橡胶硫化知识

橡胶硫化知识
橡胶硫化知识

橡胶硫化知识一

1.硫化的定义

硫化是胶料在一定条件下,橡胶大分子由线型结构转变为网状结构的胶联过程。

2.硫化历程

2.1硫化反应过程

硫化过程可以分三个阶段。

第一阶段为诱导阶段:先是硫磺分子和促进剂体系之间反应生成一种活性更大的中间化合物,然后进一步引发橡胶分子链,产生可交联的自由基或者离子。

第二阶段为交联反应阶段:可交联的自由基或者离子与橡胶分子链之间产生连锁反应,生成交联键。

第三阶段为网构形成阶段:此阶段的前期交联反应已趋于完成,产生的交联键发生重排和裂解反应,在此阶段的后期交联反应已基本停止,随之而发生的主要是交联键重排和热裂解的反应,最后得到网格稳定的硫化胶。

2.2硫化历程图

A:焦烧时间(TS2)

B:热硫化(TS2+B Time =TC90)

C:平坦硫化

D:过硫化

橡胶硫化历程可以分为四个阶段:

2.2.1、图中A段是热硫化开始前的延迟作用时间,相当于硫化反应的诱导期,

称作焦烧时间。

长短取决于胶料配方和加工条件,主要受促进剂影响。包括操作焦烧时间和剩余焦烧时间;操作焦烧时间指加工过程中热积累效应所消耗的焦烧时间,取决于加工条件(混炼、挤出等)。剩余焦烧时间是指胶料在模腔加热时保持流动性的时间。

2.2.2热硫化阶段

图中B 段是硫化反应中的交联阶段。逐渐产生网构,促使橡胶弹性和拉伸强度急剧上升。热硫化时间的长短取决于胶料配方。这个阶段是衡量硫化反应速度的标志。

2.2.3平坦硫化阶段

图中C 段相当于硫化反应中网状形成的前期。这时,交联反应已趋完成,继而发生交联键的重排、裂解等反应,因而胶料的强度曲线出现平坦区,这段时间称为平坦硫化时间。

2.2.4过硫化阶段

图中D 段以后的部分,相当于硫化反应中网构形成期的后期。这阶段中,主要是交联键的重排作用,以及交联键和链段热裂解的反应,因此胶料的机械性能显著下降。

2.3硫化曲线的解说

? ML ——最低转矩,N·m (kgf·cm )

? MH ——到达规定时间之后仍然不出现平坦曲线或最高转矩的硫化曲线,

所达到的最高转矩N·m (kgf·cm )

?TS1——从实验开始到曲线由最低转矩上升0.1 N·m(kgf·cm)时所对应的时间,MIN

?TS2——从实验开始到曲线由最低转矩上升0.2 N·m(kgf·cm)时所对应的时间,MIN

?TC(x)——试样达到某一硫化程度所需要的时间,即试样转矩达到ML+X (MH-ML)时所对应的时间,MIN

如X取值0.5,即TC50;

X取0.9,即TC90)

?硫检参数的意义:

?ML:表示胶料的蠕变性,ML越低,蠕变性越好,反之,越差。

?MH:表征胶料的胶料的剪切模数、硬度、定伸强度和交联密度,一般MH越低,硬度越低,MH越高,硬度越高。

?TS2:剩余焦烧时间,表征胶料的在模腔中可以流动的时间。TS2越短,表示胶料越容易发生死料,产品在生产时容易产生缺料不良。反之,TS2越长,虽然操作安全性提高,但是产效会变低,成本会增加很多,故TS2对胶料的加工、配方设计具有很重要的意义。

?TC90:主要用来评估胶料在成型生产时的一次加硫条件,TC90过长表示硫化速度偏慢,会导致产品硬度低,产效低。

?ML与TS2结合起来表观胶料流动性,单一ML无法体现。

橡胶硫化原理

橡胶硫化原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

橡胶硫化原理 橡胶受热变软,遇冷变硬、发脆,不易成型,容易磨损,易溶于汽油等有机溶剂,分子内具有双键,易起 加成反应,容易老化。 为改善橡胶制品的性能,生产上要对生橡胶进行一系列加工过程,在一定条件下,使胶料中的生胶与硫化剂发生化学反应,使其由线型结构的大分子交联成为立体网状结构的大分子,使从而使胶料具备高强度、高弹性、高耐磨、抗腐蚀等等优良性能。这个过程称为橡胶硫化。 一般将硫化过程分为四个阶段,诱导-预硫-正硫化-过硫。为实现这一反应,必须外加能量使之达到一定的硫化温度,然后让橡胶保温在该硫化温度范围内完成全部硫化反应。 橡胶硫化的来历 硫化是胶料通过生胶分子间交联,形成三维网络结构,制备硫化胶的基本过程。不同的硫化体系适用于不同的生胶。以橡胶(生胶)为主体,加以多种辅助材料而成的合成体、(辅助材料有几大体系、填充补强、硫化、防护、增塑、特殊物质加入剂、)而硫化是包覆绝缘层或护套层以后的一种处理方法、其目的就是让辅助体系里的硫化体系发生作用,使橡胶永久交联、增加弹性、减少塑性。硫化的名词是因最早时 间是用硫磺使橡胶交联的故称硫化,沿用至今. 橡胶硫化体系 不饱和橡胶通常使用如下几类硫化体系: 以硫黄,有机二硫化物及多硫化物、噻唑类、二苯胍类,氧化锌及硬脂酸为主的硫化剂。这是最通用的硫 化体系。但所制得的硫化胶的耐热氧老化性能不高。 烷基酚醛树脂。 多卤化物(如用于聚丁二烯橡胶、丁苯橡胶及丁腈橡胶的六氯乙烷)、六氯-对二甲苯。 双官能试剂[如醌类、二胺类、偶氮及苯基偶氮衍生物(用于丁基橡胶及乙丙橡胶)等]。 双马来酰亚胺,双丙烯酸酯。两价金属的丙烯酸酯(甲基丙烯酸酯)、预聚醚丙烯酸酯。 用于硫化饱和橡胶的有机过氧化物。 饱和橡胶硫化不同种类的饱和橡胶时,可使用不同的硫化体系。 硫化三元乙丙橡胶时,使用有机过氧化物与不饱和交联试剂,如三烯丙基异氰脲酸酯(硫化剂TAIC)。硫化硅橡胶时也可使用有机过氧化物。乙烯基硅橡胶硫化时可在催化剂(Pt)参与条件下进行。 上一篇: 橡胶硫化工艺方法一、传统橡胶硫化工艺

橡胶基本常识

第一部分:橡胶基本常识 橡胶是通过提取橡胶树、橡胶草等植物的胶乳,加工后制成的具有弹性、绝缘性、不透水和空气的材料。高弹性的高分子化合物。分为天然橡胶与合成橡胶二种。天然橡胶是从橡胶树、橡胶草等植物中提取胶质后加工制成;合成橡胶则由各种单体经聚合反应而得。橡胶制品广泛应用于工业或生活各方面。橡胶按原料分为天然橡胶和合成橡胶。按形态分为块状生胶、乳胶、液体橡胶和粉末橡胶。乳胶为橡胶的胶体状水分散体;液体橡胶为橡胶的低聚物,未硫化前一般为粘稠的液体;粉末橡胶是将乳胶加工成粉末状,以利配料和加工制作。20世纪60年代开发的热塑性橡胶,无需化学硫化,而采用热塑性塑料的加工方法成形。橡胶按使用又分为通用型和特种型两类。是绝缘体,不容易导电,但如果沾水或不同的温度的话,有可能变成导体。导电是关于物质内部分子或离子的电子的传导容易情况。 一、橡胶制品的用途,不同橡胶制品的优缺点介绍 1、天然橡胶 NR (Natural Rubber) 由橡胶树采集胶乳制成,是异戊二烯的聚合物.具有很好的耐磨性、很高的弹性、扯断强度及伸长率。在空气中易老化,遇热变粘,在矿物油或汽油中易膨胀和溶解,耐碱但不耐强酸。优点:弹性好,耐酸碱。缺点:不耐候,不耐油(可耐植物油) 是制作胶带、胶管、胶鞋的

原料,并适用于制作减震零件、在汽车刹车油、乙醇等带氢氧根的液体中使用的制品。 2、丁苯胶 SBR (Styrene Butadiene Copolymer) 丁二烯与苯乙烯之共聚合物,与天然胶比较,品质均匀,异物少,具有更好耐磨性及耐老化性,但机械强度则较弱,可与天然胶掺合使用。优点:低成本的非抗油性材质,良好的抗水性,硬度70 以下具良好弹力,高硬度时具较差的压缩性。缺点:不建议使用强酸、臭氧、油类、油酯和脂肪及大部份的碳氢化合物之中。广泛用于轮胎业、鞋业、布业及输送带行业等。 3、丁基橡胶 IIR (Butyl Rubber) 为异丁烯与少量异戊二烯聚合而成,因甲基的立体障碍分子的运动比其他聚合物少,故气体透过性较少,对热、日光、臭氧之抵抗性大,电器绝缘性佳;对极性容剂抵抗大,一般使用温度范围为-54-110 ℃。优点:对大部份一般气体具不渗透性,对阳光及臭气具良好的抵抗性可暴露于动物或植物油或是可气化的化学物中。缺点:不建议与石油溶剂,胶煤油和芳氢同时使用用于汽车轮胎的内胎、皮包、橡胶膏纸、窗框橡胶、蒸汽软管、耐热输送带等。4、氢化丁晴胶 HNBR (Hydrogenate Nitrile) 氢化丁晴胶为丁晴胶中经由氢化后去除部份双链,经氢化后其耐温性、耐候性比一般丁晴橡胶提高很多,耐油性与一般丁晴胶相近。一般使用温度范围为 -25~150 ℃。优点:较丁晴胶拥有较佳的抗磨性,具

橡胶硫化工艺

概述: 橡胶大分子在加热下与交联剂硫磺发生化学反应,交联成为立体网状结构的过程。经过硫化后的橡胶称硫化胶。硫化是橡胶加工中的最后一个工序,可以得到定型的具有实用价值的橡胶制品。在橡胶的网状结构中,硫磺交联键(其中硫的原子数n≥1;而未交联的硫原子数为S x或S y)的密度,决定着橡胶的硫化程度。后者在工艺实践中,是以胶料宏观的物理机械性能或橡胶粘度的变化来判断的。 硫化条件: 影响硫化过程的主要因素是硫磺用量、硫化温度及硫化时间。① 硫磺用量。其用量越大,硫 化速度越快,可以达到的硫 化程度也越高。硫磺在橡胶 中的溶解度是有限的,过量 的硫磺会由胶料表面析出, 俗称“喷硫”。为了减少喷 硫现象,要求在尽可能低的 温度下,或者至少在硫磺的熔点以下加硫。根据橡胶制品的使用要求,硫磺在软质橡胶中的用量一般不超过3%,在半硬质胶中用量一般为20%左右,在硬质胶中的用量可高达40%以上。②硫化温度。若温度高10℃,硫化时间约缩短一半。由于橡胶是不良导热体,制品的硫化进程由于其各部位温度的差异而不同。为了保证比较均匀的硫化程度,厚橡胶制品一般采用

逐步升温、低温长时间硫化。③硫化时间。这是硫化工艺的重要环节。时间过短,硫化程度不足(亦称欠硫)。时间过长,硫化程度过高(俗称过硫)。只有适宜的硫化程度(俗称正硫化),才能保证最佳的综合性能。 硫化方法: 按硫化条件可分为冷硫化、室温硫化和热硫化三类。冷硫化可用于薄膜制品的硫化,制品在含有2%~5%氯化硫的二硫化碳溶液中浸渍,然后洗净、干燥即可。室温硫化时,硫化过程在室温和常压下进行,如使用室温硫化胶浆(混炼胶溶液)进行自行车内胎接头、修补等。热硫化是橡胶制品硫化的主要方法。根据硫化介质及硫化方式的不同,热硫化又可分为直接硫化、间接硫化和混气硫化三种方法。 ①直接硫化,将制品直接置入热水或蒸汽介质中硫化。②间接硫化,制品置于热空气中硫化,此法一般用于某些外观要求严格的制品,如胶鞋等。③混气硫化,先采用空气硫化,而后再改用直接蒸汽硫化。此法既可以克服蒸汽硫化影响制品外观的缺点,也可以克服由于热空气传热慢,而硫化时间长和易老化的缺点。 上述硫化方法均属于间歇生产,有些长度不限的橡胶制品可以连续硫化,如压出制品的盐浴硫化、沸腾床硫化、微波或高频硫化、胶带及胶板的鼓式硫化机硫化等。除硫磺硫化外,橡胶制品还可采用无硫硫化、高能射线硫化等,但其应用面均有限。 热硫化的工艺方式:

橡胶硫化工艺方法简介

橡胶硫化工艺方法简介 一、传统橡胶硫化工艺 1、影响硫化工艺过程的主要因素: 硫磺用量。其用量越大,硫化速度越快,可以达到的硫化程度也越高。硫磺在橡胶中的溶解度是有限的,过量的硫磺会由胶料表面析出,俗称“喷硫”。为了减少喷硫现象,要求在尽可能低的温度下,或者至少在硫磺的熔点以下加硫。根据橡胶制品的使用要求,硫磺在软质橡胶中的用量一般不超过3%,在半硬质胶中用量一般为20%左右,在硬质胶中的用量可高达40%以上。 硫化温度。若温度高10℃,硫化时间约缩短一半。由于橡胶是不良导热体,制品的硫化进程由于其各部位温度的差异而不同。为了保证比较均匀的硫化程度,厚橡胶制品一般采用逐步升温、低温长时间硫化。 2、硫化时间: 这是硫化工艺的重要环节,时间过短,硫化程度不足(亦称欠硫)。时间过长,硫化程度过高(俗称过硫)。只有适宜的硫化程度(俗称正硫化),才能保证最佳的综合性能 二、橡胶硫化工艺方法 按硫化条件可分为冷硫化、室温硫化和热硫化三类。 1、冷硫化可用于薄膜制品的硫化,制品在含有2%~5%氯化硫的二硫化碳溶液中浸渍,然后洗净干燥即可。 2、室温硫化时,硫化过程在室温和常压下进行,如使用室温硫化胶浆(混炼胶溶液)进行自行车内胎接头、修补等。 3、热硫化是橡胶制品硫化的主要方法。根据硫化介质及硫化方式的不同,热硫化又可分为直接硫化、间接硫化和混气硫化三种方法。 ①直接硫化,将制品直接置入热水或蒸汽介质中硫化。 ②间接硫化,制品置于热空气中硫化,此法一般用于某些外观要求严格的制品,如胶鞋等。 ③混气硫化,先采用空气硫化,而后再改用直接蒸汽硫化。此法既可以克服蒸汽硫化影响制品外观的缺点,也可以克服由于热空气传热慢,而硫化时间长和易老化的缺点。 三、橡胶硫化工艺: 橡胶在未硫化之前,分子之间没有产生交联,因此缺乏良好的物理机械性能,实用价值不大。当橡胶加入硫化剂以后,经热处理或其他方式能使橡胶分子之间产生交联,形成三维网状结构,从而使其性能大大改善,尤其是橡胶的定伸应力、弹性、硬度、拉伸强度等一系列物理机械性能都会大大提高。橡胶大分子在加热下与交联剂硫磺发生化学反应,交联成为立体网状结构的过程。经过硫化后的橡胶称硫化胶。硫化是橡胶加工中的最后一个工序,可以得到定型的具有实用价值的橡胶制品。 四、注压成型硫化工艺: 普通模压与注压最明显的区别在于前者胶料是以冷的状态充入模腔的,而后者则是将胶料加热混合,并在接近硫化温度下注入模腔。因而,在注压过程中,加热模板所提供的热量仅仅只用于维持硫化,它能很快将胶料加热到190℃-220℃。在模压过程中,由加热模板所提供的热量首先要用于预热胶料,由于橡胶的导热性能差,如果制品很厚,热量要传导到制品中心需要较长的时间。采用高温硫化也可在一定程度上缩短操作时间,但往往导致靠近热板的制品边缘出现焦烧。采用注压法硫化,可以缩短成型周期,实现自动化操作,这对大批量生产最为有利。注压还具有以下优点:可以省去半成品准备、起模和制品修边等工序;可以生产出尺寸稳定、物理机械性能优异的高质量产品;减少硫化时间,提高生产效率,减少胶料用量,降低成本,减少废品,提高企业经济效益。 五、注压成型硫化工艺注意事项: 采用合理的螺杆转速、背压,控制适当的注射机温度。一般地,应保持出料口胶温和控制循环温度之差不大于30度为宜。注射机螺杆的用途是在选定的和均匀的温度下为每一循环制备足够量的胶料;它明显地影响着注射机的产量。背压是通过放慢注射缸中出油口的流量而产生的,并对注射机所射出胶料,对注射油缸的推挤作用进行限制。实践中,背压只会稍微增加对胶料的剪切,而不会引起硫化制品物理性能的降低。 喷嘴的设计:

橡胶基本知识

橡胶基本知识 橡胶,同塑料、纤维并称为三大合成材料,是唯一具有高度伸缩性与极好弹性的高分子材料。橡胶的最大特征首先是弹性模量非常小,而伸长率很高。其次是它具有相当好的耐透气性以及耐各种化学介质和电绝缘的性能。某些特种合成橡胶更具备良好的耐油性及耐温性,能抵抗脂肪油、润滑油、液压油、燃料油以及溶剂油的溶胀;耐寒可低到-60℃至-80℃,耐热可高到+180℃至+350℃。橡胶还耐各种曲挠、弯曲变形,因为滞后损失小。橡胶的第三个特征在于它能与多种材料进行并用、共混、复合,由此进行改性,以得到良好的综合性能。 橡胶的这些基本性能,是它成为工业上极好的减震、密封、屈挠、耐磨、防腐、绝缘以及粘接等材料。 第一章橡胶的种类、特性和用途 在全世界,橡胶(包括塑料改性的弹性体)的种类已超过100种。如果按牌号估算,实际上已超过1000种。 一:橡胶的分类 1.按原材料来源与方法 橡胶可分为天然橡胶和合成橡胶两大类。其中天然橡胶的消耗量占1/3,合成橡胶的消耗量占2/3。 2.按橡胶的外观形态 橡胶可分为固态橡胶(又称干胶)、乳状橡胶(简称乳胶)、液体橡胶和粉末橡胶四大类。

3.根据橡胶的性能和用途 除天然橡胶外,合成橡胶可分为通用合成橡胶、半通用合成橡胶、专用合成橡胶和特种合成橡胶。 4.根据橡胶的物理形态 橡胶可分为硬胶和软胶,生胶和混炼胶等。 根据橡胶种类及交联形式,在工业使用上,橡胶又可按如下分类。 一类按耐热及耐油等功能分为:普通橡胶、耐热橡胶、耐油橡胶以及耐天候老化橡胶、耐特种化学介质橡胶等。 另一类按橡胶的软硬程度划分为:一般橡胶、硬橡胶、半硬质胶、硬质胶、微孔胶、海绵胶、泡沫橡胶等。具体分类方法见表一 表一橡胶的分类

橡胶的硫化工艺

橡胶的硫化工艺 一、实验目的 1、掌握硫化的本质和影响硫化的因素。 2、掌握硫化条件的确定和实施方法。 3、掌握平板硫化机的操作方法。 4、了解硫化设备之一平板硫化机的结构。 二、实验原理 硫化是在一定温度、时间和压力下,混炼胶的线型大分子进行交联,形成三维网状结构的过程。硫化使橡胶的塑性降低,弹性增加,抵抗外力变形的能力大大增加,并提高了其他物理和化学性能,使橡胶成为具有使用价值的工程材料。 硫化是橡胶制品加工的最后一个工序。硫化的好坏对硫化胶的性能影响很大,因此,应严格掌握硫化条件。 1.硫化机两热板加压面应相互平行。 2.热板采用蒸汽加热或电加热。 3.平板在整个硫化过程中,在模具型腔面积上施加的压强不低于3.5MPa。 4.无论使用何种型号的热板,整个模具面积上的温度分布应该均匀。同一热板内各点间及各点与中心点间的温差最大不超过1℃;相邻二板间其对应位置点的温差不超过1℃。在热板中心处的最大温差不超过±0.5℃。 技术规格 最大关闭压力 200吨 柱塞最大行程 250毫米 平板面积 503毫米×508毫米 工作层数两层 总加热功率 27千瓦 1-机座2-油箱和油泵 3-控制阀4-液压控制面板 5压力表 6立柱 7上横梁 8上加热平板9下加热平板 10-电热线管 11-配电柜 12-移动平台和下加热平板 13-柱塞

橡胶包辊后,按下列一般的顺序加料:橡胶、再生胶、各种母炼胶→固体软化剂(如较难分散的松香、硬脂酸、固体古马隆树脂等)→小料(促进剂、活性剂、防老剂)→补强填充剂→液体软化剂→硫黄→超促进剂→薄通→倒胶下片。 三、实验设备及材料 平板硫化仪XK–160型双辊开炼机天然橡胶高耐磨炭黑氧化锌升华硫 四、实验内容及步骤 1、实验步骤 1 检查机器的油箱油位高低和导向部分润滑状况,立柱上下两端的螺母是否松动,根据制品硫化工艺条件,调节液压系统的工作压力和热板的加热温度。 2 根据制品硫化压力、模具的承压面积和柱塞的面积确定压力的大小,然后调整压力指针到所需刻度。 3 设置加热温度。 4 启动机器检查运行状况是否正常,包括柱塞升降速度、电接点压力表指示的刻度和压力控制情况、机器的噪音和震动情况。 5 将生产或试验用模具清理后置于热板上进行预热。 6 检查、称量所需半成品或胶料,有压延方向要求需标注压延方向。 7 从热板上取下模具,打开上模,将半成品或胶料加入模具型腔,将上模板放到模具上并置于热板上。注意模具应放置在热板中央位置,防止出现偏载情况。 8 启动油泵电机,升起热板进行合模,在上升之间严禁用手或其他东西触及模型或位于

橡胶基础知识30题

?橡胶基础知识30题 ?来源:橡胶人才网添加时间:2010-07-13浏览次数:35次进入论坛交流 ? (一)什么是橡胶老化?在表面上有哪此表现? 答:橡胶及其制品在加工,贮存和使用过程中,由于受内外因素的综合作用而引起橡胶物理化学性质和机械性能的逐步变坏,最后丧失使用价值,这种变化叫做橡胶老化。 表面上表现为龟裂、发粘、硬化、软化、粉化、变色、长霉等。 (二)影响橡胶老化的因素有哪些? 答:引起橡胶老化的因素有: a)氧、氧在橡胶中同橡胶分子发生游离基链锁反应,分子链发生断裂或过度交联,引起橡胶性能的改变。氧化作用是橡胶老化的重要原因之一。 B臭氧、臭氧的化学活性比氧高得多,破坏性更大,它同样是使分子链发生断裂,但臭氧对橡胶的作用情况随橡胶变形与否而不同。当作用于变形的橡胶(主要是不饱和橡胶)时,出现与应力作用方向垂直的裂纹,即所谓"臭氧龟裂";作用于变形的橡胶时,仅表面生成氧化膜而不龟裂。 C)热:提高温度可引起橡胶的热裂解或热交联。但热的基本作用还是活化作用。提高氧扩散速度和活化氧化反应,从而加速橡胶氧化反应速度,这是普遍存在的一种老化现象--热氧老化。 D)光:光波越短、能量越大。对橡胶起破坏作用的是能量较高的紫外线。紫外线除了能直接引起橡胶分子链的断裂和交联外,橡胶因吸收光能而产生游离基,引发并加速氧化链反应过程。紫外线光起着加热的作用。光作用其另一特点(与热作用不同)是它主要在橡表面进生。含胶率高的试样,两面会出现网状裂纹,即所谓"光外层裂". E)机械应力:在机械应力反复作用下,会使橡胶分子链断裂生成游离基,引发氧化链反应,形成力化学过程。机械断裂分子链和机械活化氧化过程。哪个能占优势,视其所处的条件而定。此外,在应力作用下容易引起臭氧龟裂。 F)水分:水分的作用有两个方面:橡胶在潮湿空气淋雨或浸泡在水中时,容易破坏,这是由于橡胶中的水溶性物质和清水基团等成分被水抽提溶解。水解或吸收等原因引起的。特别是在水浸泡和大气曝露的交替作用下,会加速橡胶的破坏。但在某种情况下水分对橡胶则不起破坏作用,甚至有延缓老化的作用。 G)其它:对橡胶的作用因素还有化学介质、变价金属离子、高能辐射、电和生物等。

橡胶硫化工艺

橡胶硫化工艺 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

概述: 橡胶大分子在加热下与交联剂硫磺发生化学反应,交联成为立体网状结构的过程。经过硫化后的橡胶称硫化胶。硫化是橡胶加工中的最后一个工序,可以得到定型的具有实用价值的橡胶制品。在橡胶的网状结构中,硫磺交联键(其中硫的原子数n≥1;而未交联的硫原子数为S x或S y)的密度,决定着橡胶的硫化程度。后者在工艺实践中,是以胶料宏观的物理机械性能或橡胶粘度的变化来判断的。 硫化条件: 影响硫化过程的主要因素是硫磺用量、硫化温度及硫化时间。 ①硫磺用量。其用量越 大,硫化速度越快,可以 达到的硫化程度也越高。 硫磺在橡胶中的溶解度是 有限的,过量的硫磺会由 胶料表面析出,俗称“喷 硫”。为了减少喷硫现 象,要求在尽可能低的温度下,或者至少在硫磺的熔点以下加硫。根据橡胶制品的使用要求,硫磺在软质橡胶中的用量一般不超过3%,在半硬质胶中用量一般为20%左右,在硬质胶中的用量可高达40%以上。②硫化温度。若温度高10℃,硫化时间约缩短一半。由于橡胶是不良导热

体,制品的硫化进程由于其各部位温度的差异而不同。为了保证比较均匀的硫化程度,厚橡胶制品一般采用逐步升温、低温长时间硫化。③硫化时间。这是硫化工艺的重要环节。时间过短,硫化程度不足(亦称欠硫)。时间过长,硫化程度过高(俗称过硫)。只有适宜的硫化程度(俗称正硫化),才能保证最佳的综合性能。 硫化方法: 按硫化条件可分为冷硫化、室温硫化和热硫化三类。冷硫化可用于薄膜制品的硫化,制品在含有2%~5%氯化硫的二硫化碳溶液中浸渍,然后洗净、干燥即可。室温硫化时,硫化过程在室温和常压下进行,如使用室温硫化胶浆(混炼胶溶液)进行自行车内胎接头、修补等。热硫化是橡胶制品硫化的主要方法。根据硫化介质及硫化方式的不同,热硫化又可分为直接硫化、间接硫化和混气硫化三种方法。①直接硫化,将制品直接置入热水或蒸汽介质中硫化。 ②间接硫化,制品置于热空气中硫化,此法一般用于某些外观要求严格的制品,如胶鞋等。③混气硫化,先采用空气硫化,而后再改用直接蒸汽硫化。此法既可以克服蒸汽硫化影响制品外观的缺点,也可以克服由于热空气传热慢,而硫化时间长和易老化的缺点。 上述硫化方法均属于间歇生产,有些长度不限的橡胶制品可以连续硫化,如压出制品的盐浴硫化、沸腾床硫化、微波或高频硫化、胶带及胶板的鼓式硫化机硫化等。除硫磺硫化外,橡胶制品还可采用无硫硫化、高能射线硫化等,但其应用面均有限。 热硫化的工艺方式:

橡胶硫化与硫化工艺

橡膠硫化與硫化工藝 橡膠硫化 “硫化過程(Curing)”一詞在整個橡膠工業中普遍使用,在橡膠化學中占有重要地位。橡膠的硫化就是通過橡膠分子間的化學交聯作用將基本上呈塑性的生膠轉化成彈性的和尺寸穩定的產品,硫化后的橡膠的物性穩定,使用溫度范圍擴大。橡膠分子鏈間的硫化(交聯)反應能力取決于其結構。不飽和的二烯類橡膠(如天然橡膠、丁苯橡膠和丁腈橡膠等)分子鏈中含有不飽和雙鍵,可與硫黃、酚醛樹脂、有機過氧化物等通過取代或加成反應形成分子間的交聯。飽和橡膠一般用具有一定能量的自由基(如有機過氧化物)和高能輻射等進行交聯。含有特別官能團的橡膠(如氯磺化聚乙烯等),則通過各種官能團與既定物質的特定反應形成交聯,如橡膠中的亞磺酰胺基通過與金屬氧化物、胺類反應而進行交聯。 橡膠硫化體系: 多數的通用橡膠采用硫黃或硫給予體硫化,即在生膠中加入硫黃或硫給予體以及縮短硫化時間的促進劑和保證硫黃交聯效率的氧化鋅和硬脂酸組成的活性劑。在實際中通常按硫黃用量及其與促進劑的配比情況劃分成以下幾種典型的硫化體系: 普通硫磺硫化體系由常用硫黃量(>1.5份)和常用促進劑量配合組成。使用這種硫化體系能使硫化膠形成較多的多硫鍵,和少量的低硫鍵(單硫鍵和雙硫鍵)。硫化膠的拉伸強度較高,耐疲勞性好。缺點是耐熱和耐老化性能較差。 半有效硫化體系由硫黃量0.8~1.5份(或部分硫給予體)與常用促進劑量配合所組成。使用這種硫化體系能使硫化膠形成適當比例的低硫鍵和多硫鍵,硫化膠的扯斷強度和耐疲勞性適中,耐熱、耐老化性能較好。

有效硫化體系由低硫黃量(0.3~0.5份)或部分硫給予體與高促進劑量(一般為2~4份)配合組成。使用這種硫化體系能使硫化膠形成占絕對優勢的的低硫鍵(單硫鍵和雙硫鍵),硫化膠的耐熱、耐老化性能好,缺點是拉伸強度和耐疲勞性能較低。 無硫硫化體系不用硫黃而全部用硫給予體和促進劑配合組成。這種硫化體系與有效硫化體系的性能相似。 橡膠交聯鍵結構與硫化膠性能: 使用硫黃或硫給予體作交聯劑的情況,生成的可以是單硫鍵(x=1)、雙硫鍵(x=2)和多硫鍵(x=3~8); 使用樹脂交聯和肟交聯的情況; 使用過氧化物交聯的過氧化物硫化和利用輻射交聯的輻射硫化的情況,生成碳-碳鍵。 橡膠硫化工藝 一、傳統橡膠硫化工藝 1、影響硫化工藝過程的主要因素: 硫磺用量。其用量越大,硫化速度越快,可以達到的硫化程度也越高。硫磺在橡膠中的溶解度是有限的,過量的硫磺會由膠料表面析出,俗稱“噴硫”。為了減少噴硫現象,要求在盡可能低的溫度下,或者至少在硫磺的熔點以下加硫。根據橡膠制品的使用要求,硫磺在軟質橡膠中的用量一般不超過3%,在半硬質膠中用量一般為20%左右,在硬質膠中的用量可高達40%以上。 硫化溫度。若溫度高10℃,硫化時間約縮短一半。由于橡膠是不良導熱體,制品的硫化進程由于其各部位溫度的差異而不同。為了保證

橡胶加工工艺基础知识

橡胶加工工艺基础知识一、塑炼 橡胶受外力作用产生变形,当外力消除后橡胶仍能保持其 形变的能力叫做可塑性。增加橡胶可塑性工艺过程称为塑 炼。橡胶有可塑性才能在混炼时与各种配合剂均匀混合; 在压延加工时易于渗入纺织物中;在压出、注压时具有较好的流动性。此外,塑炼还能使橡胶的性质均匀,便于控制生产过程。但是,过渡塑炼会降低硫化胶的强度、弹性、耐磨等性能,因此塑炼操作需严加控制。 橡胶可塑度通常以威廉氏可塑度、门尼粘度和德弗硬度等表示。 1、塑炼机理 橡胶经塑炼以增加其可塑性,其实质乃是使橡胶分子链断 裂,降低大分子长度。断裂作用既可发生于大分子主链,又可发生于侧链。由于橡胶在塑炼时,遭受到氧、电、热、机械力和增塑剂等因素的作用,所以塑炼机理与这些因素密切相关,其中起重要作用的则是氧和机械力,而且两者相辅相成。通常可将塑炼区分为低温塑炼和高温塑炼,前者以机械降解作用为主,氧起到稳定游离基的作用;后者以自动氧化降解作用为主,机械作用可强化橡胶与氧的接

塑炼时,辊筒对生胶的机械作用力很大,并迫使橡胶分子链断裂,这种断裂大多发生 在大分子的中间部分。塑炼时,分子链愈长愈容易切断。顺丁胶等之所以难以机械 断链,重要原因之一就是因为生胶中缺乏较高的分子量级分。当加入高分子量级分后, 低温塑炼时就能获得显著的效果。 氧是塑炼中不可缺少的因素,缺氧时,就无法获得预期的效果。生胶塑炼过 塑炼时,设备与橡胶之间的摩擦显然使得胶温升高。热对塑炼效果极为重要,而且在 不同温度范围内的影响也不同。 由于低温塑炼时,主要依靠机械力使分子链断裂,所以在像章区域内(天然胶低于 110C )随温度升高,生胶粘度下降,塑炼时受到的作用力较小,以致塑炼效果反而下降。相反,高温塑炼时,主要是氧化裂解反应起主导作用,因而塑炼效果在高温区 (天然胶高于110C )将随温度的升高而增大,所以温度对塑炼起着促进作用。各种橡胶由于特性不同,对应于最低塑炼效果的温度范围也不一样,但温度对塑炼效果 影响的曲线形状是相似的。由前已知,不论低温塑炼还是高温塑炼,使用化学增塑剂 皆能提高塑炼效果。接受剂型增塑剂,如苯醌和偶氮苯等,它们在低温塑炼时起游 离基接受剂作用,能使断链的橡胶分子游离基稳 定,进而生成较短的分子;引发剂型增塑剂,如过氧化二苯甲酰和偶氮二异丁腈等,它们在高温下分解成极不稳定的游离基,再引发橡胶分子生成大分子游离基,并进而氧化断裂。此外,如硫醇类及二邻苯甲酰胺基苯基二硫化物类物质,它们既能使橡胶分子游离基稳定,又能在高温下引发橡胶形成游离基加速自动氧化断裂,所以,这类化学增塑剂称为混合型增塑剂或链转移型增塑剂。 2、塑炼工艺 生胶在塑炼前通常需进行烘胶、切胶、选胶和破胶等处理。 烘胶是为了使生胶硬度降低以便切胶,同时还能解除结晶。

橡胶生产基本工艺流程介绍

橡胶生产基本工艺流程介绍 一、基本工艺流程 橡胶制品种类繁多,但生产工艺过程却基本相同。以一般固体橡胶——生胶为原料的橡胶制品的基本工艺过程包括:塑炼、混炼、压延、压出、成型、硫化6个基本工序。当然,原材料准备、成品整理、检验包装等基本工序也少不了。橡胶的加工工艺过程主要是解决塑性和弹性性能这个矛盾的过程。通过各种工艺手段,使得弹性的橡胶变成具有塑性的塑炼胶,再加入各种配合剂制成半成品,然后通过硫化使具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。 二、原材料准备 1.橡胶制品的主要原料是以生胶为基本材料,而生胶就是生长在热带,亚热带的橡胶树上通过人工割开树皮收集而来。 2.各种配合剂,是为了改善橡胶制品的某些性能而加入的辅助材料。 3.纤维材料有(棉、麻、毛及各种人造纤维、合成纤维和金属材料、钢丝)是作为橡胶制品的骨架材料,以增强机械强度、限制制品变型。在原材料准备过程中配料必须按照配方称量准确。为了使生胶和配合剂能相互均匀混合,需要对材料进行加工。生胶要在6070℃烘房内烘软后再切胶、破胶成小块,配合剂有块状的。如石蜡、硬脂酸、松香等要粉碎。粉状的若含有机械杂质或粗粒时需要筛选除去液态的如松焦油、古马隆需要加热、熔化、蒸发水分、过滤杂质, 配合剂要进行干燥不然容易结块、混炼时若不能分散均匀硫化时产生气泡会影响产品质量。 三、塑炼 生胶富有弹性,缺乏加工时必需的可塑性性能,因此不便于加工。为了提高其可塑性,所以要对生胶进行塑炼,这样在混炼时配合剂就容易均匀分散在生胶中,同时在压延、成型过程中也有助于提高胶料的渗透性渗入纤维织品内和成型流动性。将生胶的长链分子降解形成可塑性的过程叫做塑炼。生胶塑炼的方法有机械塑炼和热塑炼两种。机械塑炼是在不太高的温度下通过塑炼机的机械挤压和摩擦力的作用使长链橡胶分子降解变短由高弹性状态转变为可塑状态。热塑炼是向生胶中通入灼热的压缩空气在热和氧的作用下使长链分子降解变短从而获得可塑性。

橡胶硫化工艺方法

橡胶硫化工艺方法 一、传统橡胶硫化工艺 1、影响硫化工艺过程的主要因素: 硫磺用量。其用量越大,硫化速度越快,可以达到的硫化程度也越高。硫磺在橡胶中的溶解度是有限的,过量的硫磺会由胶料表面析出,俗称“喷硫”。为了减少喷硫现象,要求在尽可能低的温度下,或者至少在硫磺的熔点以下加硫。根据橡胶制品的使用要求,硫磺在软质橡胶中的用量一般不超过3%,在半硬质胶中用量一般为20%左右,在硬质胶中的用量可高达40%以上。 硫化温度。若温度高10℃,硫化时间约缩短一半。由于橡胶是不良导热体,制品的硫化进程由于其各部位温度的差异而不同。为了保证比较均匀的硫化程度,厚橡胶制品一般采用逐步升温、低温长时间硫化。 2、硫化时间:这是硫化工艺的重要环节,时间过短,硫化程度不足(亦称欠硫)。时间过长,硫化程度过高(俗称过硫)。只有适宜的硫化程度(俗称正硫化),才能保证最佳的综合性能 二、橡胶硫化工艺方法 按硫化条件可分为冷硫化、室温硫化和热硫化三类。 1、冷硫化可用于薄膜制品的硫化,制品在含有2%~5%氯化硫的二硫化碳溶液中浸渍,然后洗净干燥即可。 2、室温硫化时,硫化过程在室温和常压下进行,如使用室温硫化胶浆(混炼胶溶液)进行自行车内胎接头、修补等。 3、热硫化是橡胶制品硫化的主要方法。根据硫化介质及硫化方式的不同,热硫化又可分为直接硫化、间接硫化和混气硫化三种方法。 ①直接硫化,将制品直接置入热水或蒸汽介质中硫化。 ②间接硫化,制品置于热空气中硫化,此法一般用于某些外观要求严格的制品,如胶鞋等。 ③混气硫化,先采用空气硫化,而后再改用直接蒸汽硫化。此法既可以克服蒸汽硫化影响制品外观的缺点,也可以克服由于热空气传热慢,而硫化时间长和易老化的缺点。 三、橡胶硫化工艺: 橡胶在未硫化之前,分子之间没有产生交联,因此缺乏良好的物理机械性能,实用价值不大。当橡胶加入硫化剂以后,经热处理或其他方式能使橡胶分子之间产生交联,形成三维网状结构,从而使其性能大大改善,尤其是橡胶的定伸应力、弹性、硬度、拉伸强度等一系列物理机械性能都会大大提高。橡胶大分子在加热下与交联剂硫磺发生化学反应,交联成为立体网状结构的过程。经过硫化后的橡胶称硫化胶。硫化是橡胶加工中的最后一个工序,可以得到定型的具有实用价值的橡胶制品。 四、注压成型硫化工艺: 普通模压与注压最明显的区别在于前者胶料是以冷的状态充入模腔的,而后者则是将胶料加热混合,并在接近硫化温度下注入模腔。因而,在注压过程中,加热模板所提供的热量仅仅只用于维持硫化,它能很快将胶料加热到190℃-220℃。在模压过程中,由加热模板所提供的热量首先要用于预热胶料,由于橡胶的导热性能差,如果制品很厚,热量要传导到制品中心需要较长的时间。采用高温硫化也可在一定程度上缩短操作时间,但往往导致靠近热板的制品边缘出现焦烧。采

橡胶的基本知识..

橡胶的基本知识 ?橡胶的分类 一、天然橡胶 二、合成橡胶 三、复合橡胶 ?天然橡胶 一、橡胶树 全世界含橡胶成分的植物有2000多种。其中有500种可以产橡胶,其中最好的是巴西橡胶树,俗称三叶橡胶树。属于木棉科。巴西橡胶树一般的高度是10-30米。颈粗15-30厘米。一般生长在10°S,15°N之间。生长条件是高温高湿,静风沃土。实生树的经济寿命为35~40年,芽接树为15~20年,生长寿命约60年。第一阶段是苗期:1.5-2龄树,第二阶段是幼树期:5-7龄树,第三阶段是初产期:9-11龄树,第四阶段是旺产期:30-40龄树,第五阶段是降产衰老期:30-40龄树失去经济价值。 天然橡胶是由人工栽培的三叶橡胶树分泌的乳汁,经凝固、加工而制得,其主要成分是聚异戌二烯,含量在90%以上,此外还含有少量的蛋白、脂及酸、糖份以及灰分。天然橡胶物理特性是具有很强的弹性和良好的绝缘性、可塑性、隔水隔气、拉抗和耐磨等特点,广泛应用于工业、农业、国防、交通、运输、械制造、医药卫生领域和日常生活等方面。 二、天然橡胶的分类 1、天然橡胶根据来源不同分为: 野生橡胶、栽培橡胶、橡胶草橡胶、杜仲胶 2、天然橡胶按制造工艺与外形的不同分为 烟片胶、颗粒胶、绉片胶和乳胶等 三、各种天然橡胶的基本情况 1、烟片胶 1)烟片胶的加工工艺

35%胶乳→过滤去杂质→加水稀释至15~20%→消泡澄清滤渣→加1%甲酸凝固(或乙酸)→除水→压3~3.5mm薄片→薰烟干燥(70℃,7~8天,防止霉变)→检查分级包装 2)RSS:分为1,2,3,4,5.还有特级。烟片胶是成片包装的,颜色为黄色,最好的是金黄色。它可以通过目测色泽指数来判断级别。 3)3号烟片胶为胶包原包装,件重为111.11kg,每吨9包。 主要的生产国:泰国,印度,(RSS3,RSS4.印度的烟片胶质量不好,一般只用来做复合胶的生产。)印尼(印尼的烟片只在国有农场生产,量很少。)。 4)用途 RSSI:橡胶溶液、医疗用品、食品工业、内胎、胎体等;RSS2:胎体、内胎、缓冲层、工业制品等;RSS3:胎面、胶管、输送带、轮胎翻新、胶料,是斜胶胎的主要原料;RSS4:各种橡胶杂品;RSS5:各种低级橡胶制品。国产SCR5的质量和性能与国外RSS3基本相同,具有可替代性。 2、标准胶1.26t/托 1)加工工艺 有机械法,胶乳→过滤→稀释→加酸凝固→脱水→干燥。 化学法:胶乳→加凝剂→离心分离→干燥。 标胶又分为:颗粒胶和挤出胶。只是挤出胶的工艺多了一个在粉碎成粉末的工艺。 2)标准橡胶的分类是按照杂质含量,塑性初值,塑性保持率,含氮量,挥发物含量,灰分,色泽指标。主要的分类是5L,5,10,20,50,其中杂质含量为主导性指标,目前国际市场,产胶国主要的标胶是20号标胶.还有越南生产3L.也是标胶的一种。其中3L,5L的颜色是黄色的。其余的颜色都是深色的。 3)主要产胶国:马来西亚,泰国,印尼,越南,中国 4)用途 进口20号标胶(包括SIR20、SMR20、STR20,统称TSR20)主要用于各种全钢子午胎、机动车轮胎、自行车轮胎等工业橡胶制品的生产。 3、绉片胶 1)白色绉片

橡胶硫化的基本知识

硫化对结构与性能的影响 在橡胶制品生产过程中,硫化是最后一道加工工序。在这道工序中,橡胶经过一系列复杂的化学反应,由线型结构变成体型结构,失去了混炼胶的可塑性具有了交联橡胶的高弹性,进而获得优良的物理机械性能、耐热性、耐溶剂性及耐腐蚀性能提高橡胶制品的使用价值和应用范围硫化前:线性结构,分子间以范德华力相互作用 性能:可塑性大,伸长率高,具有可溶性 硫化时:分子被引发,发生化学交连反应 硫化后:网状结构,分子间以已化学键结合 结构:(1)化学键。(2)交联键的位置;(3)交联程度 (4)交联 性能: 1)力学性能(定伸强度.硬度.拉伸强度. 伸长率.弹性) 2)物理性能 3)化学稳定性 硫化后橡胶的性能变化: 以天然橡胶为例,随硫化程度的提高 1) 力学性能的变化 (弹性. 扯断强度. 定伸强度. 撕裂强度. 硬度)提高 (伸长率. 压缩永久变形. 疲劳生热)降低 2)物理性能的变化 透气率、透水率降低不能溶解,只能溶胀耐热性提高 2) 化学稳定性的变化 化学稳定性提高 原因 a. 交联反应使化学活性很高的基团或原子不复存在,使老化反应难以进行 b . 网状结构阻碍了低分子的扩散,导致橡胶自由基难以扩散 7.2 硫化历程 在硫化过程中,各种性能均会随硫化的进程而发生变化,这种变化曲线能够反映胶料的硫化历程,故称为硫化历程图。下图为用硫化仪测出的硫化历程曲线。该曲线反映胶料在一定硫化温度下,转子的转矩随硫化时间的变化。 A焦烧阶段;B.热硫化阶段;C.平坦硫化阶段;D.过硫化阶段 A1.操作焦烧时间;A2.剩余焦烧时间 1. 焦烧阶段(焦烧期-硫化起步阶段,硫化诱导期) 1) 图中的 ab段称为胶料的焦烧阶段,此时交联尚未开始,胶料在模腔内具有良好的流动性,也称为硫化诱导阶段。胶料焦烧时间的长短决定胶料的焦烧性能和操作安全性。胶料焦烧时间受胶料中硫化促进剂和胶料本身的热历史的影响较大

橡胶基础知识问答

橡胶基础知识问答 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1.天然橡胶初制品主要有哪些? 答:由于橡胶消费的需要,固态生胶有烟胶片、风干胶片、绉胶片、颗粒橡胶等;商品胶乳有离心浓缩胶乳、膏化浓缩胶乳、蒸发浓缩胶乳等。 2.固态生胶和商品胶乳主要用于生产哪些工业产品? 答:固态生胶主要用于制造各种轮胎、输送带、工业胶管、胶鞋等难于用胶乳直接成型的制品;商品胶乳主要用于地毯、各种浸渍制品、海绵和胶粘剂的生产。 3.目前世界上固态生胶的种类主要有哪些? 答:目前世界上固态生胶的主要种类有:恒粘胶、低粘胶、5号胶、10号胶、20号胶、50号胶、通用胶、烟胶片、风干胶片、白绉片、褐绉片、子午线轮胎标准橡胶、航空轮胎标准橡胶、胶清胶等。 4.国产标准橡胶分为哪几个级别? 答:GB/T8081-1999将国产标准橡胶统一分为六个级别,即恒粘胶、浅色胶、5号胶(SCR5)、10号胶(SCR10)、20号胶(SCR20)和50号胶(SCR50)。 5.国产浓缩天然胶乳分为哪几个级别? 答:GB/T8289-2001将国产浓缩天然胶乳统一分为高氨离心浓缩胶乳、低氨离心浓缩胶乳、中氨离心浓缩胶乳、高氨膏化浓缩胶乳、低氨膏化浓缩胶乳五个级别。 6.什么是分级? 答:每种产品都有相应的质量标准。按质量标准的要求,把产品分为相应的等级的过程就叫分级。 7.国产标准橡胶分级的依据是什么其技术要求包含哪些质量项目? 答:国产标准橡胶分级的依据是国家标准“天然生胶标准橡胶规格”。其技术要求包含杂质含量、灰分含量、氮含量、挥发物含量、塑性初值、塑性保持率、颜色指数、门尼粘度8个质量项目。 8.国产浓缩天然胶乳分级的依据是什么其技术要求包含哪些质量项目? 答:国产浓缩天然胶乳分级的依据是国家标准“浓缩天然胶乳氨保存离心或膏化胶乳规格”。其技术要求包含总固体含量、干胶含量、非胶固体、碱度、机械稳定度、凝块含量、铜含量、锰含量、残渣含量、挥性能脂肪酸值、KOH值11个质量项目。

常用橡胶知识汇总

常用橡胶知识汇总 一.硅橡胶 1)简介 硅橡胶(英文名称:Silicone rubber),分热硫化型(高温硫化硅胶HTV)、室温硫化型(RTV),其中室温硫化型又分缩聚反应型和加成反应型。高温硅橡胶主要用于制造各种硅橡胶制品,而室温硅橡胶则主要是作为粘接剂、灌封材料或模具使用。热硫化型用量最大,热硫化型又分甲基硅橡胶(MQ)、甲基乙烯基硅橡胶(VMQ,用量及产品牌号最多)、甲基乙烯基苯基硅橡胶PVMQ(耐低温、耐辐射),其他还有睛硅橡胶、氟硅橡胶等。 2)性能 硅橡胶具有优异的耐热性、耐寒性、介电性、耐臭氧和耐大气老化等性能,硅橡胶突出的性能是使用温度宽广,能在-60℃(或更低的温度)至+250℃(或更高的温度)下长期使用。但硅橡胶的抗张强度和抗撕裂强度等机械性能较差,在常温下其物理机械性能不及大多数合成橡胶,且除腈硅、氟硅橡胶外,一般的硅橡胶耐油、耐溶剂性能欠佳,故硅橡胶不宜用于普通条件的场合,但非常适用于许多特定的场合。 3)用途 在生物医学工程中,高分子材料具有十分重要的作用,而硅橡胶则是医用高分子材料中特别重要的一类,它具有优异的生理惰性,无毒、无味、无腐蚀、抗凝血、与机体的相容性好,能经受苛刻的消毒条件。根据需要可加工成管材、片材、薄膜及异形构件,可用做医疗器械、人工脏器等。现今国内外都有专门的医用级硅橡胶。 硅橡胶在下面的领域表现卓越:耐高低温稳定性、惰性(无味无臭)、透明,易于上色硬度范围宽,10-80邵尔硬度、耐化学品、良好的密封性能、耐压缩变形 除了上述卓越性能,和常规有机弹性体相比,硅橡胶还特别容易加工制造。硅橡胶容易流动,因而可以在能耗较低的情况下模压、压延、挤出。 4)配方设计注意点: 1.硅橡胶是饱和度高的生胶,通常不用硫磺硫化,采用热硫化,热硫化采用有机过氧化物做硫化剂,因此,生胶中不得含有能与过氧化物分解产物发生作用的活性物质(如槽法炭黑、某些有机促进剂和防老剂等),否则会影响硫化。 2.硅胶制品一般在高温下使用,其配合剂应在高温下保持稳定,为此通常选用无机氧化物做补强剂。

橡胶硫化的历程

橡胶硫化的历程 在硫化过程中,各种性能均会随硫化的进程而发生变化,这种变化曲线能够反映胶料的硫化历程,故称为硫化历程图。下图为用硫化仪测出的硫化历程曲线。该曲线反映胶料在一定硫化温度下,转子的转矩随硫化时间的变化。 A焦烧阶段;B.热硫化阶段;C.平坦硫化阶段;D.过硫化阶段 A1.操作焦烧时间;A2.剩余焦烧时间 1. 焦烧阶段(焦烧期-硫化起步阶段,硫化诱导期) (1)胶料的焦烧阶段,此时交联尚未开始,胶料在模腔内具有良好的流动性,也称为硫化诱导阶段。胶料焦烧时间的长短决定胶料的焦烧性能和操作安全性。胶料焦烧时间受胶料中硫化促进剂和胶料本身的热历史的影响较大 (2)焦烧时间既包括橡胶在加工过程中由于热积累消耗掉的焦烧时间 硫化起步——硫化时,胶料开始变硬而后不能进行热塑性流动的那一点时间(焦烧)。 焦烧期的长短:决定了胶料的焦烧性及操作安全性。取决于方,特别是促进剂。可用迟效性促进剂:CZ 焦烧时间的起点:实际上是从混炼时加入硫磺的那一时刻开始 焦烧阶段的终点胶料开始发硬并丧失流动性 操作焦烧时间——混炼,停放,成型 残余焦烧时间——进入模具后加热开始到开始硫化这段时间 若:操作焦烧时间> 焦烧时间,就发生焦烧 防止焦烧的办法:

A 具有较长的焦烧时间:配方 B 混炼、停放要低温,成型时要迅速,即减少操作焦烧时间 2. 热硫化阶段(欠硫期-预硫阶段) (1)热硫化阶段即图中的bc段,在该阶段橡胶的交联以一定的速度开始进行。诱导期后,开始交联,至正硫化。 (2)热硫化的速度和时间取决与胶料的配方和硫化的温度。 (3)在此阶段,交联度低,即使在此阶段的后期,性能(主要是拉伸强度、弹性等)尚未达到预期的要求 (4)但其抗撕性、耐磨性,则优于正硫化胶料,若要求这些性能时制品可以轻微欠硫。 3. 硫化平坦阶段(正硫期-正硫化阶段) 硫化平坦阶段,此时交联反应已趋于完成,反应速度已较为缓和。硫化胶的综合物理机械性能已达到或接近最佳值。 正硫化:在平坦硫化阶段,橡胶制品的综合物理机械性能达到最佳值,这种硫化状态称为正硫化,也称最宜硫化。正硫化前期成为欠硫;正硫化后期则成为过硫,欠硫或过硫,橡胶的物理机械性能均较差。 正硫化时间:正硫化时间是指达到正硫化状态所需的最短时间,也称为“正硫化点”。 工艺正硫化时间:在实际操作中,往往是从制品的某些主要性能指标进行选择,从而确定正硫化时间,与理论上的综合物理性能有所区别,具有工艺上的概念。因此,将通过这种确定的正硫化时间称为工艺正硫化时间。一般橡胶制品的“工艺正硫化时间’ 应取其胶料的应力、应变最高值稍前一点制品达到适当的交联度的阶段,此时各项力学性能均达到或接近最佳值,其综合性能最好。 正硫化是一个阶段——各项性能基本上保持恒定或变化很少,也称硫化平坦期。硫化平坦期的宽窄取决于:配方、温度等。

天然橡胶的硫化

天然橡胶的硫化 一、实验目的、要求 1.了解胶料的混炼设备及工艺过程; 2.了解平板硫化机、密炼机的结构特点及其操作方法; 3.了解本实验用的胶料组成及其作用以及制定胶料硫化工艺条件的理论依据; 5.熟悉热硫化法,模具硫化的工艺特点,熟练地掌握本实验的操作过程。 二、重点 橡胶的混炼及橡胶硫化工艺 三、难点 橡胶硫化原理 四、提问 1.简述密炼机的基本结构和工作原理 2.橡胶硫化原理及硫化过程的注意事项 3.常见的硫化剂有哪些? 五、讲解 将具有线形分子结构的橡胶(生胶)通过化学或其他方法使其分子链发生交联形成三维网状结构(硫化胶)的过程称为橡胶的硫化。硫化胶不仅在机械性能方面得到提高,并使之形状得以固定不再具有可塑性和粘性流动。因此,准确的掌握橡胶的硫化工艺条件是保证橡胶制品质量的一个重要方面。 硫化的方法和设备很多,因制品而异,本实验是热硫化方法,学生在配方的基础上,用密炼机混炼制备混炼胶,然后进行模型硫化操作,以制取一定形状的硫化胶样品。 1、原料和实验设备 (1)橡胶及助剂 (2)一立升密炼机一台 (3)25吨平板硫化机,圆片橡胶模具,剪刀,螺丝刀,台秤等。 2、实验原理 将配方好的物料加入到密炼机中,按设定的混炼工艺条件混炼,制得混炼胶。在开炼机上将混炼胶压片备用。将混炼胶胶片放入模具中,在硫化机平板之间加热,使胶料软化和流动成型;在一定的硫化工艺条件下,胶料中的硫化体系使橡胶大分子发生复杂的化学反应,最后定型为硫化胶。 3、实验程序 1.按设定的配方配料,总重量控制在800克。 2.将配料按序加入到密炼机中,按设定的混炼工艺条件混炼。 3.混炼胶加入到开炼机中,拉成片,备用。 4.检查硫化机各部分是否正常,清洁机器;然后将硫化机加热至规定温度恒温。 5.检查硫化模具是否完好,清洁模具,除去残留胶屑及油污杂物。 6.把模具放在硫化机的平台上,并使之与上,下两平板接触预热20分钟。 7.检查胶料是否完好,如发现喷雾现象则应回炼;清除胶料表面的灰尘杂物。 8.视模具型腔大小,用剪刀剪取混炼胶料。 9.取出模具,打开模具进一步检查,清洁,涂脱模剂或涤纶薄膜,把试样置于模具型 腔中间,合模,放入硫化机中进行硫化。 10.将硫化机压力升高到10Mpa(表压),一定时间后卸压放气,再升压保持表压约10

相关文档
最新文档