有何物理意义? 2-3解答: 描述对象特性的参数分别是放大系数K 、时间常数T 、滞后时间τ。 放大系数K 放大系数K 在数值上等于对象处于稳定状态时输出的变化量与输入的变 化量之比,即 输入的变化量 输出的变化量=K 由于放大系数K 反映的是对象处于稳定状态下的输出和输入之间的关系,所以放大系数是描述对象静态特性的参数。 时间常数T 时间常数是指当对象受到阶跃输入作用后,被控变量如果保持初始速度变 化,达到新的稳态值所需的时间。或当对象受到阶跃输入作用后,被控变量达到新的稳态值的63.2%所需时间。 时间常数T 是反映被控变量变化快慢的参数,因此它是对象的一个重要的动态参数。 滞后时间τ滞后时间τ是纯滞后时间0τ和容量滞后c τ的总和。 输出变量的变化落后于输入变量变化的时间称为纯滞后时间,纯滞后的产生一般是由于介质的输送或热的传递需要一段时间引起的。容量滞后一般是因为物料或能量的传递需要通过一定的阻力而引起的。 滞后时间τ也是反映对象动态特性的重要参数。 5-6 什么是自衡特性?具有自衡特性被控过程的系统框图有什么特点? 2-3解答: 1)在扰动作用破坏其平衡工况后,被控过程在没有外部干预的情况下自动恢复平衡的特性,称为自衡特性。 2)被控过程输出对扰动存在负反馈。 5-7 什么是单容过程和多容过程?

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

第二章 系统的数学模型

第二章 系统的数学模型 2.3图中三图分别表示三个机械系统。求出他们各自的微分方程,图中xi 表示输入位移,xo 表示输出位移,假设输出端无负载效应。 解:(1)、对图(a )所示系统,有牛顿定律有 c 1(x i-x 0)-c 2x 0=m x 0 即 m x 0+(c 1-c 2) x 0= c 1x i (2)、对图(b )所示系统,引入一中间变量x ,并有牛顿定律有 (x i -x)k 1=c(x -x 0) c(x -x 0)=k 2x 0 消除中间变量有 c(k 1+k 2)x 0+k 1k 2x 0=ck 1x i (3)、对图(c )所示系统,有牛顿定律有 c(x i-x 0)+ k 1 (x i -x)= k 2x 0 即 c x 0+(k 1+k 2)x 0=c x i+ k 1x i 2.4 求出图(2.4)所示电网络图的微分方程。

解:(1)对图(a )所示系统,设i x 为流过1R 的电流,i 为总电流,则有 ?+ =i d t C i R u o 2 21 11i R u u o i =- dt i i C u u o i ?-= -)(11 1 消除中间变量,并化简有 i i i o o o u R C u C C R R u R C u R C u C C R R u R C 1 22 11 221122 112211 )(1)1(++ +=++ ++ (2)对图(b )所示系统,设i 为电流,则有 dt i C i R u u o i ?+ +=1 11 i R dt i C u o 2 2 1+= ? 消除中间变量,并化简有 i i o o u C u R u C C u R R 2 22 1 211)11()(+=+ ++ 2.5 求图2.5所示机械系统的微分方程。图中M 为输入转矩,C m 为圆周阻尼,J 为转动惯量。 解:设系统输入为M (即M (t )),输出为θ(即θ(t )),分别对圆盘和质块进行动力学分析,列写动力学方程如下:

数学建模第二章作业答案章绍辉

数学建模第二章作业答案章绍辉

习题2作业讲评 1. 继续考虑 2.2节的“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议?(“两秒准则”,即后车司机从前车经过某一标志开始,默数2秒之后到达同一标志,而不管车速如何. 刹车距离与车速的经验公式 20.750.082678d v v =+,速度单位为m/s ,距离单位为m ) 解答 (1)“两秒准则”表明前后车距与车速成正比例关系. 引入以下符号: D ~ 前后车距(m );v ~ 车速(m/s ); 于是“两秒准则”的数学模型为22D K v v ==. 与“一车长度准则”相比是否一样,依赖于一车长度的选取. 比较2 0.750.082678d v v =+与2D v =,得: ()0.082678 1.25d D v v -=- 所以当15.12 m/s v <(约合54.43 km/h )时,有d时,有d>D ,即前后车距小于刹车距离的理论值,不够安全. 也就是说,“两秒准则”适用于车速不算很快的情况. 另外,还可以通过绘图直观的解释“两秒准则”够不够安全. 用以下MATLAB 程序把刹车距离实测数据和“两秒准则”都画在同一幅图中(图1).

v=(20:5:80).*0.44704; d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,418 20,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2; k1=0.75; k2=0.082678; K2=2; d1=[v;v;v].*k1; d=d1+d2; plot([0,40],[0,K2*40],'k') hold on plot(0:40,polyval([k2,k1,0],0:40),':k') plot([v;v;v],d,'ok','MarkerSize',2) title('比较刹车距离实测数据、理论值和两秒准则') legend('两秒准则','刹车距离理论值',... '刹车距离的最小值、平均值和最大值',2) xlabel('车速v (m/s )') ylabel('距离(m )') hold off 51015 2025 303540 020406080100120 140160180比较刹车距离实测数据、理论值和两秒准则 车速v (m/s ) 距离(m ) 两秒准则 刹车距离理论值 刹车距离的最小值、平均值和最大值 图1

第二章 控制系统的数学模型

+ 第二章控制系统的数学模型 一.是非题 1.惯性环节的输出量不能立即跟随输入量变化,存在时间上的延迟,这是由于环节的惯性造成的。(√) 2.比例环节又称放大环节,其输出量与输入量之间的关系为一种固定的比例关系。(√) 3.积分环节的输出量与输入量的积分成正比。(√) 4.如果把在无穷远处和在零处的的极点考虑在内,而且还考虑到各个极点和零点的重复数,传递函数G (s )的零点总数与其极点数不等 (×) 二. 选择题 1.比例环节的传递函数为 (A ) A .K B 。K s C 。 τs D 。以上都不是 2.下面是t 的拉普拉斯变换的是 (B ) A . 1 S B 。 21S C 。2S D 。S 3.两个环节的传递函数分别为()1G s 和()2G s 则这两个环节相串联则总的传递函数是 (C ) A .()()12G s G s + B 。()12()G s G s - C .()()12G s G s D 。 () () 12G s G s

4.两个环节的传递函数分别为()1G s 和()2G s 则这两个环节相并联则总的传递函数是 (A ) A .()()12G s G s + B 。()12()G s G s - C .()()12G s G s D 。() () 12G s G s 三. 填空题 1.典型环节由比例环节,惯性环节, 积分环节,微分环节,振荡环节,纯滞后环节 2.振荡环节的传递函数为22 21k s s τζτ++ 3.21 2 t 的拉普拉斯变换为 3 1 s 4.建立数学模型有两种基本方法:机理分析法和实验辨识法 四.计算题 §2-1 数学模型 1、 线性元部件、系统微分方程的建立 (1)L-R-C 网络 C r u R i dt di L u +?+? = c i C u =? c c c u u C R u C L +'??+''??=

过程控制系统第2章对象特性习题与解答

过程控制系统第二章(对象特性)习题 2-1.什么是被控过程的数学模型 2-1解答: 被控过程的数学模型是描述被控过程在输入(控制输入与扰动输入)作用下,其状态和输出(被控参数)变化的数学表达式。 2-2.建立被控过程数学模型的目的是什么过程控制对数学模型有什么要求 2-2解答: 1)目的:○1设计过程控制系统及整定控制参数; ○2指导生产工艺及其设备的设计与操作; ○3对被控过程进行仿真研究; ○4培训运行操作人员; ○5工业过程的故障检测与诊断。 2)要求:总的原则一是尽量简单,二是正确可靠。阶次一般不高于三阶,大量采用具有纯滞后的一阶和二阶模型,最常用的是带纯滞后的一阶形式。 2-2.简述建立对象的数学模型两种主要方法。 2-2解答: 一是机理分析法。机理分析法是通过对对象内部运动机理的分析,根据对象中物理或化学变化的规律(比如三大守恒定律等),在忽略一些次要因素或做出一些近似处理后推导出的对象特性方程。通过这种方法得到的数学模型称之为机理模型,它们的表现形式往往是微分方程或代数方程。 二是实验测取法。实验测取法是在所要研究的对象上,人为施加一定的输入作用,然后,用仪器测取并记录表征对象特性的物理量随时间变化的规律,即得到一系列实验数据或实验曲线。然后对这些数据或曲线进行必要的数据处理,求取对象的特性参数,进而得到对象的数学模型。 5-12 何为测试法建模它有什么特点 2-3解答: 1)是根据工业过程输入、输出的实测数据进行某种数学处理后得到数学模型。

2)可以在不十分清楚内部机理的情况下,把被研究的对象视为一个黑匣子,完全通过外部测试来描述它的特性。 2-3.描述简单对象特性的参数有哪些各有何物理意义 2-3解答: 描述对象特性的参数分别是放大系数K 、时间常数T 、滞后时间τ。 放大系数K 放大系数K 在数值上等于对象处于稳定状态时输出的变化量与输入的变 化量之比,即 输入的变化量 输出的变化量=K 由于放大系数K 反映的是对象处于稳定状态下的输出和输入之间的关系,所以放大系数是描述对象静态特性的参数。 时间常数T 时间常数是指当对象受到阶跃输入作用后,被控变量如果保持初始速度变 化,达到新的稳态值所需的时间。或当对象受到阶跃输入作用后,被控变量达到新的稳态值的63.2%所需时间。 时间常数T 是反映被控变量变化快慢的参数,因此它是对象的一个重要的动态参数。 滞后时间τ滞后时间τ是纯滞后时间0τ和容量滞后c τ的总和。 输出变量的变化落后于输入变量变化的时间称为纯滞后时间,纯滞后的产生一般是由于介质的输送或热的传递需要一段时间引起的。容量滞后一般是因为物料或能量的传递需要通过一定的阻力而引起的。 滞后时间τ也是反映对象动态特性的重要参数。 5-6 什么是自衡特性具有自衡特性被控过程的系统框图有什么特点 2-3解答: 1)在扰动作用破坏其平衡工况后,被控过程在没有外部干预的情况下自动恢复平衡的特性,称为自衡特性。 2)被控过程输出对扰动存在负反馈。

第二章 动态数学模型

第二章控制系统的数学模型 控制系统的数学模型 本章主要内容: 引言 微分方程模型 传递函数模型 脉冲响应模型 方框图模型 信号流图模型 频域特性模型 数学模型的实验测定方法(辨识) 2.0 引言 主要解决的问题: 什么是数学模型 为什么要建立系统的数学模型 对系统数学模型的基本要求 2.0.1 什么是数学模型 控制系统的数学模型是描述系统内部各物理量(或变量)之间关系的数学表达式或图形表达式或数字表达式。 亦:描述能系统性能的数学表达式(或数字、图像表达式) 控制系统的数学模型按系统运动特性分为:静态模型

动态模型 静态模型:在稳态时(系统达到一平衡状态)描述系统各变量间关系的数学模型。 动态模型:在动态过程中描述系统各变量间关系的数学模型。 关系:静态模型是t时系统的动态模型。 控制系统的数学模型可以有多种形式,建立系统数学模型的方法可以不同,不同的模型形式适用于不同的分析方法。 2.0.2 为什么要建立控制系统的数学模型 控制系统的数学模型是由具体的物理问题、工程问题从定性的认识上升到定量的精确认识的关键!(这一点非常重要,数学的意义就在于此) 一方面,数学自身的理论是严密精确和较完善的,在工程问题的分析和设计中总是希望借助于这些成熟的理论。事实上凡是与数学关系密切的学科发展也是快的,因为它有严谨和完整的理论支持;另一方面,数学本身也只有给它提供实际应用的场合,它才具有生命力。“1”本身是没有意义的,只有给它赋予了单位(物理单位)才有意义。 建立系统数学模型的方法很多,主要有两类: 机理建模白箱实验建模(数据建模)黑箱或灰箱 系统辨识 2.0.3 对系统数学模型的基本要求 亦:什么样的数学表达式能用于一个工程系统的描述。 理论上,没有一个数学表达式能够准确(绝对准确)地描述一个系统,因为,理论上任何一个系统都是非线性的、时变的和分布参数的,都存在随机因素,系统越复杂,情况也越复杂。 而实际工程中,为了简化问题,常常对一些对系统运动过程影响不大的因素忽略,抓住主要问题进行建模,进行定量分析,也就是说建立系统的数学模型应该在模型的准确度和复杂度上进行折中的考虑。因此在具体的系统建模时往往考虑以下因素:

过控5

第五章习题 1.根据串级系统的特点,试分析串级控制系统的应用场合,即分析在生产过程具有什么特点时,采用串级控制系统最能发挥它的作用。 2.在生产过程中,为什么大多数副回路都是流量控制回路? 3.如果系统中主、副回路的工作周期十分接近,例如分别为三分钟和两分钟,也就是说正好运行在共振区内,应采取什么措施来避免系统的共振,这种措施对控制系统的性能有什么影响? 4.图5.1为管式加热炉温度-温度串级系统。工艺安全条件是:一旦发生重大事故,立即切断燃料油的供应。试确定: (1) 调节阀的作用形式; (2) 主、副调节器的正反作用。 图5.1 5.某串级系统的方框图如图5.2所示,已知各环节的传递函数如下: 对象特性 )13s )(130s (1)s (G p1++= ) 110s ()1s (1)s (G 2p2++= 调节器 )s T 11(K )s (G I C1c1+ = C2c2K )s (G =调节阀 1K )s (G v v ==变送器 1)s (G )s (G m2m1==(1) 用稳定边界法先对副调节器进行整定,求得,然后对主调节器进 c2K

行整定,求出珠调节器参数和。 c1K I T (2) 若主调节器亦采用纯比例作用,求二次扰动和一类扰动在单 位阶跃变化时主参数的余差各是多少?从中可得出什么结论? 2D 1D (3) 若采用简单控制系统,调节器为比例作用,用工程整定法求得调节器 的比例增益4.5K C =,试分别求出和作单位阶跃扰动时主参数的余差,并与串级系统比较,分析两者的区别。 2D 1D 图5.2 6.两个结构不同的比值控制系统如图5.3所示,试分析它们的优缺点。 图5.3(a )

过程控制系统课后习题

第二章 1什么是对象特性?为什么要研究对象特性? 答:研究对象特性是设计控制系统的基础;为了能使控制系统能安全投运并进行必要的调试;优化操作。 2什么是对象的数学模型?静态数学模型与动态数学模型有什么区别? 答:对对象特性的数学描述就叫数学模型。 静态:在输入变量和输出变量达到平稳状态下的情况。 动态:输出变量和状态变量在输入变量影响下的变化情况。 3建立对象的数学模型有什么意义? 答:1,控制系统的方案设计; 2控制系统的调试和调节器参数的确定; 3制定工业过程操作优化方案; 4新型控制方案及控制策略的确定; 5计算机仿真与过程培训系统; 6设计工业过程的故障检测与诊断系统。 4建立对象的数学模型有哪两种方法? 答:机理建模和实验建模。 机理建模:由一般到特殊的推理演绎方法,对已知结构、参数的物理系统运用相应的物理定律或定理,根据对象或生产过程的内部机理,经过合理的分析简化而建立起描述系统各物理量动静态性能的数学模型。 实验建模步骤:1确定输入变量与输出变量信号;2测试;3对数据进行回归分析。 5反应对象特性的参数有哪些?各有什么物理意义?他们对自动控制系统有什么影响? 答:K—放大系数。对象从新稳定后的输出变化量与输入变化量之比。 T—时间参数。时间参数表示对象受到输入作用后,被控变量的变化快慢。 桃—停滞时间。输入发生变化到输出发生变化之间的时间间隔。 6评价控制系统动态性能的常用单项指标有哪些?各自的定义是什么? 单项性能指标主要有:衰减比、超调量与最大动态偏差、静差、调节时间、振荡频率、上升时间和峰值时间等。 衰减比:等于两个相邻的同向波峰值之比n; 过渡过程的最大动态偏差:对于定值控制系统,是指被控参数偏离设定值的最大值A; 超调量:第一个波峰值y与最终稳态值y之比的百分数; 残余偏差C:过渡过程结束后,被控参数所达到的新稳态Y与设定值之间的偏差。 调节时间:从过渡过程开始到过渡过程结束所需的时间; 振荡频率:过渡过程中相邻两同向波峰之间的时间间隔叫振荡周期或工作周期,其倒数称为振荡频率; 峰值时间:过渡过程开始至被控参数到达第一个波峰所需要的时间。 第三章 12选择调节器控制规律的依据是什么?若已知过程的数学模型,怎样来选择pid控制规律? 1根据桃0/T0比值来选择。若比值小于,选PI,若在与之间,选用PI或者PID,若大于,就需要用到串级控制。 2根据过程特性来选择控制器的控制规律。 P:过渡时间短,克服干扰能力大。常用于负荷变化小,自平衡能力强,对象控制通道中的滞后时间与时间常数之比小,允许余差存在,控制质量要求不高的场合。

异步电动机动态数学模型的建模与仿真

概述 (1) 1课程设计任务与要求 (2) 2异步电动机动态数学模型 (3) 2.1三相异步电动机的多变量非线性数学模型 (4) 2.2 坐标变换 (6) 2.2.1坐标变换的基本思路 (6) 2.2.2三相-两相变换(3/2变换) (6) 2.2.3 静止两相-旋转正交变换(2s/2r变换) (8) 2.3状态方程 (9) 3模型实现 (11) 3.1AC Motor模块 (11) 3.2坐标变换模块 (12) 3.3仿真原理图 (15) 4仿真结果及分析 (17) 5结论 (20) 参考文献 (21)

异步电动机又称感应电动机,是由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。异步电动机按照转子结构分为两种形式:有鼠笼式、绕线式异步电动机。 异步电动机的转子绕组不需与其他电源相连,其定子电流直接取自交流电力系统;与其他电机相比,异步电动机的结构简单,制造、使用、维护方便,运行可靠性高。但它的转速与其旋转磁场的同步转速有固定的转差率,因而调速性能较差,在要求有较宽广的平滑调速范围的使用场合(如传动轧机、卷扬机、大型机床等),不如直流电动机经济、方便。因此,在需要高动态性能的调速系统或伺服系统,异步电动机就不能完全适应了。要实现高动态性能的系统,必须首先认真研究异步电机的动态数学模型。 系统建模与仿真一直是各领域研究、分析和设计各种复杂系统的有力工具。建模可以超越理想的去模拟复杂的现实物理系统;而仿真则可以对照比较各种控制策略和方案,优化并确定系统参数。长期以来,仿真领域的研究重点是放在仿真模型建立这一环节上,即在系统模型建立以后,设计一种算法,以使系统模型为计算机所接受,然后再将其编制成计算机程序,并在计算机上运行。显然,为达到理想的目的,在这一过程中编制与修改仿真程序十分耗费时间和精力,这也大大阻碍了仿真技术的发展和应用。 近年来逐渐被大家认识的Matlab软件则很好的解决了系统建模和仿真的问题。异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。本次设计就是借助于Matlab软件的Simulink组件来建立异步电动机的动态数学模型,再按照定子磁链定向的方法来仿真分析异步电动机的运行特性。

实验二串级控制系统的构成

自动化093 戴鹏0902100637 实验二串级控制系统的构成、投运和参数整定 及控制质量研究 一、实验目的 1、加深理解串级控制系统的工作原理及特点。 2、掌握串级控制系统的设计和组成。 3、学习相关的组态软件 4、初步掌握串级控制系统的控制器参数调整方法。 二、实验设备 1、A3000-FS现场总线型过程控制现场系统 4套 2、A3000-CS上位控制系统 4套 三、实验要求 1、根据工艺要求和工况条件,设计出合理可行的串级控制系统。 (1)要求及条件 工艺要求:下水箱液位控制在某一高度上。 对下水箱液位产生影响的扰动量:若干变量。 (2)控制方案 主被控变量c1(t)、副被控变量c2(t)及操纵变量q(t)等的选择;主控制器和副控制器控制算法的选择及正、反作用的确定等。 2、掌握串级控制系统的控制器参数整定方法和系统投运步骤。 3、经过参数调整,获得最佳的控制效果,并通过干扰来验证。 四、实验内容 1、液位流量串级控制系统方案及工作原理 实验以串级控制系统来控制下水箱液位,以第二支路流量为副被控变量,右边水泵直接向下水箱注水,流量变动的时间常数小、时延小,控制通道短,从而可加快提高响应速度,缩短过渡过程时间,符合副回路选择的超前,快速、反应灵敏等要求。 以下水箱为主被控对象。流量的改变需要经过一定时间才能反应到下水箱液位的变化,时间常数比较大(时延较大)。如图2-1所示,

图2-1 液位-流量串级控制系统 设计好下水箱和流量串级控制系统。将主控制器的输出送到副控制器的外给定输入端,而副控制器的输出去控制执行器。经反复调试,使第二支路的流量快速稳定在给定值上,这时给定值应与副反馈值相同。待流量稳定后,通过变频器快速改变流量,加入扰动(即,使干扰落入串级控制系统的副回路)。若控制器的各参数设置比较理想,且扰动量较小,经过副回路的及时控制校正,基本不会影响下水箱的液位。如果扰动量较大或控制器的各参数设置不理想,虽然经过副回路的校正,还将会影响主回路的液位,此时再由主回路进一步调节,从而完全克服上述扰动的影响,使液位调回到给定值上。当用第一动力支路把扰动加在下水箱时(即,干扰落入串级控制系统的主回路),扰动使液位发生变化,主回路产生校正作用,克服扰动对液位的影响。由于副回路的存在加快了校正作用,使扰动对主回路的液位影响较小。该串级控制系统框图如图2-2所示。 图2-2 液位-流量串级控制系统原理方框图 2、液位流量串级控制系统组态 表2-1 液位流量串级控制系统连接示意 测量或控制量测量或控制量标号使用控制器端口 电磁流量计FT102 AI0 下水箱液位LT103 AI1 调节阀FV101 AO0 3、液位流量串级控制系统实验内容与步骤

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 第七章

15 养老保险模型。 16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 第八章 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 第九章 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵

322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据 (1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。

过程控制作业答案2014

第一章 概述 1.1 过程控制系统由哪些基本单元构成?画出其基本框图。 控制器、执行机构、被控过程、检测与传动装置、报警,保护,连锁等部件 1.2 按设定值的不同情况,自动控制系统有哪三类? 定值控制系统、随机控制系统、程序控制系统 1.3 简述控制系统的过渡过程单项品质指标,它们分别表征过程控制系统的什么性能? a.衰减比和衰减率:稳定性指标; b.最大动态偏差和超调量:动态准确性指标; c.余差:稳态准确性指标; d.调节时间和振荡频率:反应控制快速性指标。 第二章 过程控制系统建模方法 习题2.10 某水槽如图所示。其中F 为槽的截面积,R1,R2和R3均为线性水阻,Q1为流入量,Q2和Q3为流出量。要求: (1) 写出以水位H 为输出量,Q1为输入量的对象动态方程; (2) 写出对象的传递函数G(s),并指出其增益K 和时间常数T 的数值。 (1)物料平衡方程为123d ()d H Q Q Q F t -+= 增量关系式为 123d d H Q Q Q F t ??-?-?= 而22h Q R ??= , 33 h Q R ??=, 代入增量关系式,则有23123 ()d d R R h h F Q t R R +??+=? (2)两边拉氏变换有: 23 123 ()()()R R FsH s H s Q s R R ++ =

故传函为: 232323123 ()()()1 1R R R R H s K G s R R Q s Ts F s R R +===+++ K=2323R R R R +, T=23 23 R R F R R + 第三章 过程控制系统设计 1. 有一蒸汽加热设备利用蒸汽将物料加热,并用搅拌器不停地搅拌物料,到物料达到所需温度后排出。试问: (1) 影响物料出口温度的主要因素有哪些? (2) 如果要设计一温度控制系统,你认为被控变量与操纵变量应选谁?为什么? (3) 如果物料在温度过低时会凝结,据此情况应如何选择控制阀的开、闭形式及控制器 的正反作用? 解:(1)物料进料量,搅拌器的搅拌速度,蒸汽流量 (2)被控变量:物料出口温度。因为其直观易控制,是加热系统的控制目标。 操作变量:蒸汽流量。因为其容易通过控制阀开闭进行调整,变化范围较大且对被 控变量有主要影响。 (3)由于温度低物料凝结所以要保持控制阀的常开状态,所以控制阀选择气关式。控制 器选择正作用。 2. 如下图所示为一锅炉锅筒液位控制系统,要求锅炉不能烧干。试画出该系统的框图,判断控制阀的气开、气关型式,确定控制器的正、反作用,并简述当加热室温度升高导致蒸汽蒸发量增加时,该控制系统是如何克服干扰的? 解:系统框图如下:

第二章 数学模型作业与习题解答

第二章 数学模型作业与习题解答 2-1 试建立图2-55所示各系统的动态方程,并说明这些动态方程之间有什么特点。图中电压1u 和位移1x 为输入量,电压2u 和位移2x 为输出量;k 、1k 和2k 为弹性系数;f 为阻尼器的阻尼系数。 解: 1212 2 211u idt u u i u C C u u iR i R ?=+?=+????=?=??? 2211 u u u RC + = 21()1()1U s s RCs U s RCs s RC == ++

221fx kx fx += 21()()1f s X s fs k f X s fs k s k ==++ 1111 ()()()1c R Cs U s I s U s R Cs ? =?++ 22()()U s R I s = 22111221()(1) ()U s R R Cs U s R R R R Cs +=++ 12212212121()R R u R R Cu R R Cu R u ++=+ 1222111211 R R u u u u R R R C ++ =+

22 2211 1121212121() (1) 1() 1 1U s R R R R Cs R U s R R R R Cs R R Cs R Cs R R Cs +=== ++? + ++ + 21222111fx k x k x k x fx ++=+ 112121112 12 1()()1k f s k k k x s fs k f x s fs k k s k k ??+ ? ++??= ++++= 22211212 1()1 1( )()1 R U s R Cs Cs U s R R Cs R R Cs + +== ++++

完整版数学模型第二章习题答案.doc

15. 速度为 v 的风吹在迎风面积为 s 的风车上,空气密度是 ,用量纲分析方法确定风车 获得的功率 P 与 v 、S 、 的关系 . 解: 设 P 、 v 、 S 、 的关系为 f ( P, v, s, ) 0 , 其量纲表达式为 : [P]= ML 2T 3 , [ v ]= LT 1 ,[ s ]= L 2 ,[ ]= ML 3 , 这里 L, M ,T 是基本量纲 . 量纲矩阵为: 2 1 2 3 ( L) A= 1 0 0 1 ( M ) 3 1 (T ) ( P) (v) (s) ( 齐次线性方程组为: 2 y 1 y 2 2y 3 3y 4 y 1 y 4 0 3y 1 y 2 它的基本解为 y ( 1,3 ,1,1) 由量纲 P i 定理得 P 1v 3 s 1 1 , P v 3s 1 1 , 其中 是无量纲常数 . 16.雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘滞系数的定义 是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比, 比例系数为粘滞系 数,用量纲分析方法给出速度 v 的表达式 . 解:设 v , , , g 的关系为 f ( v , , , g ) =0. 其量纲表达式为 [ v ]=LM 0T -1 ,[ ]=L -3 MT 0, -2 -1 L -1 -1 -2 -2 -2 -1 -1 0 -2 , 其中 L ,M , T 是基本量纲 . [ ]=MLT ( LT ) L =MLL T T=L MT , [ g ]=LM T 量纲矩阵为 1 3 1 1 ( L) A= 0 1 1 0 ( M ) 1 0 1 2 (T ) (v) ( ) ( ) ( g) 齐次线性方程组 Ay=0 ,即 y 1 - 3y 2 - y 3 y 4 0 y 2 y 3 - y 1 - y 3 - 2y 4 的基本解为 y=(-3 ,-1 ,1 ,1) 由量纲 P i 定理 得 v 3 1 g . v 3 g ,其中 是无量纲常数 .

第二章用拉格朗日方程建立系统数学模型

第二章 用拉格朗日方程建立系统的数学模型 §2.1概述 拉格朗日方程——属于能量法,推导中使用标量,直接对整个系统建模 特点:列式简洁、考虑全面、建模容易、过程规范 适合于线性系统也适合于非线性系统,适合于保守系统,也适合于非保守系统。 §2.2拉格朗日方程 1. 哈密尔顿原理 系统总动能 ),,,,,,,(321321N n q q q q q q q q T T = (2-1) 系统总势能 ),,,,(321t q q q q U U N = (2-2) 非保守力的虚功 N N nc q Q q Q q Q W δδδδ ++=2211 (2-3) 哈密尔顿原理的数学描述: 0)(2 1 21 =+-??t t nc t t dt W dt U T δδ (2-4) 2. 拉格朗日方程: 拉格朗日方程的表达式: ),3,2,1()(N i Q q U q T q T dt d i i i i ==??+??-?? (2-5) (推导:) 将系统总动能、总势能和非保守力的虚功的表达式代入哈密尔顿原理式中(变分驻值原理),有 0)( 22112211221122112 1 =+++??-??-??-??++??+??+??+??+??? dt q Q q Q q Q q q T q q U q q U q q T q q T q q T q q T q q T q q T N N N N N N N N t t δδδδδδδδδδδδ (2-6) 利用分步积分

dt q q T dt d q q T dt q q T i t t i t t i i i t t i δδδ?? ??-??=??21212 1 )(][ (2-7) 并注意到端点不变分(端点变分为零) 0)()(21==t q t q i i δδ (2-8) 故 dt q q T dt d dt q q T i i t t i t t i δδ)(212 1 ??-=???? (2-9) 从而有 0)])([2 1 1 =+??-??+??- ?∑=dt q Q q U q T q T dt d i i i t t i i N i δ ( (2-10) 由变分学原理的基本引理: (设 n 维向量函数M(t),在区间],[0f t t 内处处连续,在],[0f t t 内具有二阶连续导 数,在f t t ,0处为零,并对任意选取的n 维向量函数)(t η,有 ? =f t t T dt t M t 0 0)()(η 则在整个区间],[0f t t 内,有 0)(≡t M ) 我们可以得到: 0)(=+??-??+??- i i i i Q q U q T q T dt d (2-11) 即 i i i i Q q U q T q T dt d =??+??-??)( (2-12) 对非保守系统,阻尼力是一种典型的非保守力,如果采用线性粘性阻尼模型, 则阻尼力与广义速度}{q 成正比,在这种情况下,可引入瑞利耗散(耗能)函数D , }]{[}{2 1q C q D T ≡ (2-13) 阻尼力产生的广义非保守力为:

数学建模习题-第二章

数学建模第二章 习题 1.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数 ①按比例分配完取整数的名额后,剩下的名额按惯例分给小数部分较大者 ②2.1节中的Q 值方法。 ③Hondt d 方法:将A 、B 、C 各宿舍的人数用1,2,3,…正整数相除,其商数如下表 将所得商数从大到小取10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2、3、5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗? 如果委员会从10人增至15人,分配名额如何改变。 2.用2.5节实物交换模型中介绍的无差别曲线概念,讨论雇员和雇主之间的协议关系。 ①以雇员一天的工作时间t 和工资w 分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图。解释曲线为什么是你画的那种形状。 ②如果雇主付计时工资,对不同的工资率(单位时间的工资)作出计时工资线族。根据雇员的无判别曲线族和雇主的计时工资线族,讨论他们将在怎样的一条曲线上达成协议。 ③设雇员和雇主已经达成了一个协议(工作时间1t 和工资1w )。如果雇主想使雇员的工作时间增加到2t ,他有两种办法,一是提高计时工资率,在协议线的另一点(2t ,2w )达成新的协议;另一种办法是实行超时工资制,即对工时1t 仍付原计时工资,对工时2t -1t 付给更高的超时工资,于是协议点为(2t ,2w )。试用作图方法分析哪各办法对雇主更有利]4[。 3.在2.6节核武器竞赛模型中,如果甲方引进多弹头导弹(每枚导弹都装上N 个弹头),平衡点将如何改变。如果乙方也引进多弹头导弹呢? 4.用初等概率方法讨论随机性的核武器竞赛模型。设一方的每枚导弹被对方一枚导弹击中的概率为p ,攻击是相互独立的。问当一方以全部导弹攻击对方时,对方平均能幸存多少枚导弹。由此得到双方的安全线,讨论平衡点的存在性。 5.将2.7节的传染病随机感染模型从静态的发展为动态的,即仍利用原来的假设。记第k 天的病人和健康者的人数为k i 和k s ,求k i 或k s 的平均值。 6.在2.8节传送带效率模型中,设工人数n 固定不变。若想提高传送带效率D ,一个简单的办法是增加一个周期内通过工作台的钩子数m ,其他条件不变。当钩子数增加一倍,按(3)式可使“效率”E 减少一倍。另一种办法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中有一只是空的,他就可以挂上产品。试推导这种情况下传送带的效率公式,从数量关系上证明这种办法比第一种办法好。 *7.购物时你注意到大包装商品比小包装商品便宜这种现象了吗?譬如蓝天牙膏60克装的每支0.96元,150克装的每支2.15元,二者单位重量的价格比是1.17:1。试用比例方法构造模型解释这个现象。 ①分析商品价格c 与商品重量的w 关系。价格由生产成本、运输成本和包装成本等决定。这些成本中有的与重量w 成正比,有的与表面积s 成正比,还有与w 无关的因素。 ②写出单位重价格c 与w 的关系,说明w 越大c 越小。 ③说明单价c 随w 增加而下降的速度是负的,其实际意义是什么 ]4[。

相关文档
最新文档