控制理论与控制系统的发展历史及发展趋势

控制理论与控制系统的发展历史及发展趋势
控制理论与控制系统的发展历史及发展趋势

控制理论与控制系统的发展历史及趋势

姓名:

学号:

指导教师:

专业:

所在学院:机电工程学院

时间:2011年11月3号

控制理论与控制系统的发展历史及趋势

摘要:由于自动控制理论和自动控制系统的的广泛运用,各行业的专业人员对它的学习,研究也在不断的进行。本文叙述了自动控制理论和自动控制系统的发展历史(三个阶段:经典控制,现代控制,智能控制)和发展的趋势。

前言

控制是人类对事物的认识思考,进而作出决策并作出相应反应的过程。人类在漫长的生产与生活实践中不断总结,积累经验,形成理论,进而指导实践使生产力不断发展。随着生产力的不断发展,人们开始要求生活的高质量,一方面要从繁重的体力劳动中解放自己,另一方面要有更高质量的产品来满足生活的需要。自动控制理论自动控制系统就随之而产生了。控制理论和控制系统经过漫长的发展,其研究范围和应用范围很广泛。控制理论研究的对象和应用领域不但涉及到工业、农业、交通、运输等传统产业,还涉及到生物、通讯、信息、管理等新兴行业。由于自动控制理论和自动控制系统获得了如此广泛的应用,所以自动控制的发展必将受到各行各业的关注。本文就是对控制理论和控制系统的发展历史进行综述,叙述控制发展的各个阶段。还有就是控制理论和控制系统的今后的发展趋势。

一,控制理论的发展历史及趋势

1,早期的自动控制装置及自动控制技术的形成

古代人类在长期生产和生活中,为了减轻自己的劳动,逐渐产生利用自然界动力代替人力畜力,以及用自动装置代替人的部分繁难的脑力活动的愿望,经过漫长岁月的探索,他们互不相关地造出一些原始的自动装置。约在公元前三世纪中叶,亚历山大里亚城的斯提西比乌斯首先在受水壶中使用了浮子。按迪尔斯(Diels)本世纪初复原的样品,注入的水是由圆锥形的浮子节制的。而这种节制方式即已含有负反馈的思想(尽管当时并不明确)。公元前500年,中国的军队中即已用漏壶作为计时的装置。约在公元120年,著名的科学家张衡(78-139,东汉)又提出了用补偿壶解决随水头降低计时不准确问题的巧妙方法。在他的“漏水转浑天仪”中,不仅有浮子,漏箭,还有虹吸管和至少一个补偿壶。最有名的中国水钟“铜壶滴漏”由铜匠杜子盛和洗运行建造于公元1316年(元代延祐三年),并一直连续使用到1900年。另外,我国在公元前350年已经用在结构上与水轮相似的水臼来碾米;在公元前50年用水轮来引水灌溉;在公元前31年在锻冶场里使用水动风箱等。大大地减轻了人们的劳动。这些自动装置虽然没有现在的一些自动控制装置先进,也没有系统的理论作为支撑,但是这些装置的发明对自动控制的形成却起到了先导作用。随着这些自动控制装置的不断的改进和

发展,逐渐形成了自动控制技术,我们把自动控制技术形成时期定在18世纪末~20世纪30年代。人们应用自动控制的方法来代替人工控制各种机械设备,是人类历史发展史上的一大创举。这个时期有很多具有代表性的发明。1750年,安得鲁. 米克尔为风车引入了“扇尾”传动装置,使风车自动地面向风。随后,威廉. 丘比特对自动开合的百叶窗式翼板进行改进,使其能够自动地调整风车的传动速度。这种可调整的调节器在1807年取得了专利权。1788年英国机械师J.瓦特发明离心式调速器,瓦特把它与蒸汽机的阀门连接起来,构成蒸汽机转速的闭环自动控制系统。瓦特的这项发明开创了近代自动调节装置应用的新纪元,对第一次工业革命及后来控制理论的发展有重要影响。

这个时期控制理论的主要还是反馈控制原理和奈奎斯特频率法。反馈控制的思想在很早以前就有的了,古代的很多的发明都体现这方面的思想,在上面所列举的一些发明中都可以看到反馈思想的应用。人们利用反馈可以设计各种闭环控制系统,闭环控制在控制理论中占有很重要的地位。另外就是奈奎斯特频率法。1932年在贝尔实验室工作的奈奎斯特建立了著名的奈奎斯特判据,人们称它为奈奎斯特频率法。奈奎斯特频率法的重要贡献在于,它可以利用物理上能够测量的开环系统频率特性,来判别闭环系统的稳定性,静态误差和过渡过程某些品质指标等一系列问题。不用直接解微分方程,只要画出开环系统的频率特性,就会知道系统的稳定性如何,就可以估算出系统的品质指标,而且可以知道应该采取什么措施,可以是系统稳定下来,进一步稳定系统的指标等等。因此就出现了至今仍然在工业上广泛应用的PID调节器,P,I,D的不同组合,可以让大多数系统获得相当满意的性能指标。由于奈奎斯特频率法的优点,使得其应用在通讯、机械、化工和冶金等许多工业系统中,极大的推动了人类社会经济的发展,它的理论本身也在实际应用中得到极大的发展和充实。

1940年,伯德引入了半对数坐标系,把复数运算变成代数运算,大大地简化了频率特性的绘制。1942年,H哈利斯引入了传递函数的概念,用方框图、环节、输入和输出等信息传输的概念来描述系统的性能和关系。这样就把原来由研究反馈放大器稳定性而建立起来的频率法,更加抽象化了,因而也更有普遍意义了,从而可以把对具体的物理系统,如力学、电学和化学等系统的描述,统一用传递函数、频率响应等抽象的概念来描述。

2,经典控制理论的形成和发展

从提出频率法开始到20世纪60年代,形成了现在人们所说的经典控制理论即单变量控制理论。经典控制理论的研究对象是具有单输入、单输出的单变量系统,而且多数是线性定常系统;使用的的数学工具是微分方程、拉氏变换等;研究方法有传递函数法、频率响应分析法、直观简便的图解法(根轨迹法)和描述函数法;主要代表人物有美籍瑞典科学家奈奎斯特、美国科学家伯德及埃文斯。1945年,美国数学家维纳把反馈的概念推广到生物等一切控制系统。1948年,他出版了名著《控制论》一书.为控制论奠定了基础。钱学森于1954年在美国出版了《工程控制论》一书,书中所阐明的基本理论和观点,奠定了工程控制论的基础。

第二次世界大战后工业迅速发展,被控对象越来越复杂,这时又提出新的控制问题:非线性系统、时滞系统、脉冲及采样控制系统、时变系统、分布参数系统和有随机信号输入的系统的控制问题等,促使经典控制理论在20世纪50年代又有新的发展。众多学者在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基础上,形成了较为完整的自动控制系统设计的频率法理论。1948年又提出了根轨迹法。至此,自动控制理论发展的第一阶段基本完成。这种建立在频率法和根轨迹法基础上的理论,通常被称为经典控制理论。经典控制理论中还有一部分重要内容就是脉冲控制理论。

随着计算机技术的诞生和发展,脉冲控制理论也迅速发展起来。在这方面首先作出重要贡献的是奈奎斯特和香农。奈氏首先证明把正弦信号从它的采样值复现出来,每周期至少必须进行两次采样。香农于1949年完全解决了这个问题。香农由此被成为信息论的创始人。线性脉冲控制理论以线性差分方程为基础,线性差分方程理论在三、四十年代中已逐步发展起来。随着拉氏变换在微分方程中的应用,在差分方程中也开始加以应用。利用连续系统拉氏变换同离散系统拉氏变换的对应关系,奥尔登伯格(R.C.Oldenbourg)和萨托里厄斯(H. Sartorious)于1944年,崔普金(Tsypkin)于1948年分别提出了脉冲系统的稳定判据,即线性差分方程的所有特征根应位于单位圆内。由于离散拉氏变换式是函数,又提出了用保变换将Z平面的单位圆内部转换到新的平面的左半面的方法这样即可以使用Routh-Hurwitz判据,又可将连续系统分析的频域方法引入离散系统分析。求得离散型频率特性后,奈氏稳定判据和其他一切研究线性系统的频率法都可应用,但由于Bode图的应用大受限制,频率法在离散系统研究也受到限制。在变换理论的研究方面,霍尔维兹(W.Hurewicz)于1947年迈出了第一步,他首先引进了一个变换用于对离散序列的处理。在此基础上,崔普金于1949年,拉格兹尼和扎德(J.R.Ragazzini 和 L.A. Zadeh)于1952年分别提出了和定义了Z变换方法,大大简化了运算步骤并在此基础上发展起脉冲控制系统理论。由于Z变换只能反应脉冲系统在采样点的运动规律,崔普金、巴克尔(R.H.Barker)和朱利(E.I.Jury)又分别于1950年、1951年和1956年提出了广义Z变换或修正Z变(modifiedZ-transform)的方法。对同一问题,林威尔(W.K.Linvill)也于1951年用描述函的方法进行了有效的研究,不过这一方法目前已较少使用。

经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;2.经典控制理论只限于分析和设计单变量系统,采用系统的输入-输出描述方式,这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输

入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;3.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这种设计方法具有实用等很多优点,但是,在推理上却是不能令人满意的,效果也不是最佳的,人们自然提出这样一个问题,即对一个特定的应用课题,能否找到最佳的设计。综上所述,经典控制理论的最主要的特点是:线性定常对象,单输入单输出,完成特定任务。即便对这些极简单的对象、对象描述及控制任务,理论上也尚不完整,从而促使现代控制理论的发展:对经典理的精确化、数学化及理论化。

3,现代控制理论的形成和发展

现代控制理论中首先得到透彻研究的是多输入多输出线性系统,其中特别重要的是对刻划控制系统本质的基本理论的建立,如可控性、可观性、实现理论、典范型、分解理论等,使控制由一类工程设计方法提高为一门新的科学。同时为满足从理论到应用,在高水平上解决很多实际中所提出控制问题的需要,促使非线性系统、最优控制、自适应控制、辩识与估计理论、卡尔曼滤波、鲁棒控制等发展为成果丰富的独立学科分支。在50年代蓬勃兴起的航空航天技术的推动和计算机技术飞速发展的支持下,控制理论在1960年前后有了重大的突破和创新。在此期间,贝而曼提出寻求最优控制的动态规划法。庞特里亚金证明了极大值原理,使得最优控制理论特得到极大的发展。卡而曼系统地把状态空间法引入到系统与控制理论中来,并提出了能控性、能观测性的概念和新的滤波理论。这些就构成了后来被称为现代控制理论的发展起点和基础。

现代控制理论以线性代数和微分方程为主要的数学工具,以状态空间法为基础,分析与设计控制系统。状态空间法本质上是一种时域的方法,它不仅描述了系统的外部特性,而且描述和揭示了系统的内部状态和性能。它分析和综合的目标是在揭示系统内在规律的基础上,实现系统在一定意义下的最优化。它的构成带有更高的仿生特点,即不限于单纯的闭环,而扩展为适应环、学习环等。较之经典控制理论,现代控制理论的研究对象要广泛得多,原则上讲,它既可以是单变量的、线性的、定常的、连续的,也可以是多变量的、非线性的、时变的、离散的。现代控制理论具有以下特点:

1.控制对象结构的转变控制对象结构由简单的单回路模式向多回路模式转变,即从单输入单输出向多输入多输出。它必须处理极为复杂的工业生产过程的优化和控制问题。

2.研究工具的转变(1)积分变换法向矩阵理论、几何方法转变,由频率法转向状态空间的研究;(2)计算机技术发展,由手工计算转向计算机计算。

3.建模手段的转变由机理建模向统计建模转变,开始采用参数估计和系统辨识的统计建模方法。

现代控制理论的发展同其他学科一样,依赖于工业、科学、技术提出的越来越高的要求。“现代控制理论”这一名称是1960年卡尔曼的著名文章发表后出现的。而在此之前,钱学森

教授在五十年代就已发表了《工程控制论》的专著,并为当时几乎所有论文以突出形式加以引用。工程控制论,从广义上看,是控制学科最具远见卓识的科学预见与理论,现代控制理论只是其一分支。现代控制理论的进一步发展包括以下方面:

(1)建模和系统辨识

建模就是指建立系统数学模型,使其能正确反映系统输入、输出之间的基本关系。它是对系统进行分析和控制的首要工作,直接决定着控制的成败。由于系统比较复杂,往往不能通过解析的方法直接建模.而主要是在系统输入、输出的实验数据或运行数据的基础上,从一类给定的模型中,确定一个被研究系统本质特征等价的模型。如果模型的结构已经确定,只需确定参数,就是参数估计问题。若模型的结构和参数需同时确定,就是系统辨识问题。系统辨识已经应用在自适应控制、优化控制、预测控制、故障诊断等。

(2)最优控制理论

最优控制理论是设计最优控制系统的理论基础,也是现代控制理论的核心内容之一。主要研究被控系统在给定性能指标时,实现最优的控制规律和方法。用于综合最优控制系统的主要方法是极大值原理和动态规划。目前,集中参数最优控制理论和方法已趋成熟,而分布参数最优控制、随机最优控制、大系统的最优控制仍在研究和发展之中。最伏控制应用在许多地方,如多台电机协调运转的最优控制、玻璃窑炉燃烧过程白寻最优控制、自动焊接装置的最优控制及城市道路交叉口交通的最优控制等。

(3)自适应控制理论

随着被控对象动态特性变化(不确定性)而改变其控制器自身特性的控制系统,称为自适应控制系统;而关于自适应控制系统的分析与设计的理论,则称为自适应控制理论。它主要研究的基本问题是○1认识被控对象的动态特性(辨识);○2构造适应这种特性的控制器;○3用算法实现这种控制器。

自适应控制是控制理论应用于实际的关键问题,它正朝着自学习、自组织及智能控制等方向发展。它已在船舶驾驶、过程控制中得到成功的应用。

(4)遥感、遥测和遥控

20世纪20年代,遥测和遥控开始在铁路信号和道岔控制上实际应用。到了20世纪40年代,对大电力系统,石油、天然气管道输送系统等应用了遥测和遥控。遥测就是对被测对象的某些参数进行远距离测量,如对大电力网上某点电压或频率的测量。遥控就是对被控对象进行远距离控制,例如,从调度中心端对大电力网上某个电站机组的启动控制。

最初的遥测、遥控系统采用有线信道。第二次世界大战期间无线电遥控、遥测得到迅速发展,特别是航天技术的需要,而使它得到迅速的发展。例如,宁宙飞船航天员的生理情况(体温、血压及心率等),由传感器测量后,通过遥测无线电通信道传至地面监控站。而监控站也可对飞船中的设备通过无线电通信道进行操纵或控制。

20世纪60年代以后,遥感技术得到了迅速发展。遥感就是利用装载在飞机或人造卫星等运载工具上的传感器,收集由地面目标物反射或发射出来的电磁波,再根据这些数据来获

得关于目标物(如矿藏、森林、作物产量等)的信息。现已应用在农业、林业、地质、地理、海洋、水文、气象、环境保护和军事侦察等领域。

4,智能控制理论的形成和发展

智能控制理论是一个很大的研究领域。经过八十年代的孕育发展,特别是近几年的研究和实践,国际上已认识到采用智能控制是解决复杂系统控制问题的主要途径,目前有很多智能控制方法已投入使用。在目前发表的工程类文献中,从现代控制理论向智能化发展的研究越来越多,如带有智能功能的传统控制(自适应控制、鲁棒控制等),基于传感器或行为的智能反馈控制,学习控制和循环控制,故障诊断及容错控制,以生产调度管理控制为背景的离散事件系统研究,机器人班组自组织协调控制,自主控制,以及控制系统的智能化设计等等。另外,用人工智能方法解决控制问题的研究也越来越多,如:决策论、带有专家系统的监控、预警及调度系统,用神经元网络实现控制的系统,基于符号表示、模糊逻辑等设计的控制系统,模式识别与特征提取,智能机的应用等。特别是近年来对现场人工智能的研究更将人工智能的研究成果成果用于智能控制的道路上大大前进了一步。当前在许多专业化学科与工程中,针对特定对象的具体复杂性,综合应用各种智能控制策略,力求实现具体3C系统的智能控制,如机器人研究中的智能机器人,航空航天工程中空间机器人的自主控制,以智能材料为基础的智能工程等。另一方面,更为抽象的一般智能原理的研究,如“拟人”与“拟社会”原理、分解集结原理、递阶控制。

智能控制理论及系统具有下面几个鲜明的特点:

第一,在分析和设计智能控制系统时,重点不要放在传统控制器的分析和设计上,而要放在智能机模型上,也就是说不要把重点放在对数学公式的描述、计算和处理上!实际上一些复杂大系统可能根本无法用精确的数学模型进行描述",而要把重点放在对非数学模型的描述、符号和环境的识别、知识库和推理机设计和开发等上面来。

第二,智能控制的核心是高层控制,其任务在于对实际环境或过程进行组织,即决策和规划,实现广义问题求解。

第三,智能控制是一门边缘交叉学科,傅京孙教授首先提出了智能控制的二元交集理论!即人工智能和自动控制的交叉,美国的塞利德斯与1977把傅京孙的二元结构扩展为三元结构!即人工智能、自动控制和运筹学的交叉,后来中南工业大学的蔡自兴教授又将三元结构扩展为四元结构!即人工智能、自动控制、运筹学和信息论的交叉,从而进一步完善了智能控制的结构理论。

第四,智能控制是一个新兴的研究和应用领域,有着极其诱人的发展前途。自从“智能控制”概念的提出到现在,自动控制和人工智能专家和学者已经提出了各种智能控制理论,有些已经在实际中发挥了重要作用。

5,控制理论的发展趋势

在 20世纪自动控制领域的成果与应用成就的基础上,面向21 世纪控制理论的发展趋势为:

(1)复杂系统建模与发展。为了满足当前高新技术发展的需要,研究大规模复杂系统的建模与仿真工作已很迫切。这将涉及多层面、多分辨率的建模以及在聚合/解聚作用下不同分辨率模型间的平滑一致性转换、各种分析模型与知识模型之间的集成,以及在控制与决策过程中的优化调度与灵活运用。

(2)新型控制系统结构、方法与算法的研究:有关分布式分层递阶控制,非完全控制,可组态控制,进化控制计算法,自组织自学习控制,综合集成优化方法,智能化控制等。

(3)混杂控制系统理论与应用:该理论是近年来发展很快和倍受重视的研究领域,其特征是将离散系统和连续过程系统集成在一个框架结构内进行分析、综合与优化设计。反馈与优化仍是其核心主题,开展该系统的研究将涉及微分、代数、数学逻辑与时序逻辑、基于的分布式人工智能、网络等多种学科。可以认为,混杂控制系统理论及应用是新世纪控制学界开辟的一个具有里程碑意义的研究领域。

(4)非线性控制系统理论及应用:它仍然是控制科学中倍受重视的领域,近来发展很快,已在构造性递归设计等方面取得重要进展。该系统未来的成功,将有赖于获取能提供清晰的简单模型,这对防止出现过于复杂的非线性控制器是十分必要的。

(5)微观控制或纳米控制技术的研究:随着制造业向纳米级微观层次发展,控制的理论方法与技术应是这种新环境的需要,可以认为微观控制将是可实现及发挥其重要作用的高新技术。实质上讲,该技术是以力学为基础的,因此,检测、建模、控制和实现等概念都会有根本性的变革,其核心仍是反馈上优化。

(6)智能机器人系统:机器人——新时代人类的宠儿!近几年来已取得极大地发展,智能机器人是开创未来的工作,它包含感知、思维和动作功能,此人机交互技术,遥控自主、虚拟现实技术,仿生和微机器人是极有发展前途的领域。

(7) CIMS与智能制造系统:它在世纪必将会有更大地发展,将硬件动态系统和混杂控制系统的理论及技术成果融为一体。

(8)大规模复杂工业过程智能化控制与决策。这种控制和决策一直受到控制学科和工业界的极度重视,包括动力、冶炼和大型化工生产过程等。对这类系统的优化控制应特别注意正在高速发展的计算机网络(如Internet 等),环境资源和基于的分布式人工智能、计算机智能技术。至于智能控制的发展,它将包含:自适应模糊控制系统、模糊控制系统的分析与设计、神经网络在非线性系统建模控制中的应用,遗传算法和进化计算应用于系统建模与控制系统设计。其应用涉及到控制系统设计、故障检测与诊断,机器人控制、电力系统的负荷预测与控制、化学反应器建模与控制、高速列车控制、空中交通管理与飞行器控制、自主式农用车辆、人工气候控制、金融预测等。

二,控制系统的发展历史及趋势

1,控制系统的发展历史

伴随着控制理论的发展,控制系统也在相应的发展和更新,以下对各个阶段的控制系统进行介绍。

(1)PLC可编程序控制器系统

PLC于20世纪60年代末在美国首先出现,目的是用来取代继电器,执行逻辑、计时、计数等顺序控制功能,建立柔性程序控制系统。20世纪70年代的PLC只有开关量逻辑控制,首先应用的是汽车制造行业。它以存储执行逻辑运算、顺序控制、定时、计数和运算等操作的指令;并通过数字输入和输出操作,来控制各类机械或生产过乱用户编制的控制程序表达了生产过程的工艺要求,并事先存入PLC的用户程序存储器中。运行时按存储程序的内容逐条执行,以完成工艺流程要求的操作。经过30多年的发展,PLC已十分成熟与完善,并开发了模拟量闭环控制功能,有连续PID控制等多功能,也可一台PLC为主站,多台同型PLC为从站,构成PLC网络。主要用于工业过程中的顺序控制,PLC在控制系统中的地位是无可争议。近几年来,PLC可编程序控制器及组成系统在我国冶金、电厂、轻工石化、矿业、水处理等行业更是到了广泛的应用,并取得了一定的经济效益。

(2)DCS分散控制系统

由于工业生产过程是一个分散系统,用户往往关心的不只是一个控制系统,因为它只是整个生产过程的一部分。他需要了解、控制整个控制系统。例如,电厂生产原料是煤、水,而制成品是电。因此生产过程控制的方式最好是分散进行,而监视、操作和最佳化管理应以集中为航随着工业生产规模不断扩大,控制管理的要求不断提高,过程参数日益增多,控制回路越加复杂,在20世纪70年代中期产生了集散控制系统DCS,他一经出现就受到工业控制界的青睐。DCS是集计算机技术、控制技术、网络通信技术和图形显示技术于一体的系统。相继有几十家美国仪表公司也推出自己的系统。由:YDCS的高额利润,负责制造传动设备的公司和计算机公司也开始涉及DCS的开发、生产,导致各公司开发生产的DCS系统是封闭式系统,各公司产品基本不兼容。从不同方向发展起来的DCS在结构上、软件方面有些区别。仪表公司开发的DCS的控制器的软件部分比较符合仪表工程人员应用的习惯,特别是组态方式比较方便。传动公司设计的PLC部分比较好。计算机公司设计的DCS的人机界面比较友好。(3)FCS现场总线控制系统

20世纪90年代走向实用化的现场总线控制系统,正以迅猛的势头快速发展,是目前世界上最新型的控制系统。现场总线控制系统是目前自动化控制技术中的一个热点,正受到国内外自动化设备制造商与用户越来越强烈的关注。现场总线控制系统的出现,将给自动化领域带来了一场前所未有的革命,其深度和广度将超过历史的任何一次,从而开创自动化控系统的新纪元。现场总线控制系统(FCS)是顺应智能现场仪表而发展起来的。它的初衷是用数字通讯代替4至20mA模拟传输技术,但随着现场总线技术与智能仪表管控一体化(仪表调校、

控制组态、诊断、报警、记录)的发展。控制专家们纷纷预言:FCS将成为21世纪控制系统的主流。在有些行业,FCS是由PLC发展而来的;而在另一些行业,FCS又是由DCS发展而来的,FCS既要具备DCS所具有的功能,又要能克服DCS的缺点。所以FCS与PLC及DCS之间有着千丝万缕的联系,又存在着本质的差异。

FCS系统的本质是信息处理现场化。随着现场总线技术的出现和成熟,促使了控制系统由集散控制系统(DCS)向现场总线控制系统(FCS)的过渡。在一般的FCS系统中,遵循一定现场总线协议的现场仪表可以组成控制回路,使控制站的部分控制功能下移分散到各个现场仪表中。从而减轻了控制站负担,使得控制站可以专职于执行复杂的高层次的控制算法。对于简单的控制应用,甚至可以把控制站取消,在控制站的位置代之以起连接现场总线作用网桥和集线器,操作站直接与现场仪表相连,构成分布式控制系统。

分布式的FCS系统比DCS系统更好地体现了“信息集中,控制分散”的思想。与传统的DCS相比,FCS有其自身的特点。FCS系统具有高度的分散性,它可以由现场设备组成自治的控制回路。现场仪表或设备具有高度的智能化与功能自主性,可完成控制的基本功能,并可以随时诊断设备的运行情况。另外,FCS的结构比DCS简化。有的FCS系统省略了DCS中控制站这一层,操作站直接与现场仪表相连。这些使FCS的可靠性得到提高。

现场总线系统具有开放性。系统对相关标准具有一致性、公开性,强调对标准的共识与遵从。通信协议一致公开,各不同厂家的设备之间可实现信息交换,通过现场总线可构筑自动化领域的开放互连系统。系统的开放性决定了它具有互操作性和互用性。互操作性指互连设备间、系统间信息传送与沟通;而互用则意味着不同生产厂家的性能类似的设备可实现相互替换。作为工厂网络底层的现场总线还对现场环境有较强地适应性。它支持双绞线、同轴电缆、光缆、无线和电力线等,具有较强的抗干扰能力。

由于结构上的改变,FCS比DCS更节约硬件设备。使用FCS可以减少大量的隔离器、端子柜、L/O卡及I/O端口,这样就节省了L/O装置及装置室的空间;同时减少了大量电缆,可以极大地节省安装费用。与此同时,FCS比DCS性能有所提高。由于免去了D/A与A//D变换,使仪表精度得到极大的提高;通过将PID功能植入到相应的智能传感器中去,使控制周期大为缩短。目前FCS可以从DCS的每秒调节2至5次增加到每秒调节10至20次,改善了调节性能。

FCS具备了DCS与PLC的特点,无论是FCS或者是DCS还是PLC,它们最终是为了满足整个生产过程而进行的系统控制。而目前,新型的DCS与新型的PLC,都有向对方靠拢的趋势。新型的DCS已有很强的顺序控制功能;而新型的PLC,在处理闭环控制方面也不差,并且两者都能组成大型网络,DCS与PLC的适用范围,已有很大的交叉。

总之FCS是在DCS的基础上发展起来的,FCS倾应了自动控制系统的发展潮流,它必将替代DCS。这已是业内人士的基本共识。然而,任何新事物的发生,发展都是在对旧事物的扬弃中进行的,FCS与DCS的关系必然也不例外。FCS代表潮流与发展方向,而DCS则代表传统与成熟,也是独具优势的事物。特别是现阶段,FCS尚没有统一的国际标准而呈群雄逐鹿

之势,DCS则以其成熟的发展,完备的功能及广泛的应用而占居着一个尚不可完全替代的地位。可以这样说,DCS处于控制系统中心地位的局面从此将被打破,一个崭新的数字化控制时代将展现在我们的眼前。

2,控制系统的发展趋势

现场总线的崛起是控制理论领域发展趋势的标志,控制系统的智能化、分散化、网络化成为了其发展趋势。半个多世纪以来,控制体系历经基地式仪表控制系统、电动单元组合式模拟仪表控制系统、集中式数字控制系统、集散控制系统(DCS)等4代过程控制系统,当前我国水工业自动化的主流水平即处于以PLC为基础的DCS系统阶段。与早期的一些控制系统相比,DCS系统在功能和性能上有了很大进步,可以在此基础上实现装置级、车间级的优化和分散控制,但其仍然是一种模拟数字混合系统,从现场至PLC或计算机之间的检测、反馈与操作指令等信号传递,仍然依靠大量的一对一的布线来实现。这种信号传递关系称之为信号传输,而不是数据通信,难以实现仪表之间的信息交换,因而呼唤着具备通信功能的、传输信号全数字化的仪表与系统的出现。从而由集散控制过渡到彻底的分散控制。现场总线技术将专用的CPU置入传统的测控仪表,使它们各自都具有了数字计算和通信能力,即所谓“智能化”;采用可进行简单连接的双绞线、I—J轴电缆等作为联系的纽带,把挂接在总线上作为网络节点的多个现场级测控仪表连接成网络,并按公开、规范的通信协议,使现场测控仪表之间及其与远程监控计算机之问实现数据传输与信息交换,形成多种适应实际需要的控制系统,即所谓“网络化”;由于这些网上的节点都是具备智能的可通信产品,因而它所需要的控制信息(如实时测量数据)不采取向PLC或计算机存取的方式,而可直接从处于同等层上的另一个节点上获取,在现场总线控制系统(FCS)的环境下,借助其计算和通信能力,在现场就可进行许多复杂计算,形成真正分散在现场的完整的控制系统,提高了系统的自治性和可靠性。FCS成为发展的趋势之一,是它改变了传统控制系统的结构,形成了新型的网络集成全分布系统,采用全数字通信,具有开放式、全分布可互操作性及现场环境适应性等特点,形成了从测控设备到监控计算机的全数字通信网络,顺应了控制网络的发展要求。

目前,国内、外的现场总线有60几种之多,由于这一新技术所具有的潜在而巨大的市场前景,在商业利益的驱动下,导致了近年来制订现场总线国际标准大战。长期以来的标准之争,实际上已延缓了现场总线的发展速度。为了加快新一代系统的发展,人们开始寻求新的出路,一个新的动向是从现场总线转到Ethernet,用以太网作为高速现场总线框架的主传。以太网是计算机应用最广泛的网络技术,在IT领域已被使用多年,已有广泛的硬、软件开发技术支持,更重要的是启用以太网作为高速现场总线框架,可以使现场总线技术和计算机网络技术的主流技术很好地融合起来。在市场经济与信息时代的飞速发展中,企业内部之间以及与外部交换信息的需求不断扩大,现代工业企业对生产的管理要求不断提高,这种要求已不局限于通常意义上的对生产现场状态的监视和控制,同时还要求把现场信息和管理信息结合起来。管控一体化就是建立全集成的、开放的、全厂综合自动化的信息平台,把企业的横

向通信(同一层不同节点的通信)和纵向通信(上、下层之问的通信)紧密联系在一起,通过对经营决策、管理、计划、调度、过程优化、故障诊断、现场控制等信息的综合处理,形成一个意义更广泛的综合管理系统。企业信息网络是管控信息集成的基本条件,没有信息网络就不可能实现企业横向和纵向信息的沟通和汇集,建网的目标在于实现全企业范围内的信息资源共享,以及与外部世界的信息沟通。管控一体化解决方案中的现场控制层由现场总线设备和控制网段构成,把传统的集散系统控制站(如水处理企业的PLC分站)的功能分散到了现场总线设备,此时的控制站实际是一个虚拟的控制站。现场总线技术与产品所形成的底层网络,充分发挥其使测控设备具有通信能力的特点,为控制网络的连接提供了方便。

三,结论

以上我们介绍了控制理论和控制系统的发展情况以及它们以后的发展趋势。控制理论已经经历了三代的发展,包括经典控制理论,现代控制理论和智能控制理论,各种控制理论都有各自的优点和缺点以及适用范围。近年来控制理论和控制系统的研究也由以前的单一学科的研究,发展成为单一学科研究和理论交叉研究并存,出现了多种控制方法综合应用的事例,如:模糊变结构控制、自适应控翩模糊控制、专家模糊控制、神经网络变结构控制、神经网络自校正控制、神经网络和专家混合控制、神经网络和模糊混台控制、神经网络内模控制等。我们在应用的过程中应该取长补短,使控制学科能更好的为我们服务。

相信随着控制理论和控制系统在现实生活多方面的应用,人们将会更清楚的看到控制理论和控制系统不足和优点。同样控制理论和控制系统必将得到进一步的完善,以后控制的应用也会创造出更加可观的经济效益。

参考文献

[1]控制论的发展,项国波(电器时代2005.11)

[2]自动化导论,周献中主编(科学出版社2009)

[3]控制论维纳著,郝季仁译(科学出版社1961)

[4]试论自动控制系统的现代特征,王幼鹏(网络财富2010.10)

[5]现代控制理论(第三版),于长官(哈尔滨工业出版社2006)

[6]现代控制理论基础(第2版),王孝武(机械工业出版社2006)

[7]自动化学科概论,戴先中赵光审编著(高等教育出版社2006)

[8]展示面向21世纪的自动化新技术,秦世引(自动化信息2000.6)

[9]自动控制理论发展综述,王国军、陈松乔(微型机与应用2000.6)

[10]智能控制理论与应用,王顺晃,舒迪前(机械工业出版社1998)

[11]信息爆炸时代的控制,陈虹、马艳编译(控制理论与应用2003.6)

[12]自动化概论,汪晋宽于丁文张健编著(北京邮电大学出版社2006)

[13]浅谈自动控制系统发展过程与展望,范昕林李霞(科苑杂谈2008.7)

[14]自动化技术发展趋势与应用,崔岩宋云辉舒畅(黑龙江水专学报2002.12)

[15]控制理论与控制工程的发展与应用,马继红马凯(邯郸职业技术学院学报2006.12)

[16]自动化仪表与过程控制(第四版)施仁刘文江郑辑光王勇(电子工业出版社2010)

现代控制理论----综述论文-2015

2015级硕士期末论文《现代控制理论综述》 课程现代控制理论姓名 学号 专业 2016 年1 月 4 日

经典控制理论与现代控制理论的差异 现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控

制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对

自动控制原理论文

自动控制 摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。 自动控制理论是自动控制科学的核心。自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制理论。经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。 1自动控制理论发展概述 自动控制是指使用自动化仪器仪表或自动控制装置代替人 自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控制操作,自动控制显得尤其重要。 自动控制理论是和人类社会发展密切联系的一门学科,是自动控制科学的核心。自从19世纪M ax we ll对具有调速器的蒸汽发动机系统进行线性常微分方程描述及稳定性分析以来,经过20世纪初Ny qu i s t,B od e,Ha rr is,Ev ans,W ie nn er,Ni cho l s等人的杰出贡献,终于形成了经典反馈控制理论基础,并于50年代趋于成熟。经典控制理论的特点是以传递函数为数学工具,采用频域方法,主要研究“单输入—单输出”线性定常控制系统的分析和设计,但它存在着一定的局限性,即对“多输入—多输出”系统不宜用经典控制理论解决,特别是对非线性、时变系统更

现代控制理论发展史香港科技大学李泽湘教授的报告

自动控制技术与人类科技文明 Automatic Control & Human Civilization 前言 从远古的漏壶和计时容器到公元前的水利枢纽工程,从中世纪的钟摆、天文望远镜到工业革命的蒸汽机、蒸汽机车和蒸汽轮船,从百年前的飞机、汽车和电话通讯到半个世纪前的电子放大器和模拟计算机,从二战期间的雷达和火炮防空网到冷战时代的卫星、导弹和数字计算机,从六十年代的登月飞船到现代的航天飞机、宇宙和星球探测器,这些著名的人类科技发明直接催生和发展了自动控制技术。源于实践,服务于实践,在实践中升华。经过千百年的提炼,尤其是近半个世纪工业实践的普遍应用,自动控制技术已经成为人类科技文明的重要组成部分,在日常生活中不可或缺。随着新型制造业的兴起和网络信息技术的进步,自动控制技术的发展与应用将进入一个全新的时代,新的维纳和卡尔曼将陆续诞生。数风流人物,还看今朝。 1

I.前期控制(Early Control)(1400B.C. - 1900) (0)中国,埃及和巴比伦出现自动计时漏壶 (1400B.C. ~1100B.C.)。孙武著《孙子兵法》 (600B.C.) (1)秦昭王时,李冰主持修筑都江堰体现的系 西汉漏壶统观念和实践(300B.C.) 2

(2)亚历山大的希罗发明开闭庙门和分发圣水等自动装置(100年) (3)中国张衡发明水运浑象,研制出自动测量地震的候风地动仪(132年) 3

(4)中国马钧研制出用齿轮传动的自动指示方向的指南车(235年) (5)中国定向驾驶舵(1180年) (人类首台控制机构)(6)中国明代宋应星所著《天工开物》 记载有程序控制思想(CNC)的提花织 机结构图(1637年) 4

自动控制理论发展简史

自动控制理论发展简史(经典部分) 牛顿可能是第一个关注动态系统稳定性的人。1687年,牛顿在他的《数学原理》中对围绕引力中心做圆周运动的质点进行了研究。他假设引力与质点到中心距离的q 次方成正比。牛顿发现,假设q>-3 ,则在小的扰动后,质点仍将保留在原来的圆周轨道附近运动。而当q≤-3时,质点将会偏离初始的轨道,或者按螺旋状的轨道离开中心趋向无穷远,或者将落在引力中心上。 在牛顿引力理论建立之后,天文学家曾不断努力以图证明太阳系的稳定性。特别地,拉格朗日和拉普拉斯在这一问题上做了相当的努力。1773年,24岁的拉普拉斯“证明了行星到太阳的距离在一些微小的周期变化之内是不变的”。并因此成为法国科学院副院士。虽然他的论证今天看来并不严格,但他的工作对后来李亚普诺夫的稳定性理论有很大的影响。 直到十九世纪中期,稳定性理论仍集中在对保守系统研究上。主要是天文学的问题。在出现控制系统的镇定问题后,科学家们开始考虑非保守系统的稳定性问题。 James Clerk Maxwell是第一个对反馈控制系统的稳定性进行系统分析并发表论文的人。在他1868年的论文“论调节器”(Maxwell J C.On Governors. Proc. Royal Society of London,vol.16:270-283,1868)中,导出了调节器的微分方程,并在平衡点附近进行线性化处理,指出稳定性取决于特征方程的根是否具有负的实部。Maxwell的工作开创了控制理论研究的先河。 Maxwell是一位天才的科学家,在许多方面都有极高的造诣。他同时还是物理学中电磁理论的创立人(见其论文“A dynamical theory of the electromagnetic field”,1864)。目前的研究表明,Maxwell事实上在1863年9月即已基本完成了其有关稳定性方面的研究工作。 约在1875年,Maxwell担任了剑桥Adams Prize的评奖委员。这项两年一次的奖授予在该委员会所选科学主题方面竞争的最佳论文。1877年的Adams Prize的主题是“运动的稳定性”。E.J.Routh在这项竞赛中以其跟据多项式的系数决定多项式在右半平面的根的数目的论文夺得桂冠(Routh E J.A Treatise on the Stability of Motion.London,U.K.:Macmillan,1877)。Routh的这一成果现在被称为劳斯判据。Routh工作的意义在于将当时各种有关稳定性的孤立的结论和非系统的结果统一起来,开始建立有关动态稳定性的系统理论。 Edward John Routh 1831年1月20日出生在加拿大的魁北克。他父亲是一位在Waterloo服役的英国军官。Routh 11岁那年回到英国,在de Morgan指导下学习数学。在剑桥学习的毕业考试中,他获得第一名。并得到了“Senior Wrangler”的荣誉称号。(Clerk Maxwell排在了第二位。尽管Clerk Maxwell当时被称为最聪明的人。)毕业后Routh开始从事私人数学教师的工作。从1855年到1888年Routh教了600多名学生,其中有27位获得“Senior Wrangler”称号,建立了无可匹敌的业绩。Routh于1907年6月7日去世,享年76岁。 Routh之后大约二十年,1895年,瑞士数学家A. Hurwitz在不了解Routh工作的情况下,独立给出了跟据多项式的系数决定多项式的根是否都具有负实部的另一种方法(Hurwitz A. On the conditions under which an equation has only roots with negative real parts. Mathematische Annelen,vol.46:273-284,1895)。Hurwitz的条件同Routh的条件在本质上是一致的。因此这一稳定性判据现在也被称为Routh-Hurwitz稳定性判据。 1892年,俄罗斯伟大的数学力学家A.M.Lyapunov(1857.5.25-1918.11.3)发表了其具有深远历史意义的博士论文“运动稳定性的一般问题”(The General Problem of the Stability of Motion,1892)。在这一论文中,他提出了为当今学术界广为应用且影响巨大的李亚普诺夫方法,也即李亚普诺夫第二方法或李亚普诺夫直接方法。这一方法不仅可用于线性系统而且可用于非线性时变系统的分析与设计。已成为当今自动控制理论课程讲授的主要内容之一。 Lyapunov是一位天才的数学家。他是一位天文学家的儿子。曾从师于大数学家P.L.Chebyshev(车比晓夫),和A.A.Markov(马尔可夫)是同校同学(李比马低两级),并同他们始终保持着良好的关系。他们共同在概率论方面做出过杰出的成绩。在概率论中我们可以看到关于矩的马尔可夫不等式、车比晓夫不等式和李亚普诺夫不等式。李还在相当一般的条件下证明? 在控制系统稳定性的代数理论建立之后,1928年至1945年以美国AT&T公司Bell实验室(Bell Labs)的科学家们为核心,又建立了控制系统分析与设计的频域方法。

重庆大学 自动控制原理课程设计

目录 1 实验背景 (2) 2 实验介绍 (3) 3 微分方程和传递函数 (6)

1 实验背景 在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。自动控制原理是相对于人工控制概念而言的,自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。 在自动控制原理【1】中提出,20世纪50年代末60年代初,由于空间技术发展的需要,对自动控制的精密性和经济指标,提出了极其严格的要求;同时,由于数字计算机,特别是微型机的迅速发展,为控制理论的发展提供了有力的工具。在他们的推动下,控制理论有了重大发展,如庞特里亚金的极大值原理,贝尔曼的动态规划理论。卡尔曼的能控性能观测性和最优滤波理论等,这些都标志着控制理论已从经典控制理论发展到现代控制理论的阶段。现代控制理论的特点。是采用状态空间法(时域方法),研究“多输入-多输出”控制系统、时变和非线性控制系统的分析和设计。现在,随着技术革命和大规模复杂系统的发展,已促使控制理论开始向第三个发展阶段即第三代控制理论——大系统理论和智能控制理论发展。 在其他文献中也有所述及(如下): 至今自动控制已经经历了五代的发展: 第一代过程控制体系是150年前基于5-13psi的气动信号标准(气动控制系统PCS,Pneumatic Control System)。简单的就地操作模式,控制理论初步形成,尚未有控制室的概念。 第二代过程控制体系(模拟式或ACS,Analog Control System)是基于0-10mA或4-20mA 的电流模拟信号,这一明显的进步,在整整25年内牢牢地统治了整个自动控制领域。它标志了电气自动控制时代的到来。控制理论有了重大发展,三大控制论的确立奠定了现代控制的基础;控制室的设立,控制功能分离的模式一直沿用至今。 第三代过程控制体系(CCS,Computer Control System).70年代开始了数字计算机的应用,产生了巨大的技术优势,人们在测量,模拟和逻辑控制领域率先使用,从而产生了第三代过程控制体系(CCS,Computer Control System)。这个被称为第三代过程控制体系是自动控制领域的一次革命,它充分发挥了计算机的特长,于是人们普遍认为计算机能做好一切事情,自然而然地产生了被称为“集中控制”的中央控制计算机系统,需要指出的是系统的信号传输系统依然是大部分沿用4-20mA的模拟信号,但是时隔不久人们发现,随着控制的集中和可靠性方面的问题,失控的危险也集中了,稍有不慎就会使整个系统瘫痪。所以它很快被发展成分布式控制系统(DCS)。 第四代过程控制体系(DCS,Distributed Control System分布式控制系统):随着半导体制造技术的飞速发展,微处理器的普遍使用,计算机技术可靠性的大幅度增加,目前普遍使用的是第四代过程控制体系(DCS,或分布式数字控制系统),它主要特点是整个控制系统不再是仅仅具有一台计算机,而是由几台计算机和一些智能仪表和智能部件构成一个了控制

自动控制现代控制与智能控制的关系

自动控制、现代控制与智能控制的关系 一、基本区别 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。 在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。 二、华山论剑:自动控制的机遇与挑战 传统控制理论在应用中面临的难题包括:(1)传统控制系统的设计与分析是建立在已知系统精确数学模型的基础上,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型;(2)研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合;(3)对于某些复杂的和包含不确定性的对象,根本无法用传统数学模型来表示,即无法解决建模问题;(4)为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初始投资和维修费用,降低了系统的可靠性。 为了讨论和研究自动控制面临的挑战,早在1986年9月,美国国家科学基金会(NSF)及电气与电子工程师学会(1EEE)的控制系统学会在加利福尼亚州桑克拉拉大学(University of Santa Clare)联合组织了一次名为“对控制的挑战”的专题报告会。有50多位知名的自动控制专家出席了这一会议。他们讨论和确认了每个挑战。根据与会自动控制专家的集体意见,他们发表了《对控制的挑战——集体的观点》,洋洋数万言,简直成为这一挑战的宣言书。 到底为什么自动控制会面临这一挑战,还面临哪些挑战,以及在哪些研究领域存在挑战呢? 在自动控制发展的现阶段,存在一些至关重要的挑战是基于下列原因的:(1)科学技术

现代控制理论基础试卷及答案.doc

现代控制理论基础考试题 西北工业大学考试题(A卷) (考试时间120分钟) 学院:专业:姓名:学号: 一.填空题(共27分,每空1.5分) 1.现代控制理论基础的系统分析包括___________和___________。 2._______是系统松弛时,输出量、输入量的拉普拉斯变换之比。 3.线性定常系统齐次状态方程是指系统___________时的状态方程。 4.推导离散化系统方程时在被控对象上串接一个开关,该开关以T 为周期进行开和关。这个开关称为_______。 5.离散系统的能______和能______是有条件的等价。 6.在所有可能的实现中,维数最小的实现称为最小实现,也称为 __________。 7.构造一个与系统状态x有关的标量函数V(x, t)来表征系统的广义 能量, V(x, t)称为___________。 8.单输入-单输出线性定常系统,其BIBO稳定的充要条件是传递函

数的所有极点具有______。 9. 控制系统的综合目的在于通过系统的综合保证系统稳定,有满意的_________、_________和较强的_________。 10. 所谓系统镇定问题就是一个李亚普诺夫意义下非渐近稳定的 系统通过引入_______,以实现系统在李亚普诺夫意义下渐近稳定的问题。 11. 实际的物理系统中,控制向量总是受到限制的,只能在r 维控 制空间中某一个控制域内取值,这个控制域称为_______。 12. _________和_________是两个相并行的求解最优控制问题的 重要方法。 二. 判断题(共20分,每空2分) 1. 一个系统,状态变量的数目和选取都是惟一的。 (×) 2. 传递函数矩阵的描述与状态变量选择无关。 (√) 3. 状态方程是矩阵代数方程,输出方程是矩阵微分方程。 (×) 4. 对于任意的初始状态)(0t x 和输入向量)(t u ,系统状态方程的解存在并且 惟 一 。 (√) 5. 传递函数矩阵也能描述系统方程中能控不能观测部分的特性。 (×)

自动控制理论的发展及其应用综述

自动控制理论的发展及其应用综述 黄佳彬 3120101224 20世纪40年代,控制论这门学科开始发展,其标志为维纳于1948年出版了自动控制学科史上的名著《控制论,或动物和机器的控制和通信》(Cybernetics,or control and communication in the animal and machine)。控制论思想的提出为现代科学研究提供了新的思想和方法,同时书中的一些新颖的思想和观点吸引了无数学者,令其在自己研究的领域引进控制论。随着研究队伍的庞大,控制论形成了多个分支,其中主要的几个分支有生物控制论,工程控制论,军事控制论,社会、经济控制论,自然控制论。这里我们主要对工程控制论进行研究。 1.自动控制理论的发展 工程控制论的概念最早由钱学森引入,当时有两种控制理论思想,一种基于时间域微分方程,另一种基于系统的频率特性。这两种思想即为经典控制理论,主要研究的是单输入-单输出的控制系统,同时利用分析法与实验验证法这两种方法对某个控制系统进行数学建模,由此可以获得系统各元部件之间的信号传递关系的形象表示。 由于经典控制理论的建立基于传递函数和频率特性,是对系统的外部描述。同时经典控制理论主要研究单输入单输出系统,无法解决现实工程应用中多输入多输出系统的问题,而且经典控制理论只对线性时不变系统进行讨论,存在不少的局限性,由此,现代控制理论逐渐发展起来。 现代控制理论是从线性代数的理论研究上得来的,本质是“时域法”,即基于状态空间模型在时域对系统进行分析和设计,并且引入“状态”这一概念,用“状态变量”和“状态方程”描述系统,以此来反应系统的内在本质和特性。现代控制理论研究的内容主要有三方面:多变量线性系统理论、最优控制理论以及最优估计与系统辨识理论,这些研究从理论上解决了许多复杂的系统控制问题,但是随着发展,实际生产系统的规模越来越大,控制对象、控制器、控制任务和目的也更为复杂,导致现代控制理论的成果并未有在实际中很好的应用。 智能控制的概念最早是在20世纪70年代由傅京孙教授提出,这一概念最早是为解决经典控制理论和现代控制理论在实际应用上面临的问题而寻求的新出路,也是人工智能与自动控制交叉的产物。1977年,美国学者Saridis在原本的

《自动控制原理》专科课程标准

《自动控制原理》课程标准 一、课程概述 (一)课程性质地位 自动控制原理是空间工程类、机械控制类、信息系统类等相关专业学历教育合训学员的大类技术基础课程。由于自动控制原理在信息化武器装备中得到了广泛的应用,因此,将本课程设置为大类技术基础课,对培养懂技术的指挥人才有着十分重要的作用。本课程所覆盖的知识面较宽,既有较深入的理论基础知识,也有较广泛的专业背景知识,因而,它在学员知识结构方面将起到加强理论深度和拓展知识广度的积极作用。 (二)课程基本理念 为了贯彻素质教育和创新教育的思想,本课程将在注重自动控制原理的基本概念和基本分析与设计方法的基础上,适当引入自动控制发展中的、学员能够理解的新概念和新方法;贯彻理论联系实际的原则,科学取舍各种主要理论、方法的比例,正确处理好理论与案例的关系,以适应为部队培养应用复合型人才的需要;适当引入和利用Matlab工具来辅助自动控制原理中的复杂计算与作图、验证分析与设计的结果;本课程应该既使学员掌握必要的基础理论知识,并了解它们对实际问题的指导作用,又要促进学员养成积极思考、长于分析、善于推导的能力和习惯。 (三)课程设计思路 本课程主要介绍自动控制原理的基本概念和基本的分析与设计方法。课程采用“一纵三横”的设计思路,具体来说,“一纵”就是在课程讲授中要求贯彻自动控制系统的建模、分析及设计方法这条主线;“三横”就是在方法讲授中要求强调自动控制系统的稳定性、快速性和准确性,稳准快三个字是分析的核心,也是设计的归宿。在课程讲授中,贯彻少而精的原则,即对重点、难点讲深讲透;注意理论联系专业实际,例子贴近生活,注重揭示抽象概念的物理意义;注意传统教法与现代教法的有机结合,充分运用各种教学手段,特别注重发挥课程教学网站的作用。在课程学习中,注重阅读教材、完成作业、课程实验及讨论问题等四个环节,深刻理解课程内容中的重点和难点,重点掌握自动控制原理的基本概念和基本分析与设计方法。

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.360docs.net/doc/aa104882.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

(完整版)现代控制理论考试卷及答案

西北工业大学考试试题(卷)2008 -2009 学年第2 学期

2009年《现代控制理论》试卷A 评分标准及答案 第一题(10分,每个小题答对1分,答错0分) (1)对 (2)错 (3)对 (4)错 (5)对 (6)对 (7)对 (8)对 (9)对 (10)错 第二题(15分) (1))(t Φ(7分):公式正确3分,计算过程及结果正确4分 ? ? ? ???+-+---=-=Φ?? ?? ??????+- +-+- +-+- ++-+=??????-+++=-??? ???+-=------------t t t t t t t t e e e e e e e e A sI L t s s s s s s s s s s s s A sI s s A sI 22221 11 2222}){()(22112 21221112112 213)2)(1(1 )(321 (2) 状态方程有两种解法(8分):公式正确4分,计算过程及结果正确4分 ??????-+-+-=????? ???????+-+++-+++-++??????+--=??????????? ???????++-++++-=-+-=??????---+-=????? ?+--+??? ???+--=??????-Φ+Φ=------------------------------??t t t t t t t t t t t t t t t t t t t t t e e te e e te s s s s s s L e e e e t x t x s s s s s L x A sI L t x s BU A sI x A sI s X e e t e e t d e e e e e e e e e t x t x d t Bu x t t x 222 21 22212 21111122)(02222210 2344}2414)1(42212)1(4 {2)()(} )2()1(4) 2()1()3(2{)}0(){()() ()()0()()(2)34()14(22222)()()()()0()()(或者 ττ τττττττ 第三题(15分,答案不唯一,这里仅给出可控标准型的结果) (1) 系统动态方程(3分) []x y u x x 0010 1003201 00010=???? ??????+??????????--=&

现代控制理论的论文

第一章经典控制理论和现代控制理论 本学期学习了现代控制理论课程的主要内容,现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 以下是经典控制理论和现代控制理论的比较: 1、经典控制理论: (1)理论基础:Evens的根轨迹,Nyquist稳定判据。 (2)研究对象:线性定常SISO系统分析与设计。 (3)分析问题:稳、准、快 (4)采用方法:是以频率域中传递函数为基础的外部描述方法。 (5)数学描述:高阶微分方程、传递函数、频率特性;方块图、信号流图、频率特性曲线。 (6)研究方法:时域法、根轨迹法、频率法。 2、现代控制理论: (1)理论基础:李雅普诺夫稳定性理论,Bellman动态规划,Понтрягин极值原理,Kalman 滤波。 (2)研究对象:MIMO系统分析与设计(复杂系统:多变量、时变、非线性) (3)分析问题:稳、准、快 (4)设计(综合)问题: 1)采用方法:是以时域中(状态变量)描述系统内部特征的状态空间方法为基础的内部描述方法。 2)数学描述:状态方程及输出方程、传递函数阵、频率特性;状态图、信号流图、频率特性曲线。 3)研究方法:状态空间法(时域法)、频率法。多采用计算机软硬件教学辅助设计——MATLAB软件 (5)特点: 1)系统:MIMO、非线性、时变。 2)方法将矩阵理论和方法应用到控制理论中,不仅能描述系统的输入与输出之间的关系,而且在任何初始条件下,都能揭示系统内部的行为。 3)一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合。为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算。从这个观点来看,状态空间法对于系统分析是最适宜的。

自动控制理论发展概况

自动控制理论发展概况 ——航 自动控制(automatic control)是指在没有人直接参与的情况下利用机械以及程序进行的工程生产以及生活应用,于是在此需求下就形成了一种系统,称之为自动控制系统,这是一类力求以尽可能少的人类干预实现尽可能多的自动监视、检测、调节和控制作用以达到预期技术要求的人造系统。而为了更好地让人们学习和应用这个系统,则派生了一门学科,即自动控制理论,研究这类系统的构思、设计、性能、分析,乃至实施和运行的原理和技术。 自动控制理论已经经过了漫长的发展,关于自动控制的历史,早在古代,我国勤劳的劳动人民就凭借生产实践中积累的丰富经验和对控制以及反馈概念的深刻理解以及直观认识,发明了许多蕴含着深刻控自动控制技术的工具。 如果要深入追溯自动控制技术的发展历史,那么早在两千年前中国就有了自动控制技术的萌芽。例如,两千年前我国发明的指南车,就是一种开环自动调节系统。它利用差速齿轮原理,利用齿轮传动系统,根据车轮的转动,由车上木人指示方向。不论车子转向何方,木人的手始终指向南方,“车虽回运而手常指南”。这是最早的自动化控制应用,也是自动化技术的萌芽阶段。 经典控制理论的发展阶段。 后来到18世纪,欧洲开始了轰轰烈烈的工业革命,工业迅速发展,这段时间让人们认识到机械运作在工业工程上的巨大便利以及其极高的效率。1788年瓦特为了控制蒸汽机的速度而发明了离心式调速器,又称瓦特调速器或飞球调速器。这是一个闭环控制系统,也是一个反馈调节系统,这一发明为经典控制理论的发展拉开了序幕。 控制理论发展的初期,主要是以反馈理论为基础的自动调节原理,主要用于工业控制。于是在工业革命的时期,自动控制技术有一个非常良好的发展环境,在20世纪形成了比较完整的自动控制理论体系,即经典控制理论。 经典控制理论的分析方法为复数域方法,以传递函数作为系统数学模型,可通过试验方法建立数学模型,物理概念清晰,得到广泛的工程应用。但是只适应

控制论论文

最优控制理论简单研究 姓名:学号: 内容摘要 最优控制理论(optimal control theory),是现代控制理论的一个主要分支,着重于研究使控制系统的性能指标实现最优化的基本条件和综合方法。最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。其所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多。因此最优控制理论对于解决实际问题和促进科学的发展具有重要的意义和作用。 关键字:最优控制;状态方程;稳定性 引言 控制工程领域早期的经典控制方法和技术早已被工程师们所熟知并进行广泛的应用。一般而言经典控制非常适合解决单输入单输出线性定长系统的控制器设计问题。然而对于高阶系统或多输入多输出系统,采用经典控制方法很难获得令人满意的控制性能。在这种情况下,控制学者于20世纪60年代初开始研究状态空间方法,并依此发展出现代控制的理论框架。其中最优控制则是现代控制理论的主要分支,解决最优控制问题的主要方法有变分法、极值原理和动态规划。从数学的观点来看,最优控制研究的问题是求解一类带有约束条件的泛函极值问题,属于变分学的范畴,但它只能解决一类简单的最优控制问题,因为它只对无约束或开集性约束是有效的,而无法解决工程实际中经常碰到的容许控制属于闭集的一类最优控制问题。这就促使了控制学者们开辟求解最优控制问题的新途径。苏

“自动控制原理”课程教学中的几个关键问题

“自动控制原理”课程教学中的几个关键问题 摘要:本文探讨了经典控制理论和基于状态空间的现代控制理论融合讲授和分开讲授的两种教学体系及其优缺点。提出在已有状态空间分析与设计方法的基础上,应该将一些在工程中已经成功应用的现代控制方法,引进现代控制教学内容,探讨控制理论的工程化教学方法。根据自动控制理论的发展,梳理精简了教学内容。探讨根据不同专业、不同类型大学的学生编写教材的方法以及增加学生阅读兴趣的教材设计方法。 关键词:自动控制原理;教学改革;教学体系;教学方法;教材建设 一、“自动控制原理”教学内容的体系 “自动控制原理”大部分教材主要介绍以传递函数、频率特性等为数学模型的所谓“经典控制理论”和以状态方程为数学模型的所谓“现代控制理论”。目前已有教材基本上分为两种体系: 1、经典控制理论和状态空间理论融合 “经典控制理论”和“现代控制理论”实际上是交替发展的,早期的著作也不是分开介绍的。例如,钱学森的《工程控制论》。蔡尚峰于1980年、黄家英于1991编著的《自动控制原理》也进行了一定的融合。本文作者2001年编著的《自动控制原理》力图以系统的观点和统一的框架介绍经典与现代控制理论、连续与离散控制理论、线性与非线性系统理论,揭示各种系统的内在联系。 将“经典控制理论”和“现代控制理论”融合讲授体系的优点是按照自动控制理论本身的内在联系展开的,逐步展示控制理论各种方法,能够训练学生学会从系统的角度、全局的高度来思考问题,使学生掌握控制理论的实质,掌握这种系统分析和研究问题的方法。这种能力正是自动化类学生的核心竞争力,是自动化类学生相比较其他专业学生的最大优势所在。这种融合讲授方法的缺点是刚开始就接触多种数学模型,要比较多的学时才能够完整掌握控制系统的稳定性、暂态性能、稳态性能等分析,对控制理论分析才有一个完整的认识。 2、经典控制理论和状态空间理论分开

控制理论各历史阶段发展的特点

控制理论各历史阶段发展的特点 经典控制理论在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基... 经典控制理论(20世纪40-50年代) 在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基础上,形成了较为完整的自动控制系统设计的频率法理论。1948年又提出了根轨迹法。至此,自动控制理论发展的第一阶段基本完成。这种建立在频率法和根轨迹法基础上的理论,通常被称为经典控制理论。 经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。 1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;出描述方式,这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果; 2.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这种设计方法具有实用等很多优点,但是,在推理上却是不能令人满意的,效果也不是最佳的,人们自然提出这样一个问题,即对一个特定的应用课题,能否找到最佳的设计。综上所述,经典控制理论的最主要的特点是:线性定常对象,单输入单输出,完成镇定任务。即便对这些极简单的对象、对象描述及控制任务,理论上也尚不完整,从而促使现代控制理论的发展:对经典理的精确化、数学化及理论化。 现代控制理论(20世纪60-70年代) 现代控制理论中首先得到透彻研究的是多输入多输出线性系统,其中特别重要的是对刻划控制系统本质的基本理论的建立,如可控性、可观性、实现理论、典范型、分解理论等,使控制由一类工程设计方法提高为一门新的科学。同时为满足从理论到应用,在高水平上解决很多实际中所提出控制问题的需要,促使非线性系统、最优控制、自适应控制、辩识与估计理论、卡尔曼滤波、鲁棒控制等发展为成果丰富的独立学科分支。 在50年代蓬勃兴起的航空航天技术的推动和计算机技术飞速发展的支持下,控制理论在1960年前后有了重大的突破和创新。在此期间,贝而曼提出寻求最优控制的动态规划法。庞特里亚金证明了极大值原理,使得最优控制理论特得到极大的发展。卡而曼系统地把状态空间法引入到系统与控制理论中来,并提出了能控性、能观测性的概念和新的滤波理论。这些就构成了后来被称为现代控制理论的发展起点和基础。 现代控制理论以线性代数和微分方程为主要的数学工具,以状态空间法为基础,分析与设计控制系统。状态空间法本质上是一种时域的方法,它不仅描述了系统的外部特性,而且描述和揭示了系统的内部状态和性能。它分析和综合的目标是在揭示系统内在规律的基础上,实现系统在一定意义下的最优化。它的构成带有更高的仿生特点,即不限于单纯的闭环,

自动控制理论发展历程及趋势

自动控制理论发展历程及趋势 王民雄 西南大学工程技术学院自动化1班学号:222009322072054 摘要:本文讨论了“自动控制理论”的发展历程。描述了不同种控制理论的具体内容。通过掌握经典控制理论、现代控制理论、大系统理论和智能控制系统理论知识理论框架,进而加深对“自动控制理论”认知以及发展趋势的大致了解。 关键字: 自动控制理论发展历程趋势 1 导言 自动控制经过数十年世界范围的发展,极大地提高了劳动生产率和产品质量,推动了现代工农业的巨大发展。这些年,自动控制理论在各领域都有着极广泛的应用。本文旨在对自动控制理论的发展及趋势进行纲领性分析和探讨,加深对自动控制理论的了解与进一步认识。 2 自动控制理论的发展 自动控制理论是自动控制科学的核心。根据控制理论的理论基础及所能解决的问题的难易程度,我们把控制理论大体的分为了三个不同的阶段。这种阶段性的发展过程是由简单到复杂、由量变到质变的辩证发展过程。 一、经典控制论阶段(20世纪50年代末期以前) 经典控制理论,是以传递函数为基础,在频率域对单输入---单输入控制系统进行分析与设计的理论。 1、控制系统的特点 是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。 2、研究对象 是单输入、单输出的自动控制系统,特别是线性定常系统。 3、控制思路 基于频率域内传递函数的“反馈”和“前馈”控制思想,运用频率特性分析法、

根轨迹分析法、描述函数法、相平面法、波波夫法,解决稳定性问题。 4、理论简介 经典控制理论主要研究系统运动的稳定性、时间域和频率域中系统的运动特性(见过渡过程、频率响应)、控制系统的设计原理和校正方法(见控制系统校正方法)。经典控制理论包括线性控制理论、采样控制理论、非线性控制理论(见非线性系统理论)三个部分。早期,这种控制理论常被称为自动调节原理,随着以状态空间法为基础和以最优控制理论为特征的现代控制理论的形成(在1960年前后),开始广为使用现在的名称。 5、发展过程 1. 萌芽阶段:早在古代,劳动人民就凭借生产实践中积累的丰富经验和对反馈概念的直观认识,发明了许多闪烁控制理论智慧火花的杰作。如我国北宋时代(公元1086~1089年)苏颂和韩公廉利用天衡装置制造的水运仪象台,就是一个按负反馈原理构成的闭环非线性自动控制系统。 2. 起步阶段:随着科学技术与工业生产的发展,到十七、十八世纪,自动控制 技术逐渐应用到现代工业中。1681年法国物理学家、发明家巴本(D. Papin)发明了用做安全调节装置的锅炉压力调节器;1765年俄国人普尔佐诺夫(I. Polzunov) 发明了蒸汽锅炉水位调节器等; 1788年,英国人瓦特(J. Watt)在他发明的蒸汽机上使用了离心调速器,解决了蒸汽机的速度控制问题,引起了人们对控制技术的重视。 3.发展阶段:1932年美国物理学家奈奎斯特(H. Nyquist)提出了频域内研究系统 的频率响应法,建立了以频率特性为基础的稳定性判据,为具有高质量的动态品质和静态准确度的军用控制系统提供了所需的分析工具。随后,伯德(H.W. Bode)和尼科尔斯(N.B. Nichols)在1930年代末和1940年代初进一步将频率响应法加以发展,形成了经典控制理论的频域分析法。 4. 标志阶段:以传递函数作为描述系统的数学模型,以时域分析法、根轨迹法和 频域分析法为主要分析设计工具,构成了经典控制理论的基本框架。到20世纪50年代,经典控制理论发展到相当成熟的地步,形成了相对完整的理论体系,为指

相关文档
最新文档