指数函数与对数函数

指数函数与对数函数
指数函数与对数函数

培优教育一对一辅导讲义

科目:_数___年级:__高一__姓名:____教师:____时间:____

2

二、指数函数

1.指数函数定义:

一般地,函数x

y a =(0a >且1a ≠)叫做指数函数,其中x 是自变量,函数定义域是R .

2.指数函数x

y a =在底数1a >及01a <<这两种情况下的图象和性质:

1a > 01a <<

图象

性质

(1)定义域:R (2)值域:(0,)+∞

(3)过点(0,1),即0x =时1y =

(4)在R 上是增函数

(4)在R 上是减函数

例1.求下列函数的定义域、值域: (1)121

8

x y -= (2)11()2x y =- (3)3x

y -= (4)1(0,1)1

x x

a y a a a -=>≠+.

说明:求复合函数的值域通过换元可转换为求简单函数的值域。

例2.当1a >时,证明函数1

1

x x a y a +=- 是奇函数。

同样:也分1>a 与10<

1log =(图2)为例。

(3)对数函数性质列表:

图 象

1a >

01a <<

性 质

(1)定义域:(0,)+∞ (2)值域:R

(3)过点(1,0),即当1=x 时,0=y

(4)在(0,+∞)上是增函数

(4)在(0,)+∞上是减函数

例1.求下列函数的定义域:

(1)2log x y a =; (2))4(log x y a -=; (3))9(log 2

x y a -=.

分析:此题主要利用对数函数x y a log =的定义域(0,)+∞求解。 解:(1)由2

x >0得0≠x ,

∴函数2

log x y a =的定义域是{}

0x x ≠;

(2)由04>-x 得4

∴函数)4(log x y a -=的定义域是{}

4x x <; (3)由9-02

>-x 得-33<

∴函数)9(log 2

x y a -=的定义域是{}

33x x -<<.

例2.比较下列各组数中两个值的大小:

(1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . 解:(1)对数函数2log y x =在(0,)+∞上是增函数,

于是2log 3.4<2log 8.5;

(2)对数函数0.3log y x =在(0,)+∞上是减函数,

于是0.3log 1.8>0.3log 2.7;

(3)当1a >时,对数函数log a y x =在(0,)+∞上是增函数,

于是log 5.1a

当1o a <<时,对数函数log a y x =在(0,)+∞上是减函数,

于是log 5.1a >log 5.9a .

例3.比较下列比较下列各组数中两个值的大小:

(1)6log 7,7log 6; (2)3log π,2log 0.8; (3)0.9

1.1, 1.1log 0.9,0.7log 0.8; (4)5log 3,6log 3,7log 3.

1 1

2x

y = 2log y x = y x = (图1)

1

1

1()2

x y =

12

log y x =

y x =

(图2)

(1,0)

(1,0)

1x = 1x = log a y x =

log a y x =

D、有限集

[

3.2.3指数函数与对数函数的关系教案

3.2.3 指数函数与对数函数的关系 【学习要求】 1.了解反函数的概念及互为反函数图象间的关系; 2.掌握对数函数与指数函数互为反函数. 【学法指导】 通过探究指数函数与对数函数的关系,归纳出互为反函数的概念,通过指数函数图象与对数函数图象的关系,总结出互为反函数的图象间的关系,体会从特殊到一般的思维过程. 填一填:知识要点、记下疑难点 1.当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的 自变量 ,而把这个函数的自变量 作为新的函数的 因变量. 我们称这两个函数 互为反函数. 即y =f(x)的反函数通常用 y =f - 1(x) 表示. 2.对数函数y =log a x 与指数函数y =a x 互为反函数 ,它们的图象关于 直线y =x 对称. 3.互为反函数的图象关于直线 y =x 对称;互为反函数的图象同增同减. 4.当a>1时,在区间[1,+∞)内,指数函数y =a x 随着x 的增加,函数值的增长速度 逐渐加快 ,而对数函数y =log a x 增长的速度 逐渐变得很缓慢. 研一研:问题探究、课堂更高效 [问题情境] 设a 为大于0且不为1的常数,对于等式a t =s,若以t 为自变量可得指数函数y =a x ,若以s 为自变量可得对数函数y =log a x.那么指数函数与对数函数有怎样的关系呢?这就是本节我们要探究的主要问题. 探究点一指数函数与对数函数的关系 导引为了探究这两个函数之间的关系,我们用列表法画出函数y =2x 及y =log 2x 的图象. 问题1函数y =2x 及y =log 2x 的定义域和值域分别是什么,它们的定义域和值域有怎样的关系? 答:函数y =2x 的定义域为R,值域为(0,+∞);函数y =log 2x 的定义域为(0,+∞),值域为R.函数y =2x 的定义域和值域分别是函数y =log 2x 的值域和定义域. 问题2在列表画函数y =2x 的图象时,当x 分别取-3,-2,-1,0,1,2,3这6个数值时,对应的y 值分别是什么? 答:y 值分别是: 18, 14, 1 2 , 1, 2, 4, 8. 问题3在列表画函数y =log 2x 的图象时,当x 分别取18,14,1 2 ,1,2,4,8时,对应的y 值分别是什么? 答:y 值分别是:-3,-2,-1,0,1,2,3. 问题4综合问题2、问题3的结果,你有什么感悟? 答:在列表画y =log 2x 的图象时,可以把y =2x 的对应值表里的x 和y 的数值对换,就得到y =log 2x 的对应值表. 问题5观察画出的函数y =2x 及y =log 2x 的图象,能发现它们的图象有怎样的对称关系? 答:函数y =2x 与y =log 2x 的图象关于直线y =x 对称. 问题6我们说函数y =2x 与y =log 2x 互为反函数,它们的图象关于直线y =x 对称,那么对于一般的指数函数y =a x 与对数函数y =log a x 又如何? 答:对数函数y =log a x 与指数函数y =a x 互为反函数.它们的图象关于直线y =x 对称. 探究点二 互为反函数的概念 问题1对数函数y =log a x 与指数函数y =a x 是一一映射吗?为什么? 答:是一一映射,因为对数函数y =log a x 与指数函数y =a x 都是单调函数,所以不同的x 值总有不同的y 值与之对应,不同的y 值也总有不同的x 值与之对应. 问题2对数函数y =log a x 与指数函数y =a x 互为反函数,更一般地,如何定义互为反函数的概念? 答:当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新 的函数的因变量,我们称这两个函数互为反函数.函数y =f(x)的反函数通常用y =f - 1(x)表示. 问题3 如何求函数y =5x (x ∈R)的反函数? 答:把y 作为自变量,x 作为y 的函数,则x =y 5,y ∈R.通常自变量用x 表示,函数用y 表示,则反函数为y =x 5 ,x ∈R. 例1 写出下列函数的反函数: (1)y =lg x; (2)y =log 1 3 x; (3)y =????23x . 解:(1)y =lg x(x>0)的底数为10,它的反函数为指数函数y =10x (x ∈R). (2)y =log 13x (x>0)的底数为1 3 ,它的反函数为指数函数y =????13x (x ∈R). (3)y =????23x (x ∈R)的底数为23,它的反函数为对数函数y =log 2 3x (x>0). 小结:求给定解析式的函数的反函数的步骤: (1)求出原函数的值域,这就是反函数的定义域; (2)从y =f(x)中解出x; (3)x 、y 互换并注明反函数的定义域. 跟踪训练1 求下列函数的反函数:(1)y =3x -1; (2)y =x 3+1 (x ∈R); (3)y =x +1 (x≥0); (4)y =2x +3 x -1 (x ∈R,x≠1).

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

指数函数和对数函数

第七讲: 指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e - 是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f -1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[- , 求a 的值. (二) 专题测试与练习: 一. 选择题 1. 设0x >且) (0,b a, ,1b a x x ∞+∈<<, 则a 、b 的大小关系是 ( ) A. 1a b << B. 1b a << C. a b 1<< D. b a 1<< 2. 如果1a 0<<, 那么下列不等式中正确的是 ( ) A. 21 31 )a 1()a 1(->- B. )a 1(log ) a 1(+- C. 2 3)a 1()a 1(+>- D. 1)a 1()a 1(>-+ 3. 已知x 1是方程3x lg x =+的一个根, 2x 是方程310x x =+的一个根, 那么21x x +的值 是 ( ) A. 6 B. 3 C. 2 D. 1 4. ,0z log log log y log log log x log log log 324243432===则z y x ++的值为 ( ) A. 50 B. 58 C. 89 D. 111 5. 当1a >时, 在同一坐标系中, 函数x a y -=与=y x log a 的图象是图中的 ( ) 6. 若函数)x (f 与=)x (g x ) 2 1 (的图象关于直线x y =对称, 则)x 4(f 2 -的单调递增区间是( ) A. ]2 ,2(- B. ) ,0[∞+ C. )2 ,0[ D. ]0 ,(-∞ 二. 填空题 7. 已知522x x =+-, 则=+-x x 88 . 8. 若函数=y 2x log 2+的反函数定义域为),3(∞+ , 则此函数的定义域为 . 9. 已知=y )ax 3(log a -在]2 ,0[上是x 的减函数, 则a 的取值范围是 . 10.函数=)x (f )1a ,0a (a x ≠>在]2 ,1[上的最大值比最小值大2 a , 则a 的值为 . 三. 解答题 11. 设 1x 0 <<, 试比较|)x 1(log a -|与|)x 1(log a +|的大小.

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

高考指数函数与对数函数专题复习

例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0) 0(f >=?=-? =, (2) =-?∈++=--)x (f )R x (2 4 x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax ) x (u 2-=, 对称轴a 21x = . (1) 当1a >时, 1a 0 )2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可 能是【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1

对数函数与指数函数的运算

对数函数与指数函数的运算 1.化简下列各式(其中各字母均为正数): (1) ;)(65312121132 b a b a b a ????-- (2).)4()3(6521 332121231----?÷-??b a b a b a 2.化简(1) 313 2)3(---a y x (2) )111)((2211b ab a b a +-+-- 3.化简下列各式 (1) 6113175.0231729)95()27174(256)61(027 .0------+-+-- (2) (a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)] 4.求值(1)lg14-2lg 37+lg7-lg18 (2)9lg 243lg

(3) 2.1lg 10lg 38lg 27lg -+ (4)(lg2)3+(lg5)3+3lg2?lg5 (5)化简22)4(lg 16lg 25lg )25(lg ++ 答案: 1.(1)原式= .100653121612131656131212131=?=?=?-+-+--b a b a b a b a b a (2)原式=- )(45)4(25233136121332361------÷-=?÷b a b a b a b a .45145452 32321ab ab ab b a -=?-=?-=-- 2. (1) 639 27x a y ; (2) 3311b a +;

3.(1) 5132;(2) a a 1 ; 4. (1) 0;(2) 25;(3) 23;(4) 1;(5) 2 ;

指数函数和对数函数公式(全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a x ,y log a x 在 a 1及 0 a 1两种不同情况。 1、指数函数: y x 且a 叫指数函数。 定义:函数 aa 0 1 定义域为 R ,底数是常数,指数是自变量。 为什么要求函数 y a x 中的 a 必须 a 0且a 1 。 因为若 a 0时, y 4 x ,当 x 1 时,函数值不存在。 4 a 0 , y 0x ,当 x 0 ,函数值不存在。 a 时, y 1 x x 虽有意义,函数值恒为 1,但 1 对一切 y 1x 的反函数不存在, 因 为 要 求 函 数 y a x 中 的 a 0且 a 1 。 x 1、对三个指数函数 y 2 x , y 1 ,y 10x 的图象的 2 认识。 图象特征与函数性质: 图象特征 函数性质 ( 1)图象都位于 x 轴上方; ( 1) x 取任何实数值时,都有 a x 0 ; 2 0 1 ); ( 2)无论 a 取任何正数, x 0 时, y 1 ; ( )图象都经过点( , ( 3) y 2x , y 10 x 在第一象限内的纵坐 ( 3)当 a x 0,则 a x 1 1 时, 0,则 a x 1 标都大于 1,在第二象限内的纵坐标都小于 1, x 1 y 2 x x 0,则 a x 1 当 0 的图象正好相反; a 1时, 0,则 a x 1 x ( 4) y 2x , y 10 x 的图象自左到右逐渐 ( 4)当 a 1 时, y a x 是增函数,

指数函数和对数函数的重点知识

指数函数和对数函数的重点知识 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为 1,但y x =1的反函数不存在, 因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210 ,,的图象的认识。 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐 标都大于1,在第二象限内的纵坐标都小于1,y x =?? ???12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101 ,则,则 (4)y y x x ==210,的图象自左到右逐渐上升,y x =?? ? ? ?12的图象逐渐下降。 (4)当a >1时,y a x =是增函数, 当01<

指数函数与对数函数对比分析总结---答案

指数函数与对数函数总结 一、 [知识要点]: x a log x 定义 图象 定义域 值域 性质 奇偶性 单 调 性 过定 点 值的分布 最值 y =a x (a>0且a ≠1) 叫指数函数 a>1 (-∞,+ ∞) (0,+∞) 非奇 非偶 增 函数 (0,1) 即a 0 =1 x>0时y>1;00时01 y = a log (a>0且a ≠1) 叫对数函数 a>1O y x (0,+∞) (- ∞,+∞) 非奇 非偶 增 函数 (1,0) 即 log a 1=0 x>1时 y>0; 01时 y<0; 00 对称性 函数y =ax 与y =a -x (a>0且a ≠1)关于y 轴对称;函数y =a x 与y =log a x 关于y =x 对称 函数y =log a x 与y =1log a x (a>0且a ≠1)关于x 轴对称 2. ① ② 3. 几个注意点 (1)函数y =a x 与对数函数y =log a x (a>0,a ≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系;(2)比较几个数的大小是对数函数性质应用的常见题型。在具体比较时,可以首先将它们与零比较,分出正负;正数通常可再与1比较分出大于1还是小于1,然后在各类中间两两相比较;(3)在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用。研究指数、对数函数问题,尽量化为同底,并注意对数问题中的定义域限制。 【典型例题】 例1. (1)下图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a 、b 、c 、d 与1的大小关系是( )

指数函数与对数函数图像及交点问题

关于指数函数与对数函数的问题 一、指数函数 底数对指数函数的影响: ①在同一坐标系内分别作函数的图象,易看出:当a>l时,底数越大,函数图象在第一象限越靠近y轴;同样地,当00,且a≠l时,函数与函数y=的图象关于y轴对称。 利用指数函数的性质比较大小: 若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较; 若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值

二、对数函数 底数对函数值大小的影响: 1.在同一坐标系中分别作出函数的图象,如图所示,可以看出:当a>l时,底数越大,图象越靠近x轴,同理,当O

对数函数的图象与性质: 三、对数函数与指数函数的对比: (1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称. (2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O

四、关于同底指数函数与对数函数的交点问题 一、1a >时方程 x log a a x =的解 先求如图3所示曲线x log y a y a x ==与相切时a 的值。设曲线x log y a y a x ==与相切 于点M (00x ,x ),由于曲线x a y =在点M 处的切线斜率为1, 所以?????==?????===1a ln a , x a 1|)'a (,x a 0000x 0x x x x 0x 即

指数函数与对数函数总结

指数函数与对数函数总结一、[知识要点]: log x的比较: 1. 指数函数y=a x与对数函数y=a a>1 0

① ② 3. 几个注意点 (1)函数y =a x 与对数函数y =log a x (a>0,a ≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系;(2)比较几个数的大小是对数函数性质应用的常见题型。在具体比较时,可以首先将它们与零比较,分出正负;正数通常可再与1比较分出大于1还是小于1,然后在各类中间两两相比较;(3)在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用。研究指数、对数函数问题,尽量化为同底,并注意对数问题中的定义域限制。 【典型例题】 例1. (1)下图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a 、b 、c 、d 与1的大小关系是( ) y x 1O (4)(3)(2)(1) A. a <b <1<c <d B. b <a <1<d <c C. 1<a <b <c <d D. a <b <1<d <c 剖析:可先分两类,即(3)(4)的底数一定大于1,(1)(2)的底数小于1,然后再从(3)(4)中比较c 、d 的大小,从(1)(2)中比较a 、b 的大小。

解法一:当指数函数底数大于1时,图象上升,且底数越大,图象向上越靠近于y 轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近于x 轴.得b <a <1<d <c 。故选B 。 解法二:令x =1,由图知c 1>d 1>a 1>b 1,∴b <a <1<d <c 。 例2. 已知2x x +2 ≤(41 )x -2,求函数y =2x -2-x 的值域。 解:∵2x x +2 ≤2-2(x -2),∴x 2+x ≤4-2x , 即x 2+3x -4≤0,得-4≤x ≤1。 又∵y =2x -2-x 是[-4,1]上的增函数, ∴2-4-24≤y ≤2-2-1。 故所求函数 y 的值域是[-16255,23 ]。 例3. 要使函数y =1+2x +4x a 在x ∈(-∞,1)上y >0恒成立,求a 的取值范围。 解:由题意,得1+2x +4x a >0在x ∈(-∞,1)上恒成立, 即 a >-x x 421+在x ∈(-∞,1)上恒成立。 又∵-x x 421+=-(21)2x -(21 )x =-[(21)x +21]2 +41 , 当 x ∈(-∞,1)时值域为(-∞,-43 ), ∴a >-43。 评述:将不等式恒成立问题转化为求函数值域问题是解决这类问题常用的方法。 例4. 已知f (x )=log 3 1[3-(x -1)2],求f (x )的值域及单调区间。 解:∵真数3-(x -1)2≤3, ∴log 3 1 [3-(x -1)2 ]≥log 3 13=-1, 即f (x )的值域是[-1,+∞]。

指数函数和对数函数 知识点总结

指数函数和对数函数 知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,?? ?<≥-==) 0() 0(||a a a a a a n n 2.正数的分数指数幂,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质),,0(R s r a ∈> (1)r a ·s r r a a += ;(2)rs s r a a =)( ;(3) s r r a a ab =)( (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明: ○1 注意底数的限制0>a ,且a x N a =?log ;③注意对数的书 写格式. N a log 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . 2、对数的运算性质:如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ;③n a M log n =M a log )(R n ∈. 注意:换底公式a b b c c a log log log =(0>a ,且1≠a ;0>c ,且 1≠c ;0>b ) . 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. 3、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,

指数函数与对数函数的关系(附答案)

3.2.3 指数函数与对数函数的关系 知识点一:反函数 1.已知函数y =f(x)有反函数,则方程f(x)=0的根的情况是 A .有且仅有一个实根 B .至少有一个实根 C .至多有一个实根 D .0个,1个或1个以上根 2.若函数y =f(x)的反函数是y =g(x),f(a)=b ,ab≠0,则g(b)等于 A .a B .a -1 C .b D .b -1 3.若函数f(x)的图象上有一点(0,1),则其反函数f -1 (x)上一定存在点 A .(0,1) B .(1,0) C .(0,0) D .不能确定 4.已知函数y =2x -a 的反函数是y =bx +3,则a =__________,b =__________. 5.函数y =3x (02)的反函数是 A .y =2x (x<-1) B .y =(12)x (x>-1) C .y =2-x (x<-1) D .y =(12 )-x (x>-1) 8.函数f(x)=log a (3x -1)(a>0且a≠1)的反函数的图象过定点 A .(1,0) B .(0,1) C .(0,23) D .(2 3,0) 9.已知对数函数f(x)=log a x(a>0,a≠1,x>0)满足f(a 4 )=0,则函数f(x)的反函数f -1 (x)=__________. 10.若函数f -1(x)为函数y =lg(x +1)的反函数,则f -1 (x)的值域是__________. 11.将函数y =3x -2 的图象向左平移两个单位,再将所得图象关于直线y =x 对称后所得图象的函数解析式为__________. 能力点一:求反函数 12.函数y =1+log 1 2 x 的反函数是 A .y =2x -1(x∈R ) B .y =(12)x -1(x∈R ) C .y =2 1-x (x∈R ) D .y =(12 )x -1 (x∈R )

指数函数与对数函数及其不等式

一. 选择题 1. 设0x >且) (0,b a, ,1b a x x ∞+∈<<, 则a 、b 的大小关系是 ( ) A. 1a b << B. 1b a << C. a b 1<< D. b a 1<< 2. 如果1a 0<<, 那么下列不等式中正确的是 ( ) A. 2 131)a 1()a 1(->- B. 23)a 1()a 1(+>- c. 1)a 1()a 1(>-+ 343的结果为() A 、5 B 、5 C 、-5 D 、-5 4、函数y=5x +1的反函数是 A 、y=log 5(x+1) B 、y=log x 5+1 C 、y=log 5(x -1) D 、y=log (x+1)5 5、函数f x x ()=-21,使f x ()≤0成立的x 的值的集合是 A 、{}x x <0 B 、{}x x <1 C 、{}x x =0 D 、{}x x =1 6、设 5.1344.029.01)21(,8,4-===y y y ,则 A 、y 3>y 1>y 2 B 、y 2>y 1>y 3 C 、y 1>y 2>y 3 D 、y 1>y 3>y 2 7、25532lg 2lg lg 16981-+等于 A 、lg2 B 、lg3 C 、lg4 D 、lg5 8. 当1a >时, 在同一坐标系中, 函数x a y -=与=y x log a 的图象是图中的 ( )

二、填空题: 1、已知21366log log x =-,则x 的值是 。 2、计算:21 0319)41()2(4)21(----+-?- = . 3、函数y=lg(ax+1)的定义域为(-∞,1),则a= 。 4、当x ∈[-2,2)时,y =3-x -1的值域是 _ . 5. 若函数=y 2x l o g 2+的反函数定义域为),3(∞+ , 则此函数的定义域为 . 三、解答题: 1、(8分)已知函数f (x )=a x +b 的图象过点(1,3),且它的反函数f -1(x )的图象过(2,0) 点,试确定f (x )的解析式. 2、(8分)设A ={x ∈R |2≤ x ≤π},定义在集合A 上的函数y =log a x (a >0,a ≠1)的最大值比最小值大1,求a 的值 3. 已知函数12x )x (f -=的反函数为)x (f 1-, )1x 3(log )x (g 4+=. (1) 若≤-)x (f 1)x (g ,求x 的取值范围D; (2) 设函数)x (f 2 1)x (g )x (H 1-- =,当∈x D 时, 求函数)x (H 的值域.

相关文档
最新文档