光子晶体光纤基本特性及其应用研究[S](精)

光子晶体光纤基本特性及其应用研究[S](精)
光子晶体光纤基本特性及其应用研究[S](精)

光子晶体光纤基本特性及其应用研究[S]

英文题名 The Basic Characteristic and the Applications Study of Photonic Crystal Fibers 专业凝聚态物理关键词光子晶体光纤; 多极法; 色散; 有效模场面积; 非线性特性; 双折射; 英文关键词 Photonic crystal fibers; Multipole method; Chromatic dispersion; Effective model field area; Nonlinearity; Double refraction; 中文摘要光子晶体光纤是一种新型的光纤,由于它具有普通光纤所无法比拟的结构设计和光学特性,在近几年成为光纤研究领域的热点。本文介绍了光子晶体光纤的研究背景及发展现状,分析了它的结构特性,并列举了一些不同结构的光子晶体光纤,简单介绍了它的两种导光原理和制备方法,以及在各个方面的应用。设计了两种结构的光子晶体光纤,并对它们的基本特性进行了数值研究。论文所做的主要工作如下: 首先,对几种数值模拟光子晶体光纤特性的理论方法进行了介绍和对比,系统介绍了多极法的原理、方程以及适用条件,突出了多极法的特点和优势并选择多极法作为本文的主要研究方法。其次,采用多极法对实芯六角形光子晶体光纤的色散、有效模场面积与结构参数的关系进行了研究。得到如下结论:通过调节空气孔直径和包层空气孔间距的大小,改变空气孔填充介质的折射率,可以有效地控制光子晶体光纤的色散特性和有效模场面积。再次,设计了一种具有双折射的光子晶体光纤。数值研究发现:通过调节空气孔直径、包层空气孔间距的大小以及x和y方向的结构的不对称性,可以有效地调节光子晶体光纤的双折射特性,使双折射效应显著增强,甚至可以达到比普通光纤高出一个数量级的结果。这些结论为... 英文摘要 Photonic Crystal Fiber(PCF)is a new type of optical fiber. Because of its special structure design and optical properties, PCF has been a focus in optical fiber area in recent years. This paper introduces the research background and current development of PCF, analyzes its two kinds of transmission principle and manufacture ,as well as its application in various aspects.In this paper, it has designed two kinds of structures of PCF,and calculated some basic characteristic of PCF as well.The original jobs in ... 摘要 4-5 Abstract 5-6 第1章绪论 11-

25 1.1 引言 11 1.2 光子晶体简介 11-13 1.3 光子晶体光纤的导光原理 13-16 1.3.1 带隙型光子晶体光纤 13-

15 1.3.2 折射率引导型光子晶体光纤 15-16 1.4 光子晶体光纤基本特性 16-20 1.4.1 无截止单模性质 16-

18 1.4.2 色散特性 18 1.4.3 非线性特性

18-19 1.4.4 双折射特性 19-20 1.5 光子晶体光纤的发展现状及应用前景分析 20-23 1.5.1 光子晶体光纤研究现状 20-22 1.5.2 光子晶体光纤的应用前景分析 22-

23 1.6 本课题的研究目标及实现方法 23-25 第2章光子晶体光纤的研究方法 25-37 2.1 引言 25 2.2 几种光子晶体光纤的研究方法简介 25-28 2.2.1 有效折射率方法 25-

26 2.2.2 平面波法 26 2.2.3 Galerkin 方法 26 2.2.4 有限差分法 26-27 2.2.5 超元胞晶格方法 27-28 2.2.6 光束传播法 28 2.3 多极法

的理论和方程 28-35 2.3.1 多极法的概况 28-

29 2.3.2 多极法公式 29-31 2.3.3 边界条件和场的耦合 31-33 2.3.4 Rayleigh 恒等式的引出及数字处理 33-35 2.4 多极法对称性的考虑 35-36 2.5 本章小结 36-

37 第3章光子晶体光纤色散和非线性特性分析 37-50 3.1 引言 37-

38 3.2 光子晶体光纤的色散特性 38-41 3.2.1 光纤色散的分类 38-39 3.2.2 光子晶体光纤色散定义 39-

40 3.2.3 光子晶体光纤色散特性的调节 40-41 3.3 光子晶体光纤的有效模场面积 41 3.4 光子晶体光纤的非线性效应 41-45 3.4.1 光纤中的非线性光学效应 41-

44 3.4.2 非线性效应对光通信系统的影响

44 3.4.3 改变光纤非线性的方法 44-45 3.5 光子晶体光纤特性随d/ Λ的变化关系 45-48 3.5.1 光子晶体光纤的色散特性随d/ Λ的变化关系 46 3.5.2 光子晶体光纤的有效模场面积随d/ Λ的变化关系 46-48 3.5.3 光子晶体光纤的非线性系数随d/ Λ的变化关系 48 3.6 本章小结 48-50 第4章高双折射光子晶体光纤特性研究 50-58 4.1 引言 50 4.2 基本原理 50-51 4.3 高双折射光子晶体光纤的设计与计算 51-

57 4.3.1 模式双折射 52-55 4.3.2 色散损耗分析 55-57 4.4 本章小结 57-58 第5章光子晶体光纤的应用 58-63 5.1 引言 58 5.2 光子晶体光纤激光器 58-

61 5.2.1 纯硅光子晶体光纤激光器 58-

59 5.2.2 微结构光纤实现大模式面积光纤激光器 59-

60 5.2.3 包层泵浦Yb 掺杂光子晶体光纤激光器 60-

61 5.3 光子晶体光纤在其他方面的应用 61-62 5.3.1 光子晶体光纤光栅 61 5.3.2 光纤传感

61 5.3.3 能量传输 61-62 5.3.4 超连续谱的产生 62 5.4 展望 62-63 结论 63-64 参考文献 64-69 致谢 69-

70 2.2.3 Galerkin 方法 26 2.2.4 有限差分法 26-27 2.2.5 超元胞晶格方法 27-

28 2.2.6 光束传播法 28 2.3 多极法的理论和方程

28-35 2.3.1 多极法的概况 28-29 2.3.2 多极法公式 29-31 2.3.3 边界条件和场的耦合 31-

33 2.3.4 Rayleigh 恒等式的引出及数字处理 33-

35 2.4 多极法对称性的考虑 35-36 2.5 本章小结 36-37 第3章光子晶体光纤色散和非线性特性分析 37-50 3.1 引言 37-

38 3.2 光子晶体光纤的色散特性 38-41 3.2.1 光纤色散的分类 38-39 3.2.2 光子晶体光纤色散定义 39-

40 3.2.3 光子晶体光纤色散特性的调节 40-41 3.3 光子晶体光纤的有效模场面积 41 3.4 光子晶体光纤的非线性效应 41-45 3.4.1 光纤中的非线性光学效应 41-

44 3.4.2 非线性效应对光通信系统的影响

44 3.4.3 改变光纤非线性的方法 44-45 3.5 光子晶体光纤特性随d/ Λ的变化关系 45-48 3.5.1 光子晶体光纤

的色散特性随d/ Λ的变化关系 46 3.5.2 光子晶体光纤的有效模场面积随d/ Λ的变化关系 46-48 3.5.3 光子晶体光纤的非线性系数随d/ Λ的变化关系 48 3.6 本章小结 48-50 第4章高双折射光子晶体光纤特性研究 50-58 4.1 引言 50 4.2 基本原理 50-51 4.3 高双折射光子晶体光纤的设计与计算 51-

57 4.3.1 模式双折射 52-55 4.3.2 色散损耗分析 55-57 4.4 本章小结 57-58 第5章光子晶体光纤的应用 58-63 5.1 引言 58 5.2 光子晶体光纤激光器 58-

61 5.2.1 纯硅光子晶体光纤激光器 58-

59 5.2.2 微结构光纤实现大模式面积光纤激光器 59-

60 5.2.3 包层泵浦Yb 掺杂光子晶体光纤激光器 60-

61 5.3 光子晶体光纤在其他方面的应用 61-62 5.3.1 光子晶体光纤光栅 61 5.3.2 光纤传感

61 5.3.3 能量传输 61-62 5.3.4 超连续谱的产生 62 5.4 展望 62-63 结论 63-64 参考文献 64-69 致谢 69-

70 2.2.3 Galerkin 方法 26 2.2.4 有限差分法 26-27 2.2.5 超元胞晶格方法 27-

28 2.2.6 光束传播法 28 2.3 多极法的理论和方程

28-35 2.3.1 多极法的概况 28-29 2.3.2 多极法公式 29-31 2.3.3 边界条件和场的耦合 31-

33 2.3.4 Rayleigh 恒等式的引出及数字处理 33-

35 2.4 多极法对称性的考虑 35-36 2.5 本章小结 36-37 第3章光子晶体光纤色散和非线性特性分析 37-50 3.1 引言 37-

38 3.2 光子晶体光纤的色散特性 38-41 3.2.1 光纤色散的分类 38-39 3.2.2 光子晶体光纤色散定义 39-

40 3.2.3 光子晶体光纤色散特性的调节 40-41 3.3 光子晶体光纤的有效模场面积 41 3.4 光子晶体光纤的非线性效应 41-45 3.4.1 光纤中的非线性光学效应 41-

44 3.4.2 非线性效应对光通信系统的影响

44 3.4.3 改变光纤非线性的方法 44-45 3.5 光子晶体光纤特性随d/ Λ的变化关系 45-48 3.5.1 光子晶体光纤的色散特性随d/ Λ的变化关系 46 3.5.2 光子晶体光纤的有效模场面积随d/ Λ的变化关系 46-48 3.5.3 光子晶体光纤的非线性系数随d/ Λ的变化关系 48 3.6 本章小结 48-50 第4章高双折射光子晶体光纤特性研究 50-58 4.1 引言 50 4.2 基本原理 50-51 4.3 高双折射光子晶体光纤的设计与计算 51-

57 4.3.1 模式双折射 52-55 4.3.2 色散损耗分析 55-57 4.4 本章小结 57-58 第5章光子晶体光纤的应用 58-63 5.1 引言 58 5.2 光子晶体光纤激光器 58-

61 5.2.1 纯硅光子晶体光纤激光器 58-

59 5.2.2 微结构光纤实现大模式面积光纤激光器 59-

60 5.2.3 包层泵浦Yb 掺杂光子晶体光纤激光器 60-

61 5.3 光子晶体光纤在其他方面的应用 61-62 5.3.1 光子晶体光纤光栅 61 5.3.2 光纤传感

61 5.3.3 能量传输 61-62 5.3.4 超连续谱的产生 62 5.4 展望 62-63 结论 63-64 参考文献 64-69 致谢 69-70

光子晶体简介及应用

光子晶体及其应用的研究 (程立锋物理电子学) 摘要:光子晶体(PbmDftic Crystal)是一种新型的人工材料,其最显著的特点就是具有光子禁带(Photonic B锄d.G £lp,简称PBG),频率落在光子禁带内的电磁波是禁止传播的,因而具有光子带隙的周期性奔电结构就称为光子晶体。近几年,光子晶体被广泛地应用于微波、毫米波的电路设计中。的滤波特性,加以优化,则可以实现带通滤波器。迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使光子晶体信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。 关键词:光子晶体;算法;应用;

1光子晶体简介 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路。推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。半导体的工作载体是电子,因此半导体的研究围绕着怎样利用和控制电子的特性。但近年来,电子器件的进一步小型化以及在减小能耗下提高运行速度变得越来越困难。人们感到了电子产业发展的极限,转而把目光投向了光子。与电子相比,以光子作为信息和能量的载体具有优越性。光子是以光速运动的微观粒子,速度快;它的静止质量为零,彼此间不存在相互作用,即使光线交汇时也不存在相互干扰:它还有电子所不具备的频率和偏振等特征。电子能带和能隙结构是电子作为一种波的形式在凝聚态物质中传播的结构,而光子和电子一样具有波动性,那么是否存在这样一种材料,光子作为一种波的形式在其中传播也会产生光子能带和带隙。近来大量的理论和实验表明确实存在这样一种材料,其典型的结构是一个折射率周期变化的三维物体,它的周期为光的波长,折射率变化比较大时,会出现类似于电子情况的光子能带和带隙。这种具有光子能带和带隙的材料被称为光子晶体。 在半导体材料中,电子在晶体的周期势场中传播时,由于电子波会受到周期势场的布拉格散射而形成能带结构,带与带之间可能存在

光子晶体光纤设计与分析

光子晶体光纤设计与分析 摘要:光学物理学家探索的光子晶体材料应用中,光纤无疑是最具有前景的一项应用。光子晶体光纤(以下简称PCF)是一种新型光波导,具有与普通光纤截然不同的特性。这种新型光纤可以分为两个基本类型——折射率波导和带隙波导。由于横向折射率分布有很大的自由度,所以折射率波导型PCF可以设计成具有高度反常色散、非线性以及双折射等特性的光纤。关键词:PCF原理结构分析制备特性应用 正文: 一.PCF的导光原理 按导光机理来说,PCF可以分为两类:折射率导光机理和光子能隙导光机理。 1.1折射率导光机理 周期性缺陷的纤芯折射率(石英玻璃)和周期性包层折射率(空气)之间有一定差别,从而使光能够在纤芯中传播,这种 同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF中的小孔尺寸比传导光的波长还小的缘故[3]。 1.2光子能隙导光机理 理论上求解光波在光子晶体中的本征方程即可导出实芯和空芯PCF的传导条件,即光子能隙导光理论。如图2所示,光纤中心为空芯,虽然空芯折射率比包层石英玻璃低,但仍能保证光不折射出去,这是因为包层中的小孔点阵构成光子晶体。当小孔间距和小孔直径满足一定条件时,其光子能隙范围内就能阻止相应光传播,光被限制在中心空芯之内传输。最近有研究表明,这种PCF可传输99%以上的光能,而空间光衰减极低,光纤衰减只有标准光纤的1/2~1/4[4]。 空芯PCF光子能隙传光机理具体解释为:在空芯PCF中形成周期性的缺陷是空气,传光机理是利用包层对一定波长的光形成光子能隙,光波只能在空气芯形成的缺陷中存在和传播。虽然在空芯PCF中不能发生全内反射,包层中的小孔点阵结构起到反射镜的作用,使光在许多小孔的空气和石英玻璃界面多次发生反射。 二.PCF的结构与制作 PCF的结构一般是在石英光纤中沿径向有规律地排列着许多空气孔道,这些微小的孔道沿光纤轴线平行排列。根据其结构类型可以分为实心光纤和空心光纤。实心光纤是纤芯为石英玻璃、包层为石英玻璃中分布许多空气孔道和石英玻璃壁的组合体。空心光纤的纤芯为一条直径较大的空气孔道,包层与实心光纤类似。通过设计这些空气孔的位置、大小、间距及占空比等波长量级的特征参数,对某以波段形成带隙,从而对这一波段的光传播是实现控制。 光子晶体的制作都要经过拉伸、堆积和熔合等过程,如Knight J C等的制作方法: (1)取一根直径为30mm的石英棒,沿其轴线方向上钻一条直径为16mm的孔,随后将石英棒研磨成一个正六棱柱; (2)把该石英棒放在2000℃的光纤拉丝塔中,将它拉成直径为0.8mm的细长正六棱柱丝; (3)把正六棱柱丝切成适当长度的若干段,然后堆积成需要的晶体结构,再把它们放到拉丝塔中熔合、拉伸,使内部空气孔的间距减小到50Λm左右,形成更细的石英丝; (4)在以上工作的基础上,把上述石英丝高温拉伸,形成最后的PCF。在以上3个阶段的拉伸过程中,晶胞减少了104数量级以上,最后形成的光子晶体的孔间距在2Λm左右。PCF 沿着石英丝的轴向均匀排列着空气孔,从PCF 的横切面看,存在着周期性的二维结构。如果核心处引入一个多余的空气孔,或者在应该出现空气孔的地方由均匀硅代替,从而在光子晶体中引入一

光子晶体光纤材料

光子晶体光纤材料 光子晶体的能带结构 电子能带与光子能带 在半导体晶体中, 电子受原子周期排列所构成的周期势场的作用, 它的能谱呈带状结构由于原子的布拉格散射, 在布里渊区边界上能量变得不连续, 出现带隙, 电子被全反射在光子晶体中, 也存在类似的周期性势场, 它是由介电函数在空间的周期性变化所提供的当介电函数的变化幅度较大且变化周期与光的波长相比拟时, 介质的布拉格散射也会产生带隙, 相应于此带隙区域的那些频率的光将不能通过介质, 而是被全部反射出去由于周期结构的相似性, 普通晶体的许多概念被引入光子晶体, 如能带、能隙、能态密度、缺陷态等实际制备的光子晶体多由两种介电常数不同的物质构成, 其中低介电物质常采用空气, 因此相应于半导体的价带和导带, 在光子晶体中存在介电带和空气带。 完全光子能隙的产生 光子能隙有完全能隙与不完全能隙的区分所谓完全能隙, 是指光在整个空间的所有传播方向上都有能隙, 且每个方向上的能隙能相互重叠不完全能隙, 相应于空间各个方向上的能隙并不完全重叠, 或只在特定的方向上有能隙由于能隙产生于布里渊区的边界处,原则上完全能隙更容易出现在布里渊区是近球形的结构中。FCC是具有最接近球形布里渊区的空间周期结构。 人们对光子能带的理论计算最初是照搬电子能带的计算方法, 如平面波法和缀加平面波法等, 将光子当作标量波, 利用薛定愕方程求解一计算结果显示, 包括在内的许多结构的光子晶体都将出现光子带隙然而, 随后的研究表明, 这种

标量波近似法不仅在定量上, 甚至在定性上都与实验结果不符。由于电子是自旋为1/2的费米子, 为标量波而光子是自旋为的玻色子, 是矢量的电磁波, 两者存在着本质的区别因此, 计算光子晶体的能带结构必须在矢量波理论的框架下, 从麦克斯韦方程出发在各种理论中, 平面波展开法是应用得最普遍, 也是最成功的由于光子之间没有复杂的相互作用, 理论计算可以非常精确地预言光子晶体的性质, 对实验工作起着重要的指导作用。 能带计算表明由球形颗粒构成的结构具有很高的对称性, 对称性引起的能级简并使它只存在不完全能隙, 例为了得到具有完全能隙的光子晶体结构, 需要从两方面考虑:(1)提高提高周期性介电函数的变化幅度, 即要有高的折射率反差(2)从结构上消除对称性引起的能带简并为此, 在结构的晶胞内引入两个球形粒子构成的金刚石结构, 能产生很宽的完全带隙,通过引入非球形的晶胞颗粒也能消除能带简并从而产生完全的光子带隙。利用材料介电常数的各向异性,在FCC、BCC、SC等各种简单晶格中也将产生部分能隙, 此外, 在介电质材料中引入彼此分离的金属颗粒构成的复合光子晶体, 将具有很宽的完全能隙, 然而由于在可见光和红外波段金属材料的强烈耗散, 这种光子晶体的效率很低。 光子晶体中的缺陷能级 半导体材料的广泛应用与其掺杂特性密切相关向高纯度半导体晶体中掺杂, 禁带中会产生相应的杂质能级, 从而显著改变半导体材料的电学、光学特性类似地, 可以向光子晶体中引入杂质和缺陷, 当缺陷是由引入额外的高介电材料所至图右, 其特性类似于半导体掺杂中的施主原子, 相应的缺陷能级起始于空气带底, 并随缺陷尺寸的变化而移向介电带当缺陷是由移去部分高介电材料所至, 其特性类似于半导体掺杂中的受主原子, 相应的缺陷能级起始于介电带顶, 并随缺陷

光子晶体原理及应用

一、绪论 1.1光子晶体的基本概念 光子晶体是由不同介电常数的介质材料在空间呈周期排布的结构,当电磁波受到调制而形成类似于电子的能带结构,这种能带结构称为光子能带。在合适的晶格常数和介电常数比的条件下,类似于电子能带隙,在光子晶体的光子能带间可出现使某些频率的电磁波完全不能透过的频率区域,将此频率区域称为光子带隙或光子禁带。人们又将光子晶体称为光子带隙材料。 与一般的电子晶体类似,光子晶体也有一维、二维、三维之分。一维光子晶体是介电常数不同的两种介质块交替堆积形成的结构。实际上,一维光子晶体已经被广泛应用,如法布里-珀罗腔光学多层的增反/透膜等。二维光子晶体是介电常数在二维空间呈周期性排列的结构。 光子晶体中存在光子禁带的物理机理是基于固体物理的布洛赫理论。 1.2光子带隙 光子在光子晶体中的行为类似于电子在半导体晶体中的行为,通过独特的光子禁带可改变光的行为。研究表明,光子带隙有完全光子带隙与不完全光子带隙的区分。所谓完全光子带隙,是指在一定频率范围内,无论其偏振方向及传播方向如何,光都禁止传播,或者说光在整个空间的所有传播方向上都有能隙,且每个方向上的能隙能互相重叠。所谓不完全光子带隙,则是相应于空间各方向上的能隙并不能完全重叠,或只在特定的方向上有能低折射率的介质在晶格中所占比率以及它们在空间的排列结构。总的来说,折射率差别越大带隙越大,能够达到的效率也就越高。 二、光子晶体的晶体结构和能带结构特性研究 2.1一维光子晶体的传输矩阵法 设一维光子晶体由两种材料周期性交替排列构成,通常称一维二元光子晶体,类似固体能带理论中的Kroning-penney模型,在空气中由A、B薄层交替构成一维人工周期性结构材料,其中A材料的折射率是na,厚度为ha,B材料的

光子晶体及其器件的研究进展

深圳大学研究生课程论文题目光子晶体及其器件的研究进展成绩 专业 课程名称、代码 年级姓名 学号时间2016年12月 任课教师

子晶体及其器件的研究进展 摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。由 于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。 关键词:光子晶体;光子晶体的应用;发展趋势 Research progress of photonic crystals and devices Abstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected. Key words:Photonic crystal; application of photonic crystal; development trend 1引言 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。 目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得

综述光子晶体的研究进展

光子晶体的最新研究进展 (学号:SA12231016 姓名:陈飞虎) 摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。 关键词:光子晶体研究进展 1 引言 自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙, 频率处在光子带隙中的光被禁止进入光子晶体。若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领

域[3-4]有着广泛应用。当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。因此可调控的光子晶体成为各个应用领域的研究热点和方向。 2 光通信技术方向的研究进展 传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。理论上,当波导弯曲 90°时,传统波导会有 30%的损失,而光子晶体波导的损耗只有 2%[5]。另外,光子晶体波导的尺度可以做得很小,达到波长量级;因此,光子晶体波导不仅在光通信中有着十分重要的应用,在未来大规模光电集成、光子集成中也将具有极其重要的地位。 光子晶体光纤(PCF) 由于它的包层中二维光子晶体结构能够以从前没有的特殊方式控制纤芯中的光波,使其具有诸多优异的光学特性,如无截止单模传输特性、可调节的色散特性、高双折射特性、大模面积和高非线性特性等,因此PCF的研究一直是光通信和光电子领域科学家们关注的热点。目前,世界各国对PCF的研究如火如荼,在PCF的色散、带隙、非线性特性及应用方面均有了长足进展。PCF的

论光子晶体光纤技术的现状和发展

论光子晶体光纤技术的现状和发展 摘要: 光子晶体光纤,又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。光子晶体光纤在外观上和传统的普通单模光纤非常相似,但微观上光子晶体光纤的横截面完全不同。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤的研究工作。本文阐述了PCF的一些独特光学性质、制作技术及其一些重要应用,介绍了PCF的发展以及最新成果。关键词:光子晶体,光子晶体光纤,非线性 1 引言 1987年Yabnolovitch 在讨论如何抑制自发辐射时提出了光子晶体这一新概念。几乎同时,John 在讨论光子局域时也独立提出。如果将不同介电常数的介电材料构成周期结构,电磁波在其中传播时由于布拉格散射,电磁波会受到调制而形成能带结构,这种能带结构叫做光子能带。光子能带之间可能出现带隙,即光子带隙。具有光子带隙的周期性介电结构就是光子晶体,或叫做光子带隙材料,也有人把它叫做电磁晶体。 光子晶体光纤(photonic crystal fiber,PCF),又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。这类光纤是由在纤芯周围沿着轴向规则排列微小空气孔构成,通过这些微小空气孔对光的约束,实现光的传导。独特的波导结构,灵活的制作方法,使得PCF与常规光纤相比具

有许多奇异的特性,有效地扩展和增加了光纤的应用领域[1]。在光纤激光器这一领域内,PCF经专门设计可具有大模面积且保持无限单模的特性,有效地克服了常规光纤的设计缺陷。以这种具有新颖波导结构和特性的光纤作为有源掺杂的载体,并把双包层概念引入到光子晶体光纤中,将使光纤激光器的某些性能有显著改善。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤激光器的研究工作[2]。目前,国外输出功率达到几百瓦的光子晶体光纤激光器已有报道。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF 的发展以及最新成果。 2 光子晶体光纤概述 2.1 光子晶体光纤导光原理 光子晶体光纤的概念基于光子晶体,按其传导机制可分为带隙型光子晶体光纤(PBG-PCF)和折射率引导型光子晶体光纤(TIR-PCF)两类[3]。 带隙型光子晶体光纤是一种具有石英-空气光子晶体包层的空芯石英光纤,其包层横截面的折射率具有规则的周期分布,通过包层光子晶体的布拉格衍射来限制光在纤芯中传播的在满足布拉格条件时出现光子带隙,对应波长的光不能在包层中传播,而只能限制在纤芯中传播,见图2-1(a)。 折射率引导型光子晶体光纤的导光机制与传统光纤类似,包层由石英-空气周期介质构成,中心为SiO2构成的实芯缺陷。由于纤芯折射率高于包层平均折射率,光波在纤芯中依靠全内反射传播。由于包层含有气孔,与传统光纤的实芯熔融硅包层不同,因而这种导光机制叫做改进的全内反射,见图2-1(b)

光子晶体发展及种类

光子晶体及光子晶体光纤的研究现状与发展趋势 摘要:光子晶体光纤(PCF)由于具有传统光纤无法比拟的奇异特性,吸引了学术界和产业界的广泛关注,在短短的十年内PCF的研究取得了很大的进展。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF的发展以及最新成果。 关键词:光子晶体光子晶体光纤光子晶体光纤激光器 1、前言 光子晶体光纤(photoniccrystalfiber,PCF),又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。这类光纤是由在纤芯周围沿着轴向规则排列微小空气孔构成,通过这些微小空气孔对光的约束,实现光的传导。独特的波导结构,灵活的制作方法,使得PCF与常规光纤相比具有许多奇异的特性,有效地扩展和增加了光纤的应用领域[1]。在光纤激光器这一领域内,PCF经专门设计可具有大模面积且保持无限单模的特性,有效地克服了常规光纤的设计缺陷。以这种具有新颖波导结构和特性的光纤作为有源掺杂的载体,并把双包层概念引入到光子晶体光纤中,将使光纤激光器的某些性能有显著改善。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤激光器的研究工作[2]。目前,国外输出功率达到几百瓦的光子晶体光纤激光器已有报道。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF的发展以及最新成果。 2、光子晶体光纤的导光原理 按导光机理来说,PCF可以分为两类:折射率导光机理和光子能隙导光机理。 2.1折射率导光机理 周期性缺陷的纤芯折射率(石英玻璃)和周期性包层折射率(空气)之间有一定差别,从而使光能够在纤芯中传播,这种结构的PCF导光机理依然是全内反射,但与常规G.652光纤有所不同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF 中的小孔尺寸比传导光的波长还小的缘故[3]。 2.2光子能隙导光机理 理论上求解光波在光子晶体中的本征方程即可导出实芯和空芯PCF的传导条件,即光子能隙导光理论。如图2所示,光纤中心为空芯,虽然空芯折射率比包层石英玻璃低,但仍能保证光不折射出去,这是因为包层中的小孔点阵构成光子晶体。当小孔间距和小孔直径满足一定条件时,其光子能隙范围内就能阻止相应光传播,光被限制在中心空芯之内传输。最近有研究表明,这种PCF可传输99%以上的光能,而空间光衰减极低,光纤衰减只有标准光纤的1/2~1/4[4]。 空芯PCF光子能隙传光机理具体解释为:在空芯PCF中形成周期性的缺陷是空气,传光

大模场光子晶体光纤设计

第24卷第3期Vo l.24,No.3滨州学院学报Journal of Binzho u University 2008年6月Jun.,2008 大模场光子晶体光纤设计 收稿日期:2008-01-04第一作者简介:薛 华(1976 ),女,山东惠民人,讲师,在读硕士,主要从事无线电物理研究. 薛 华,韩春艳 (滨州学院物理与电子科学系,山东滨州256603) 摘 要:全内反射型光子晶体光纤纤具有为高折射率,包层为石英-空气周期结构,光通过高折射率纤芯与低平均折射率包层间的全内反射向前传播.包层的周期结构要求也不严格,甚至可以无序.利用其特有的 无截止单模 特性,对大模场光子晶体光纤进行了设计. 关键词:光子晶体光纤;无截止单模;模场 中图分类号:TN 252 文献标识码:A 文章编号:1673-2618(2008)03-0079-04 PCF(Photonic Cry stal Fiber,PCF)的概念最早由ST.J.Russell 等人[1]于1992年提出,它的结构由石英棒或石英毛细管排列而成的,在中心形成缺陷,所以又被称为多孔光纤(H o ly Fiber)或微结构光纤(M icro -structured Fiber).PCF 根据其导光原理可以分为两种,一种是光子带隙光纤(Pho to nic Band Gap PCF,PBG -PCF),另一种是改进的全内反射PCF(T otal Internal Reflection PCF,TIR -PCF),也称作折射率引导PCF(Index Guiding PCF ).T IR -PCF 与传统光纤的差别在于包层具有与PBG -PCF 相似的六角形排列的空气孔,正是这种周期性结构提供了许多独特性质.由于不依赖光子带隙,包层中空气孔并不要求大直径,排列的形状与周期性要求也不严格,甚至包层中可为无序排列的空气孔,同样可以实现相同的导光特性.比较两种PCF,全内反射PCF 无论在理解或是制作上都更为简单,因为它可沿用经典的全内反射理解导光机制,而且不需要精确的空气孔排列,更适合于制作,故在目前大多数的研究和应用都是针对全内反射型PCF [2]. 1 无截止单模(Endlessly single mode)特性 这是T IR -PCF 的一个重要的特性.对于标准的阶跃型单模光纤,其归一化频率V 由下式决定 [3]:V =(2 / )(n 2c o -n 2cl )1/2,(1) 式中n co 和n c l 分别为光纤纤芯和包层材料的折射率, 为纤芯半径, 为光波长.归一化频率V 决定了模式数目,当V <2.405时,光纤才是单模的.对应于V =2.405的波长就称为传统光纤的截止波长,只有当工作波长大于此截止波长时光波才能在光纤中实现单模传输.而PCF 不存在截止波长,用有效折射率模型[4]可以较好地解释这一现象.类似于传统光纤的归一化频率,在PCF 中,亦可定义一个等效的归一化频率为[5]: V ef f =(2 / )(n 2co -n 2ef f )1/2,(2) 其中n c o 和n ef f 分别为PCF 芯层和包层的等效折射率, 为芯层半径.PCF 包层的等效折射率n e f f 可以根据包层晶胞的等效数学模型解出.它是光辐射波长的函数,当波长减小时,光束截面随之收缩,光波模式分布向纤芯集中,因此n ef f 增大,从而n co 和n e f f 的差减小,这就抵消了波长减小的趋势,使V ef f 趋于定值,从而满足了单模传输条件.理论计算及实验证明:只要满足空气孔径与孔间距之比小于0.2,[6]PCF 就具有无截止单模特性.更重要的是,PCF 的无截止单模特性与光纤结构的绝对尺寸无关,只取决于光纤的相对尺

光子晶体

光子晶体的制备及应用 王文瀚12S011029 1 引言 光子晶体(Photonic Crystals, PCs)是一种人工周期介质结构,由不同折射率材料周期性地交替排列而成,这种周期介质结构最早由Bykov于1972年提出。1987年,Yablonovitch和John分别在研究抑制原子的自发辐射和光子的局域化问题中也各自独立地提出了这种结构,并在后来的研究中将其命名为光子晶体。 实际上,在自然界中就存在着光子晶体结构,如蛋白石、孔雀羽毛、蝴蝶翅膀上的鳞状覆盖物、以及澳洲海老鼠的毛发。蝴蝶翅膀上的鳞状覆盖物是一种周期性结构。这种周期性结构可以限制光在其中的传输,让某些波长的光通过,而让另一些波长的光完全被反射。正因为如此,才形成了蝴蝶翅膀表面绚烂的花纹和色彩。这种周期性结构与Yablonovitch和John提出的光子晶体概念是相吻合的。 当然,自然界中这样的例子只是少数,目前更多的光子晶体是由人工加工制作而成。1990 年,Ho和Chan等人第一次从理论上论证了三维金刚石结构具有完全光子禁带。1991 年,Yablonovitch团队通过从一定角度对半导体介质进行钻孔,首次成功制作了具有完全禁带的三维金刚石结构光子晶体,禁带频率范围为13GHz~15GHz。[1] 2 光子晶体原理 最简单的的光子晶体是由A、B两种材料在一个方向上周期交替排列形成,这种结构叫一维光子晶体,如图1(a)所示。A、B交替的空间周期a叫做光子晶体的晶格常数,这与由原子构成的普通晶体中的晶格常数相对应。普通晶体的晶格常数通常都在埃的数量级,而光子晶体的晶格常数则通常与工作波段的电磁波波长在同一个数量级。比如,在可见光波段,一般为1μm量级或更小,而在微波段,则一般为1cm 左右。根据光子晶体中介质周期分布的维数,可以把光子晶体分为一维、二维和三维光子晶体,分别如图 1 (a)、(b)、(c)所示。 (a) 一维光子晶体结构(b) 二维光子晶体结构(c) 三维光子晶体结构 图1 光子晶体结构示意图

《光子晶体光纤在光纤通信中的应用与展望》

调研报告 课程:光纤通信 学院:电气工程学院 班级: 14级电子专业02班 学号: 20144470220 姓名:郑浩

光子晶体光纤(PCF)在光纤通信中的应用与展望 郑浩 (南华大学电气工程学院,湖南衡阳) 摘要:光纤是光纤通信系统中的传光媒质,开发性能优异、独特的新型光纤是实现更远距离光通信的重要发展方向。本文将侧重三个方面,先着重介绍光子晶体光纤的导光原理及传输特性,再介绍光子晶体光纤的各个发展节点中的重要成果和突破,最后是对光子晶体光纤的发展前景做出的总结和评价。 关键词:光纤通信; 光子晶体;光子晶体光纤;传输特性 1 引言 光子晶体光纤(PCF)因为其灵活的色散裁剪、完美的抗弯曲特性、良好的非线性等新颖特性,一经提出便广受关注。1960年,华人科学家高锟对于光纤的低损耗的可实现性所做的论述,是开启以光纤通信为主的光通信时代的一把钥匙,所以可以说光通信的广泛使用正是有赖于光纤技术的不断进步,而研发出新型光纤或提高现有光纤的品质一直以来都是光通信领域的重点。光子晶体光纤正是传统光纤的替换选择之一。 光子晶体这一概念最早由E.Yablonovitch与S. John分别提出,光子晶体就是将不同介电常数的介质材料在一维、二维或三维空间组成具有光波长量级的折射率周期性变化的结构材料[1]。1991 年,Russell首次提出了光子晶体光纤的概念。光子晶体光纤是一种由单一介质(石英玻璃、塑料等)构成,并且在二维的方向上呈现周期性紧密排列(如周期性六角形等)、而在三维空间(光纤轴向)基本保持不变的波长量级空气孔所构成的微结构包层的新型光纤[2]。光子晶体光纤(PCF)根据光纤的结构不同,又称为多孔光纤(HF)或微结构光纤(MOF)。根据导光的机制的不同,可以将光子晶体光纤分为折射率引导型光子晶体光纤和光子带隙型光子晶体光纤,本文将主要介绍后者。尽管光子晶体光纤具有传统光纤无可比拟的新特性,但受限于理论模型的精确度,尤其是生产工艺与单位价格。本综述中所引用的所有文献截止时间为2017年9月。 2 原理与特点分析 2.1 PCF的结构 按光纤结构的不同,光子晶体光纤可分为空心光纤和实心光纤。其中空心光纤是将石英玻璃毛细管以周期性规律排列在石英玻璃管周围的光纤;而实心光纤则是将石英玻璃毛细管以周期性规律排列在石英玻璃棒周围的光纤。PCF 也是使用传统光纤的熔融拉丝方法拉制而成。光子晶体光纤的剖面是按照周期性点阵排列的。这种与波长大小相当的周期性点阵就是PCF的“晶格”。 2.2 PCF的导光机理[3] 普通光纤是利用掺杂方式来获得光波导结构, 从而实现光纤的光传输性能的要求。而光子晶体光纤的导光机理可分为两类:折射率导光机理和光子能隙导光机制。 折射率导光机理是指,周期性缺陷的纤芯折射率(石英玻璃)和周期性包层折射率之间有一定的差别, 从而使光能够在纤芯中传播, 所以这种结构的

光子晶体的制备与应用研究_李会玲

光子晶体的制备与应用研究* 李会玲① 王京霞② 宋延林③ ①助理研究员,②副研究员,③研究员,中国科学院化学研究所,北京100190 *国家自然科学基金(50625312,U0634004,20421101) 关键词 光子晶体 胶体晶体 自组装 光学器件 光子晶体以其特殊的周期结构和可以对光子传播进行调控的特性被称为“光半导体”,被认为是未来光子工业的材料基础。光子晶体的制备和光学特性研究受到高度关注,并在各类光学器件、光导纤维通讯和光子计算等领域呈现广阔的应用前景。本文综述了光子晶体制备和应用研究方面近年来的主要进展。 1光子晶体简介 1987年,美国贝尔通讯研究所的Yablonovitch[1]在研究抑制自发辐射时提出“光子晶体”的概念。几乎同时,美国普林斯顿大学的John[2]在讨论光子局域时也独立地提出了这个概念。这一新的概念是与电子晶体相比较而提出的。在光子晶体中,不同介电常数的介电材料构成周期结构,介电常数在空间上的周期性将会对光子产生类似半导体的影响。由于布拉格散射,电磁波在其中传播时将会受到调制而形成能带结构,出现“光子带隙”(photonic band gap,PBG)。在光子带隙的频率范围的电磁波不能在结构中传播。这种具有光子带隙的周期性介电结构就是光子晶体(photonic crystals),或叫做光子带隙材料(photonic band gap mat erials),也有人称之为电磁晶体(electromagnetic cryst als)。随着研究的深入,人们发现了一系列光子晶体的光学性能如慢光效应[3]、超校准效应[4]、负折射现象[5]等等,这些独特的现象大大激发了科研工作者的研究热情。 2光子晶体制备 自然界中存在的光子晶体结构较少。目前,文献报道[6]自然界中存在的光子晶体结构主要有蛋白石、蝴蝶翅膀、孔雀羽毛和海鼠毛等。绝大多数光子晶体的周期性电介质结构还需要通过人为加工制备。光子晶体是在一维、二维或三维周期上高度有序排列的材料,一般所谓的光学多层膜即是一维结构的光子晶体,已被广泛地应用在光学镜片上。二维或三维的高度有序结构在光子晶体研究领域中受到广泛重视。本文主要针对二维和三维光子晶体的制备和应用进行综述。目前,光子晶体的制备方法主要包括微加工(钻孔和堆积方法)、激光全息和自组装方法等。 2.1微加工方法 微加工方法是最早报道的人工制备光子晶体的方法,具体是通过在基体材料上机械钻孔[7]、刻蚀[8,9]等方法,利用空气与基体材料的折射率差获得光子晶体。微加工方法通常采用半导体离子刻蚀技术如电子束刻蚀、激光刻蚀和化学刻蚀等制备光子晶体。这种方法由于工艺复杂,目前主要在有成熟工艺的硅(Si)和砷化镓(GaAs)基底上加工,成本昂贵,而且所制得结构层数少,质脆、性能易受环境影响,极大限制其应用。 2.2全息光刻 全息光刻技术是利用激光束干涉产生三维全息图案照射在感光树脂上,感光树脂因此产生聚合,随后通过显影除去未聚合感光树脂,留下由聚合物和空气构成的三维周期结构。Berger[10]最先证明全息光刻制备光子晶体非常简单快捷。2000年,Campbell等人[11]采用4束紫外激光进行全息干涉,在30μm厚的感光树脂上产生全息图案,这是激光全息技术在光子晶体研究中的一大进步。对于全息结构还有一些需要解决的问题,如通过全息技术得到的三维光子晶体的光学特性还不够理想,可以用于这些结构制备的光学反应还不多。这些问题在干涉光束数量增加以形成复杂结构(如金刚石结构或手性格子结构)时变得更为重要。最近有报道用高折光指数材料复型制备反相结构可以提高光学特性[12], · 153 ·  自然杂志 31卷3期科技进展

特种光纤技术及其发展趋势

特种光纤技术及其发展趋势 摘要:本文首先回顾了我国民族光纤产业的巨大进步与突破,进而引出激烈竞争情况下的特种光纤年差异化发展策略。着重讲述了我国特种光纤研究进展,包括前沿的光子晶体光纤技术、色散补偿光纤技术、保偏光纤、掺稀土光纤、能量传输光纤等。最后结合国家科技发展计划,阐述了特种光纤的发展趋势。 关键词:光纤通信、光纤、预制棒、光子晶体光纤、特种光纤 一、引言 “十一五”期间,在国家有关部门和各级政府的重点支持下,特别是国家科技部在“十一五”国家科技攻关和“863”光电子新材料研究计划中,安排了光纤预制棒科技支撑计划项目,国内光纤企业积极迎接挑战、踊跃投入,各相关行业协会大力促进,加快了具有自主知识产权的光纤预制棒新技术、新工艺和新材料的开发步伐。在国家自主创新政策的引领下,民族光纤的自主创新研究显著增强,我国的预制棒技术取得了突破性进展,光纤预制棒制造技术与设备研究及产业化等方面均实现了跨越式发展:制造工艺从MCVD与PCVD,发展到OVD与VAD技术,光棒制造能力从2家发展到4家,国内光纤制造商的单模光纤年生产能力突破1000万芯公里的企业迅猛增加到4家,我国已经发展称为名符其实的光纤制造第一大国。 虽然,我国常规单模产能实现了历史性跨越与进步。但是,在经济全球化的今天,常规单模光纤的竞争日趋白热化。加之发达国家将制造业向中国转移,这种现实的环境更是加速了民族光纤产业的竞争,价格迅速下滑,产能将再度出现供大于求的窘境。 因此,民族光纤产业一方面要更一步增强自主创新,狠抓光纤上游核心—-光纤预制棒规模化技术,抢夺利润来源主体;另一方面,民族光纤企业家需要站在全球化市场的战略高度,苦练内功,强化管理,将民族光纤产业走出国门,推向全球市场;第三,面对利润微薄的常规光纤市场实际,要创造性地展开差异化竞争,自主创新地研究与开发特种光纤新产品,拓展新的利润增长点。 二、光子晶体光纤 烽火通信科技股份有限公司在十一五国家重点基础研究发展计划973项目“微结构光纤结构设计及制备工艺的创新与基础研究”(2003CB314905)、高新技术产业化项目“863”计划“光子晶体光纤及器件的研制与开发”(2007AA03Z447)、973计划项目“微结构光纤的创新设计、精确制备及其标准化”(2010CB327606)的支撑下,从微结构光纤设计、制备技术和应用技术等多方面进行了系统深入的研究,取得了重大的科研成果。烽火通信已经初步形成了微结构光纤(光子晶体光纤)的工艺技术与设备控制技术,以及自主知识产权的专利技术,先后制造出如图1~图6所示的光子晶体光纤,包括:高非线性光子晶体光纤、色散平坦光子晶体光纤、FTTH用微结构光纤、大模场单模光子晶体光纤、空心PBG型光子晶体光纤、全固态PBG型光子晶体光纤,以及双包层掺镱光子晶体光纤、掺铒光子晶体光纤等。

光子晶体光纤基本特性及其应用研究[S](精)

光子晶体光纤基本特性及其应用研究[S] 英文题名 The Basic Characteristic and the Applications Study of Photonic Crystal Fibers 专业凝聚态物理关键词光子晶体光纤; 多极法; 色散; 有效模场面积; 非线性特性; 双折射; 英文关键词 Photonic crystal fibers; Multipole method; Chromatic dispersion; Effective model field area; Nonlinearity; Double refraction; 中文摘要光子晶体光纤是一种新型的光纤,由于它具有普通光纤所无法比拟的结构设计和光学特性,在近几年成为光纤研究领域的热点。本文介绍了光子晶体光纤的研究背景及发展现状,分析了它的结构特性,并列举了一些不同结构的光子晶体光纤,简单介绍了它的两种导光原理和制备方法,以及在各个方面的应用。设计了两种结构的光子晶体光纤,并对它们的基本特性进行了数值研究。论文所做的主要工作如下: 首先,对几种数值模拟光子晶体光纤特性的理论方法进行了介绍和对比,系统介绍了多极法的原理、方程以及适用条件,突出了多极法的特点和优势并选择多极法作为本文的主要研究方法。其次,采用多极法对实芯六角形光子晶体光纤的色散、有效模场面积与结构参数的关系进行了研究。得到如下结论:通过调节空气孔直径和包层空气孔间距的大小,改变空气孔填充介质的折射率,可以有效地控制光子晶体光纤的色散特性和有效模场面积。再次,设计了一种具有双折射的光子晶体光纤。数值研究发现:通过调节空气孔直径、包层空气孔间距的大小以及x和y方向的结构的不对称性,可以有效地调节光子晶体光纤的双折射特性,使双折射效应显著增强,甚至可以达到比普通光纤高出一个数量级的结果。这些结论为... 英文摘要 Photonic Crystal Fiber(PCF)is a new type of optical fiber. Because of its special structure design and optical properties, PCF has been a focus in optical fiber area in recent years. This paper introduces the research background and current development of PCF, analyzes its two kinds of transmission principle and manufacture ,as well as its application in various aspects.In this paper, it has designed two kinds of structures of PCF,and calculated some basic characteristic of PCF as well.The original jobs in ... 摘要 4-5 Abstract 5-6 第1章绪论 11- 25 1.1 引言 11 1.2 光子晶体简介 11-13 1.3 光子晶体光纤的导光原理 13-16 1.3.1 带隙型光子晶体光纤 13- 15 1.3.2 折射率引导型光子晶体光纤 15-16 1.4 光子晶体光纤基本特性 16-20 1.4.1 无截止单模性质 16- 18 1.4.2 色散特性 18 1.4.3 非线性特性 18-19 1.4.4 双折射特性 19-20 1.5 光子晶体光纤的发展现状及应用前景分析 20-23 1.5.1 光子晶体光纤研究现状 20-22 1.5.2 光子晶体光纤的应用前景分析 22- 23 1.6 本课题的研究目标及实现方法 23-25 第2章光子晶体光纤的研究方法 25-37 2.1 引言 25 2.2 几种光子晶体光纤的研究方法简介 25-28 2.2.1 有效折射率方法 25- 26 2.2.2 平面波法 26 2.2.3 Galerkin 方法 26 2.2.4 有限差分法 26-27 2.2.5 超元胞晶格方法 27-28 2.2.6 光束传播法 28 2.3 多极法

光子晶体光纤简介及原理

光子晶体光纤简介及原理 中文摘要: 光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。光子晶体光纤有很多奇特的性质。例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应,这为我们设计高性能的偏振器件提供了可能。 中文关键字:光子晶体光纤 PCF导光机理 PCF的特性 英文摘要: In 1991, the emerging field of photonic crystals led to the development of photonic-crystal fiber which guides light by means of diffraction from a periodic structure, rather than total internal reflection. The first photonic crystal fibers became commercially available in 2000.[8] Photonic crystal fibers can be designed to carry higher power than conventional fiber, and their wavelength dependent properties can be manipulated to improve their performance in certain applications. 英文关键字: photonic-crystal fiber 光子晶体(PC)是一种介电常数随空间周期性变化的新型光学微结构材料,其 概念是1987年分别由S. Jo n和E. Yablonovitch提出来的,就是将不同介电常数的介质材料在一维、二维或者三维空间组成具有光波长量级的折射率周期性变化的 结构材料。 光子晶体的发现,可以说是光和电磁波传播与控制技术方面的一次革命。与电 子晶体不同,光子晶体是折射率周期性变化产生光子能带和能隙,频率(波长、能量)处在禁带范围内的光子禁止在光子晶体中传播。当在光子晶体中引入缺陷使其 周期性结构遭到破坏时,光子能隙就形成了具有一定频率宽度的缺陷区。我们知道,现代信息技术爆炸之发端是人类能以极为精巧复杂的方法控制半导体中电子流的能力,光子晶体则可以让人们同样地控制光子,甚至控制得更为灵活多样。可以预见,

相关文档
最新文档