氢能燃料电池进展报告(法国)France_ Country Update_19SC

氢能与质子交换膜燃料电池

氢能与质子交换膜燃料电池 1序言 为解决能源短缺、环境污染等问题,开发清洁、高效的新能源和可再生能源已十分紧迫。氢能因燃烧热值高、污染小、资源丰富成为新能源的对象,氢燃料电池作为氢能利用的有效手段,已被美国《时代》周刊评为21世纪有重要影响的十大技术之一。 2氢燃料电池工作原理 燃料电池本质是水电解的“逆”装置,主要由3部分组成,即阳极、阴极、电解质,如图13。其阳极为氢电极,阴极为氧电极。通常,阳极和阴极上都含有一定量的催化剂,用来加速电极上发生的电化学反应。两极之间是电解质。 以质子交换膜燃料电池(pemfc)为例,其工作原理如下: (1)氢气通过管道或导气板到达阳极; (2)在阳极催化剂的作用下,1个氢分子解离为2个氢质子,并释放出2个电子,阳极反应为: h2→2h++2e。 (3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,在阴极催化剂的作用下,氧分子和氢离子与通过外电路到达阴极的电子发生反应生成水,阴极反应为:1/2o2+2h++2e→h2o 总的化学反应为:h2+1/2o2=h2o 电子在外电路形成直流电。因此,只要源源持续地向燃料电池阳极和阴极供给氢气和氧气,就可以向外电路的负载连续地输出电能。 3pemfc的特点及研发应用现状

燃料电池种类较多,pemfc以其工作温度低、启动快、能量密度高、 寿命长等优点特别适宜作为便携式电源、机动车电源和中、小型发电 系统。 pemfc发电机由本体及其附属系统构成。本体结构除上述核心单元外,还包括单体电池层叠时为防止汽、水泄漏而设置的密封件,以及压紧 各单体电池所需的紧固件等。附属系统包括:燃料及氧化剂贮存及其 循环单元,电池湿度、温度调节单元,功率变换单元及系统控制单元。图2是一个典型的pemfc发电系统示意图4。 (1)pemfc作为移动式电源的应用 pemfc作为移动式电源的应用领域分为两大类:一是可用作便携式电源、小型移动电源、车载电源等。适用于军事、通讯、计算机等领域,以满足应急供电和高可靠性、高稳定性供电的需要。实际应用是手机 电池、笔记本电脑等便携电子设备、军用背负式通讯电源、卫星通讯 车载电源等。二是用作自行车、摩托车、汽车等交通工具的动力电源,以满足环保对车辆排放的要求。从目前发展情况看,pemfc是技术最成熟的电动车动力电源。国际上,pemfc研究开发领域的权威机构是加拿大ballard能源系统公司。美国h-power公司于1996年研制出世界上 第一辆以pemfc发电机为动力源的大巴士5。近年来,我国对燃料电池电动车的研发也极为重视,被列入国家重点科技攻关计划。上海神力 公司、富原燃料电池有限公司、清华大学、中科院大连化物所已分别 研制出游览观光车、中巴车样车,其性能接近或达到国际先进水平。 (2)pemfc作为固定式电源的应用 pemfc除适用于作为交通电源外,也非常适合用于固定式电源。既可 与电网系统互联,用于调峰;也可作为独立电源,用作海岛、山区、 边远地区、或作为国防(人防)发供电系统电源。 采用多台pemfc发电机联网还可构成分散式供电系统。分散式供电系 统有很多优点:①可省去电网线路及配电调度控制系统;②有利于热 电联供(因为pemfc电站无噪声,可就近安装,pemfc发电所产生的热

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

燃料电池汽车

FCEV的发展前景与展望 班级:汽电112 姓名:周浩宇 学号:111606213 指导老师:王强 日期:2013年5月21日

FCEV的发展前景与展望 一、燃料电池概述 FCEV是燃料电池汽车的缩写,它是电动汽车的一种,它与一般电动汽车的区别,在于燃料电池汽车装备了车载燃料发动机(发电机)。用燃料电池发动机与动力电池组和超级电容器共同组成的“电-电”电力驱动平台取代内燃机驱动平台。过程不会产生有害产物,因此燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2~3倍,因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。只要保证燃料电池发动机氢燃料的供应,燃料电池汽车就可以像内燃机汽车一样自由驰骋,不受充电时间和动力电池的SOC的限制,具有高度的环保性、灵活性和机动性。 燃料电池汽车的氢燃料能通过几种途径得到。有些车辆直接携带纯氢燃料,另外一些车辆有可能装有燃料重整器,能将烃类燃料转化为富氢气体。 燃料电池汽车的工作原理是,使作为燃料的氢在汽车搭载的燃料电池中,与大气中的氧发生化学反应,从而产生出电能启动电动机,进而驱动汽车。甲醇、天然气和汽油也可以替代氢(从这些物质里间接地提取氢),不过将会产生极少的二氧化碳和氮氧化物。但总的来说,这类化学反应除了电能就只产生水。因此燃料电池车被称为“地道的环保车”。 单个的燃料电池必须结合成燃料电池组,以便获得必需的动力,满足车辆使用的要求。 二、我国燃料电池汽车简介 20世纪90年代清华大学与北京世纪富源燃料电池公司,成功的研发了我国第一辆5KW 的燃料电池汽车,北京二汽绿色电动汽车研究所用飞驰绿能电源技术有限公司研发的燃料电池“京绿一号”燃料电池汽车,北京理工大学与北京中华汽车制造厂研发的燃料电池“绿能一号”燃料电池汽车,开创了我国燃料电池工业的先河,以后我国燃料电池汽车的研究展现出蓬勃的生机。 在国家“十五”“863”计划电动汽车关键技术重大科技专项和“十一五”节能与新能源汽车重大项目支持下,我国燃料电池汽车技术研发取得重要进展,基本掌握了整车、动力系统与关键零部件的核心技术;建立了具有自主知识产权的燃料电池汽车动力系统技术平台;形成了燃料电池发动机、动力电池、DC/DC变换器、驱动电机、储氢与供氢系统等关键零部件配套研发体系,具有百量级燃料电池汽车动力系统平台与整车生产能力。研制的“超越”系列、“上海牌”、“帕萨特”、“奔腾”、“志翔”等燃料电池汽车经受住了大规模、高温、大强度示范考核,成功服务于2008北京奥运会和2010年上海世博会。在燃料电池关键基础技术研究方面,开发出高活性、抗聚集的电催化剂,以及高比表面积、抗氧化的担体,开发出了与国际商品化水平相当的增强型符合自增湿质子交换膜,研制出高导电性/高稳定性碳纸,初步解决了双极板的抗腐蚀和导电性问题,掌握了丝网印刷膜电极技术。在燃料电池汽车整车及动力系统平台前沿技术方面,建立了燃料电池汽车动力系统平台设计理论和方法,探索了基于模块化思想的整车柔性适配技术,研发了燃料电池汽车功率控制单元及其它关键零部件,开展了燃料电池汽车整车可靠性、电安全、氢安全、一体化热管理、智能容错控制、碰撞安全性等关键技术研究。在公共平台建设方面,形成了燃料电池汽车开发软、硬件测试环境,建立了国家级燃料电池、系统平台和车辆工程技术中心或测试基地,制定了8条燃料电池汽车及氢能专用国家标准。但是,受限于传统车辆开发技术水平、燃料电池发动机功率密度、动力系统可靠性、整车环境适应性等性能限制以及商业推广模式研究和基础设施建设滞后等因素,我国燃料电池汽车仍然处于技术验证与特定考核试验考核阶段。

【完整版】2020-2025年中国氢燃料电池行业经营发展战略及规划制定与实施研究报告

(二零一二年十二月) 2020-2025年中国氢燃料电池行业经营发展战略制定与实施研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业经营发展战略概述 (9) 第一节企业经营发展战略的重要性及意义 (9) 一、是决定企业经营活动成败的关键性因素 (9) 二、是实现企业快速、健康、持续发展的需要 (9) 三、是企业实现自己的理性目标的前提条件 (10) 四、是企业长久地高效发展的重要基础 (10) 五、是企业充满活力的有效保证 (10) 六、是企业及其所有企业员工的行动纲领 (11) 七、是企业扩展市场、高效持续发展的有效途径 (11) 八、是执行层行动的指南 (11) 第二节制定实施企业经营发展战略的作用 (11) 一、有助于企业准确判断外在危机和机遇 (12) 二、有助于明确企业核心竞争力 (12) 三、有利于提升企业的持久竞争力 (12) 四、有助于企业找准市场定位 (12) 五、有助于企业内部控制、管理与执行 (13) 六、有助于优化资源,有利于实现资源价值最大化 (13) 七、有助于增强企业的凝聚力和向心力 (13) 八、有助于优化整合企业人力资源,提高企业效率 (13) 九、有助于建立品牌形象,明确目标市场 (14) 十、有助于激励员工积极主动地完成目标 (14) 第三节企业经营发展战略的特性 (14) 一、全局性 (14) 二、纲领性 (14) 三、长远性 (15) 四、导向性 (15) 五、保证性 (15) 六、超前性 (15) 七、竞争性 (15) 八、稳定性 (16) 九、风险性 (16) 第二章市场调研:2018-2019年中国氢燃料电池行业市场深度调研 (17) 第一节氢燃料电池概述 (17) 第二节我国氢燃料电池行业监管体制与发展特征 (18) 一、主管部门及管理体制 (18) 二、行业经营模式及盈利模式 (18) 三、燃料电池是一种非常有前景的能源技术 (18) 四、国内外政府出台政策支持 (19) (一)国外政府纷纷出台支持政策 (19) (二)中国政府重视燃料电池发展,大力支持发展 (22) 第三节2018-2019年中国氢燃料电池行业发展情况分析 (24)

氢燃料电池项目立项申请报告 (8)

氢燃料电池项目立项申请报告 一、项目承办单位基本情况 (一)公司名称 xxx有限公司 (二)项目规划机构 泓域咨询机构 (三)公司简介 公司是全球领先的产品提供商。我们在续为客户创造价值,坚持围绕 客户需求持续创新,加大基础研究投入,厚积薄发,合作共赢。公司自成 立以来,坚持“品牌化、规模化、专业化”的发展道路。以人为本,强调 服务,一直秉承“追求客户最大满意度”的原则。多年来公司坚持不懈推 进战略转型和管理变革,实现了企业持续、健康、快速发展。未来我司将 继续以“客户第一,质量第一,信誉第一”为原则,在产品质量上精益求精,追求完美,对客户以诚相待,互动双赢。我们将不断超越自我,继续 为广大客户提供功能齐全,质优价廉的产品和服务,打造一个让客户满意,对员工关爱,对社会负责的创新型企业形象! 公司不断加强新产品的研制开发力度,通过开发新品种、优化产品结 构来增强市场竞争力,产品畅销全国各地,深受广大客户的好评;通过多 年经验积累,建立了稳定的原料供给和产品销售网络;公司不断强化和提

高企业管理水平,健全质量管理和质量保证体系,严格按照ISO9000标准 组织生产,并坚持以质量求效益的发展之路,不断强化和提高企业管理水平,实现企业发展速度与产品结构、质量、效益相统一,坚持在结构调整 中发展总量的原则,走可持续发展的新型工业化道路。公司根据自身发展 的需要,拟在项目建设地建设项目,同时,为公司后期产品的研制开发预 留发展余地,项目建成投产后,不仅大幅度提升项目承办单位项目产品产 业化水平,为新产品研发打下良好基础,有力促进公司经济效益和社会效 益的提高,将带动区域内相关行业发展,形成配套的产业集群,为当地经 济发展做出应有的贡献。公司坚持以市场需求为导向、以科技创新为中心,在品牌建设方面不断努力。先后获得国家级高新技术企业等资质荣。 公司生产运营过程中,始终坚持以效益为中心,突出业绩导向,全面 推行内部市场化运作模式,不断健全完善全面预算管理体系及考评机制, 把全面预算管理贯穿于生产经营活动的各个环节。通过强化预算执行过程 管控和绩效考核,对生产经营过程实施全方位精细化管理,有效控制了产 品生产成本;着力推进生产控制自动化与经营管理信息化的深度融合,提 高了生产和管理效率,优化了员工配置,降低了人力资源成本;坚持问题 导向,不断优化工艺技术指标,强化技术攻关,积极推广应用新技术、新 工艺、新材料、新装备,原料转化率稳步提高,降低了原料成本及能源消耗,产品成本优势明显。公司近年来的快速发展主要得益于企业对于产品 和服务的前瞻性研发布局。公司所属行业对产品和服务的定制化要求较高,

(完整word版)实验报告5燃料电池电堆测试

《燃料电池电堆测试与分析》实验报告 一.实验目的: 1.掌握PEMFC电堆测试台的基本结构和操作方法; 2.通过实测,掌握电堆极化曲线的测试方法,学会绘制极化曲线、功率曲线等图谱; 3.能将燃料电池电堆的实测性能应用于燃料电池系统的构建上;锻炼运用理论分析、解决实际问题的能力和方法。 二.实验原理: 将所需测量的PEMFC电堆与NBT燃料电池测试系统连接,通过控制平台调节燃料电池的氢气和空气流量,设置负载的电流值(也就是燃料电池电堆的电流值),观察记录电压值和功率值得变化,利用所记录的数据画出燃料电池的i-V和i-P曲线。 三.实验仪器设备和器材 四.测试平台开机顺序测试 1.打开气源,检查氢气、空气(外部供应时)的压力是否正常、去离子水的液位是否正常;室内氢气泄露报警系统是否正常;氢气、空气与水的排放口是否连接妥当,氢气管路的出口必须接于室外。注意测试时的人员与设备的安全。 2.给测试平台上电,380V AC。 3.开启电脑,与设备联机。 4.手动设置适当的氢、空、冷却水温度(注意不应超过80℃)、各流体最低流量、电堆片数、活性面积等参数。 5.设定数据保存路径和文件名,开始记录数据。

6.测试极化曲线。根据电堆所需要氢空流量,手动设置电流,测试极化曲线。 7.实验结束。 五.提前制作电堆运行所需氢气和空气的流量表,如下表所示。 已知条件:电堆片数:19片,单电池活性面积250cm2; 阴/阳极化学计量比:3.5/1.5; 常压 六.绘制电堆的极化曲线和功率密度曲线,需要标明必要的测试条件。

七.绘制上述极化曲线上最大功率时的单片电池电压柱状图,并计算电压的 标准偏差。 学生(签名): 实验日期:2015.5.25

氢能的利用

氢能的利用及其环境效应 题目氢能的利用及其环境效应 专业过程装备与控制工程 姓名曹维褀 学号 3013207186 2014年1月 摘要:伴随21世纪的到来,世界各国都面临着亟待解决的能源问题。氢能是高效清洁环保型新能源,在二十一世纪有望成为世界能源舞台上举足轻重的二次能源。文章总结了氢能的特点,氢的开发与利用,结合氢能的环境效应提出了关于氢能源未来发展趋势的一些见解。 关键词:氢能的开发环境效应氢能的利用

1. 氢能的特点 (1)氢是自然界存在最普遍的元素,据估计它构成了宇宙质量的75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质(2)所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,因此在能源工业中氢是极好的传热载体 (3)氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,3%-97%范围内均可燃。而且燃点高,燃烧速度快 (4)除核燃料外,氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,达142.35lkJ/kg,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍 (5)所有元素中,氢重量最轻。在标准状态下,它的密度为0.0899g/L;氢可以以气态、液态或固态的金属氢化物出现,能适应贮运及各种应用环境的不同要求(6)氢本身无毒,与其他燃料相比氢燃烧时最清洁,除生成水和少量氮化氢外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氮化氢经过适当处理也不会污染环境,而且燃烧生成的水还可继续制氢,反复循环使用 2. 氢能开发与利用 由以上特点可以看出氢是一种理想的新型能源。目前,虽然液氢已广泛用作航天动力的燃料,但氢能大规模的商业应用还面临着许多问题,氢能否被广泛使用,制氢工艺是基础。因为水分子中氢和氧的结合非常牢固,要把它们分开,需花费很大的力气。为了避开这个难点,目前实际上主要还是利用天然气、煤炭和石油产品作原料来制取氢气。 (1)矿物燃料制氢是利用化学方法将矿物中的氢元素提取出来的方法。 ①煤的焦化。 ②水煤气转化。

燃料电池汽车

燃料电池汽车 摘要:随着人类社会的发展,特别是英国完成工业革命后,人类对能源的需求也在不断地增加,然而不可再生能源在渐渐的减少,但是同时新能源的也随之诞生了,利于替代旧的能源的消耗,部分新能源必须具有环保性去大力发展,才能更好的为社会做奉献。其中氢能作为一种新的能源被人类所发现且已经被运用在汽车上,并在不断的推广。 关键词:燃料电池汽车;发展现状;关键技术;优点;存在问题 一、燃料电池汽车的概念 燃料电池汽车是指以氢气、甲醇等为燃料,通过化学反应产生电流,依靠电机驱动的汽车。其电池的能量是通过氢气和氧气的化学作用,而不是经过燃烧,直接变成电能的。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆其最大特点是能量转换效率高,可达到60 %以上;另外,它还具有燃料多样性、排气清洁、噪声低、对环境污染小、可靠性及维修性好等优点。因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。 二、燃料电池汽车的发展现状 (1)国外燃料电池汽车的发展现状 长期以来,世界各国政府和主要汽车集团都高度重视燃料电池汽车的研究,投入大量的资金用于燃料电池汽车及氢能研发、试验考核和市场培训。继在第六框架计划中拿出大量资金用于燃料电池汽车和氢能研究,2009年,欧盟批准燃料电池和氢能技术项目行动计划,计划从欧盟第七框架计划中拿出4.7亿欧元,持续资助燃料电池汽车及基础设施技术研发。此外,日本、美国、加拿大、韩国、澳大利亚、巴西、法国和英国等国家政府积极支持燃料电池汽车和氢能研发。 经过长时间、持续稳步的支持,国外燃料电池汽车产品的可靠性、环境适应性(如低温启动性能)取得了重大突破,示范运行不断深入,并陆续推出用于租赁商业化示范的先进燃料电池汽车,燃料电池汽车进入技术与市场示范阶段。产品成本控制与配套基础设施建设成为制约燃料电池汽车商业化推广主要因素。 (2)国内燃料电池汽车的发展现状 在国家“十五”“863”计划电动汽车关键技术重大科技专项和“十一五”节能与新能源汽车重大项目支持下,我国燃料电池汽车技术研发取得重要进展,基本掌握了整车、动力

青海成立年产xx套氢燃料电池公司可行性报告

青海成立年产xx套氢燃料电池公司 可行性报告 规划设计/投资方案/产业运营

报告摘要说明 氢燃料电池是一种非燃烧过程的能量转换装置,通过电化学反应将阳极的氢气和阴极的氧气(空气)的化学能转化为电能。燃料电池结构单元主要由膜电极组件和双极板构成,其中膜电极组件是由质子交换膜、催化剂与气体扩散层组合而成的,为反应发生场所;双极板是带流道的金属或石墨薄板,其主要作用是通过流场给膜电极组件输送反应气体,同时收集和传导电流并排出反应产生的水和热。 xxx科技公司由xxx集团(以下简称“A公司”)与xxx科技发展公司(以下简称“B公司”)共同出资成立,其中:A公司出资170.0万元,占公司股份75%;B公司出资60.0万元,占公司股份25%。 xxx科技公司以氢燃料电池产业为核心,依托A公司的渠道资源和B公司的行业经验,xxx科技公司将快速形成行业竞争力,通过3-5年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx科技公司计划总投资2505.98万元,其中:固定资产投资1823.70万元,占总投资的72.77%;流动资金682.28万元,占总投资的27.23%。 根据规划,xxx科技公司正常经营年份可实现营业收入6395.00万元,总成本费用4930.85万元,税金及附加53.64万元,利润总额1464.15万元,利税总额1719.74万元,税后净利润1098.11万元,纳

税总额621.63万元,投资利润率58.43%,投资利税率68.63%,投资 回报率43.82%,全部投资回收期3.78年,提供就业职位101个。 2018年2月的《关于调整完善新能源汽车推广应用财政补贴政策的通知》指出,我国燃料电池汽车补贴力度保持不变,燃料电池乘用车按燃料 电池系统的额定功率进行补贴,燃料电池客车和专用车采用定额补贴方式。除此之外,在2018年我国各省市政府部门也相继出台了一系列燃料电池补 贴和扶持政策,可以看出我国各级部门开始重视氢燃料电池车的基础设施 建设。但就从现阶段我国电动车消费者的反应来看,我国电动汽车行业仍 存在着4个痛点,而国内各级政府部门关于燃料电池的一系列补贴及扶持 就是为了解决这几个痛点。根据氢能与燃料电池白皮书内容,未来我国燃 料电池技术将朝4个方向发展。

燃料电池测试

燃料电池测试设备数量较少,操作并不复杂,但是与普通电池测试区别还是很明显。测试要求也更多。 燃料电池本身的特点: 燃料电池是核心部件为质子交换膜的发电设备,把化学能转化为电能。 单节电芯电压很低,电流很大。电池包节数较多,密封性和一致性要求较高。 电芯内阻较大,功率损耗较大,电压电流范围较广, 电池输出准备及变化时间较长,变化速度慢,不耐负载突变。不能急开急停。 BMS控制板特点: 电池串联数量多,一般在100串以上,需要对BMS的单节监控性能进行验证。电池发热量大,需要对电池进行温度监控与控制,转换效率需要更精准。 对输出端的电压电流采集的调整输入氢气和空气量。 输入输出变化斜率控制。 因为一般是程控进行,所以最好负载也需要程控。 电压电流等参数需要进行校验和校准。 实际使用: 因为燃料电池开始,变化,结束均有一定的滞后性,一般会后接一个动力电池作为缓冲器件然后才用于动力输出。如果燃料电池直接用于冲击性消耗,会对交换膜损害很大,寿命急剧降低。 测试需要设备:除了燃料电池本身的BMS,输入氢气的流量压强传感器,空气的输入及散热,单节一致性监控之外。最重要的就是负载设备。 燃料电池测试,为什么只能使用电子负载? 作为负载,除了电子负之外,电阻和反馈式负载在新能源行业也偶有使用,为什么不能用于燃料电池测试呢? 单节燃料电池测试要求苛刻,要求很低电压达到很大的电流,电流越大,电压越低。比如要求0.6V带载到600A甚至更高。需要负载从1mΩ到1KΩ范围内都要保证足够的精确度。 电池包不允许冲击性消耗,要求全输出范围斜率可调,要求斜率,要求精确度,要求程控,要求带载状态不能阶跃等等。 反馈式负载:反馈式负载就是一台DC-AC转换的开关电源。其消耗方式是高速开关脉冲式。10%量程范围带载能力差,电流杂波大,精确度稍差。变化斜率慢,斜率控制差,完

燃料电池专利报告

燃料电池专利报告 1 总体发展趋势 1.1 申请量年度趋势分析 专利数量是技术产出的直接反映。通过揭示历年专利申请情况,可以了解该行业的技术发展情况和所处阶段,并预测未来发展趋势,可协助企业评估此时或未来是否应积极投入研发。 上图显示了目标技术领域内总体申请量变化趋势。专利数量较少的时期为该技术的起步阶段;专利数量大幅度提升的为成长阶段;专利数量继续增加的为成熟阶段;专利数量维持不变的为停滞期;申请量开始降低的阶段为下降期。 1.2 公开量年度趋势分析 通过揭示历年专利公开情况,了解该行业的技术发展情况并预测未来发展趋势。

上图显示了目标技术领域内总体公开量变化趋势。 1.3 产出规模指数预警 通过揭示目标技术领域内最近6年专利数量相对增长变化情况,了解不同时期技术研发的重点和方向,给企业预测该技术领域未来发展趋势提供依据。 时间专利数量比上月增长与近6年年均增 幅比较与整体年均增幅比较 2012 179 -76.01% 下降上升 2011 746 4.34% 下降上升 2010 715 10.34% 下降上升 2009 648 -4.42% 下降上升 2008 678 3.04% 下降上升 2007 658 35.67% 下降上升上表显示了发明公开专利近6年专利的产出数量情况。一些年份的专利产出增幅高于/低于近6年年均增幅,且高于/低于整体年均增幅。 1.4 产出质量指数预警 由于发明专利的创造性水平要高于实用新型专利和外观专利,因此一般来说发明专利的申请数量是专利质量的最好体现。通过揭示目标技术领域内最近6年专利类型比重和有效专利比重的相对增长变化情况,可以更好地了解不同时期内技术研发的重点和方向,预测该技术领域未来的发展趋势。

燃料电池电动汽车 最高车速试验方法(标准状态:现行)

I C S71.080.01 T47 中华人民共和国国家标准 G B/T26991 2011 燃料电池电动汽车最高车速试验方法 F u e l c e l l e l e c t r i c v e h i c l e s M a x i m u ms p e e d t e s tm e t h o d (I S O/T R11954:2008,F u e l c e l l r o a dv e h i c l e s M a x i m u ms p e e dm e a s u r e m e n t,MO D) 2011-09-29发布2012-03-01实施中华人民共和国国家质量监督检验检疫总局

前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准修改采用I S O/T R11954:2008‘燃料电池电动汽车最高车速试验方法“,本标准根据I S O/T R11954:2008重新起草三在附录A中列出了本标准章条编号与I S O/T R11954:2008章条编号的对照一览表三 本标准与I S O/T R11954:2008的主要技术性差异及原因如下: 根据国内燃料电池汽车产品的种类,调整了标准的适用范围三本标准适用于所有使用压缩氢气的燃料电池混合动力电动汽车,并增加相应的要求;删除了适用范围中的纯燃料电池电动汽 车及相应内容(见第1章,I S O/T R11954:2008的第1章)三 考虑国内现有燃油汽车相关道路方法标准对试验质量的规定,修改了车辆试验质量(见3.4, I S O/T R11954:2008的2.5)三 环形跑道测量区长度由至少2000m修改为至少1000m(见5.3.2.1,I S O/T R11954:2008 的4.3.3.1)三 风速测量高度由距离地面1m处,修改为1.2m处(见5.4.2,I S O/T R11954:2008的4.4.2)三 环形跑道测量数据重复性限制条件由每次的行驶速度相差不超过3%,修改为每次测量时间 不超过3%(见5.5.5,I S O/T R11954:2008的4.5.5)三 根据燃料电池电动汽车的特性增加了试验车辆准备和一般试验要求(见5.5.1和5.5.3)三 因燃料电池电动汽车特性,为了能够更好地反映车辆的最高车速,增加了两次最高车速试验的 时间间隔不超过5m i n的规定(见5.5.3.3.4)三 分别规定了混合动力模式下和纯电动R E S S模式下最高车速测量方法(见5.5.3.2和5.5.3.3)三 直线跑道上的最高车速试验规程中的双向试验规程中的行驶速度变化不应超过2%,修改为 3%三每个方向试验不少于3次,修改为不少于2次;单方向试验规程中的连续重复进行5次 行驶试验,修改为3次(见5.5.4.1和5.5.4.2,I S O/T R11954:2008的4.5.3.1)三 本标准由全国汽车标准化技术委员会(S A C/T C114)归口三 本标准起草单位:中国汽车技术研究中心二同济大学二上海机动车检测中心二上海汽车公司二清华三本标准主要起草人:赵静炜二侯永平二缪文泉二何云堂二冯力中二张英男二陈全世三

氢燃料电池项目可研报告 (2)

氢燃料电池项目 可研报告 规划设计/投资分析/实施方案

摘要说明— 燃料电池汽车是目前氢能源的主要应用领域之一。国际汽车制造商协会数据显示,2017年全球销售乘用车接近0.71亿辆,而势银智库数据显示2017年全球FCV(燃料电池汽车)销量3260辆(燃料电池汽车大多使用氢能源作为燃料,极少数使用其他燃料,若假设这些FCV都使用了氢气做燃料),2017年氢能源在汽车领域的渗透率也仅为0.0046%,可见在汽车应用领域氢能源产业化尚处于导入期。 该氢燃料电池项目计划总投资12676.47万元,其中:固定资产投资10300.42万元,占项目总投资的81.26%;流动资金2376.05万元,占项目总投资的18.74%。 达产年营业收入20688.00万元,总成本费用16168.24万元,税金及附加227.55万元,利润总额4519.76万元,利税总额5370.73万元,税后净利润3389.82万元,达产年纳税总额1980.91万元;达产年投资利润率35.65%,投资利税率42.37%,投资回报率26.74%,全部投资回收期5.24年,提供就业职位336个。 报告内容:项目概论、背景和必要性研究、产业分析预测、产品规划分析、选址方案、项目工程设计研究、工艺分析、项目环保研究、企业安全保护、风险防范措施、节能方案分析、实施安排、投资计划方案、项目经营效益分析、项目综合结论等。

规划设计/投资分析/产业运营

氢燃料电池项目可研报告目录 第一章项目概论 第二章背景和必要性研究 第三章产品规划分析 第四章选址方案 第五章项目工程设计研究 第六章工艺分析 第七章项目环保研究 第八章企业安全保护 第九章风险防范措施 第十章节能方案分析 第十一章实施安排 第十二章投资计划方案 第十三章项目经营效益分析 第十四章招标方案 第十五章项目综合结论

氢氧燃料电池性能测试实验分析报告

氢氧燃料电池性能测试实验报告 冯铖炼 实验目的 1. 了解燃料电池工作原理 2. 通过记录电池的放电特性,熟悉燃料电池极化特性 3. 研究燃料电池功率和放电电流、燃料浓度的关系 4. 熟悉电子负载、直流电源的操作 , 匚作原理 氢氧燃料电池以氢气作燃料为还原剂, 氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将 化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、 氧气在电极上的催化 剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电, 在氧电极上由于缺少电子 而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。 工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分 解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接 在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。 这正是水的电 解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂 全部储藏在电池内的装置氢氧燃料电池的反应物都在 电池外部它只是提供一个反应的容器 学号: 1141440057 指导老师: 索艳格 姓名:

氢气和氧气都可以由电池外提供燃料电池是一种化学电池, 它利用物质发生化学反应时释出的能量, 直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是, 于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间 的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成, 2013年正发展为直接使 用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气),。氢在负极 分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载 就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。 这 正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有 异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,-所以也可称它为一种"发电机"。 i 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。 发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢一氧燃料电池有酸式和碱式两种: 'I 若电解质溶液是碱、盐溶液则 负极反应式为:,2H2 + 4OH- - 4e~二4场0 正极反应式为:+ 2H2 O + 4广二4OH ■ 若电解质溶液是酸溶液则 负极反应式为:2H2 _ 4牴 —4H 正极反应式为:°2 + 4广+ 4H*二2H2O 总反应方程式为: 2H2 + 02二2H2 O 在碱溶液中,不可能有H+出现,在酸溶液中,不可能出现 0H —。 实验步骤 ① 连接电子负载,测量开路电压 它工作时需要连续地向其供给反应物质 燃料和氧化剂,这又和其他普通化学电池不大一样。由 在正、负极上

燃料电池测试方案

燃料电池测试方案 燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。根据燃料和氧化剂种类的不同燃料电池分为多种类型,比如碱性燃料电池,质子交换膜燃料电池,甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池等,具有环境污染小,比能量高,噪音低,燃料范围广,可靠性高,易于建设等优点,因此其可广泛应用于电动汽车、航天飞机、潜艇、通讯系统、中小规模电站、家用电源,以及其他需要移动电源的场所。中国致力于燃料电池的相关研究数十年,当前国家也将燃料电池行业的发展写入了多个地区的战略规划。 神州技测工程师表示,对于燃料电池的测试,功率不同,测试方法也不同。总体说来,硬件仪器一般包括:气体供给系统、液体供给系统、气体液体混合供给系统、液体供给液压系统、加湿器系统、气体加热线、温度控制监测系统、压力控制监测系统、电子负载系统、辅助输入输出系统、架构模块式系统以及第三方设备等。软件一般包括:对所有接入仪器的设定、控制、安全报警以及数据收

燃料电池的主要应用是在汽车行业中,大概可占到行业应用的70%左右。因此我们可以以汽车中燃料电池为例,简述燃料电池的测试。 燃料电池堆栈的测试中,会使用多种气体相关装置,电力相关装置,监测系统等。

神州技测提供的AMETEK SG系列直流电源可以作为辅助电源,功率范 围:4KW-150KW,电压范围5-1000V,电流范围5–6000 A;提供恒压、恒流和恒功率输出模式;提供独特的“序列”功能,易于生成变化的直流波形;可定义电压斜率;可闻噪音低。 AMETEK PLW系列水冷电子负载产品可以作为电力测试设备使用,检测燃料电池的电力特性。PLW系列产品成熟稳定,可靠性高,有众多典型案例,型号齐全:功率覆盖6kW、9kW、12kW、18kW、24kW、36kW,也可提供36kW - 250kW的其他标准型号;标准额定电压:60V、120V、400V、600V、800V和1000V;外形紧凑,功率密度高(2U,18kW)。 水冷电子负载应用在燃料电池堆栈测试中有众多的优势,比如功率密度高,体积小巧;冷水在电子负载内部流动,对系统的温度环境影响较小,适于实验人员工作,同时也减少了环境温度对测试的影响;噪声小,适于实验人员工作;无需额外建空调房,因此降低成本,减少线损对系统测试的影响;能量被消耗,无需考虑馈电对实验室的影响;故障率低;易于程控。同时,目前的权威燃料电池检测产品,Greenlight系统中,大多使用了此系列产品,有众多的成功案例。 关于升压变压器测试,动力控制单元,驱动电机单元的测试,AMETEK也可以提供相应的电源和电子负载进行测试,如SG系列产品和PLA系列产品等。

《燃料电池电动汽车车载氢系统试验方法》编制说明

燃料电池电动汽车车载氢系统试验方法 编制说明 一、 任务来源 本标准修订项目由国家标准化管理委员会下达,项目编号20110009-T-339,项目名称《燃料电池电动汽车车载氢系统试验方法》, 二、 制定目的和意义 发展氢燃料电池电动汽车有着深远意义。燃料电池电动汽车是以氢作为燃料的新型汽车,其排放只有水,是名副其实的零排放汽车。燃料电池电动汽车还具有工作效率高、低噪声、行驶平稳和不依赖石油等诸多优点,是未来汽车发展的方向。我国政府从汽车工业发展和节能减排的重大目标出发,对燃料电池电动汽车的发展予以大力支持。 车载氢系统是氢燃料电池电动汽车的关键部件,承担氢气的加注、储存、供给的重要任务,车载高压储氢系统也是燃料电池电动汽车的重要安全部件。制定车载氢系统标准,对于燃料电池电动汽车的研发、生产和产业化,能起到推动和保障作用。 “十一五”期间,我们完成了燃料电池电动汽车车载氢系统技术要求标准,本标准依据我国各类车载高压气体燃料,例如压缩天然气、液化石油气以及燃料电池电动汽车等相关标准,并充分借鉴国外相关行业的标准(或草案)、规范等,制定了车载氢系统技术条件。作为配套标准,燃料电池电动汽车车载氢系统试验方法标准将为技术条件的标准执行提供试验方法,保证执行中的准确性。 三、 制定原则和主要参考文件 在标准的制定过程中,总的原则是: 立足国内燃料电池汽车的研发和示范运行基础,同时参考国外先进经验和国际标准或国际标准的阶段性草案; 科研机构、大学、企业共同参与标准的起草和讨论; 起草过程,充分考虑和现有标准的统一和协调。 GB/TXXXX的起草过程中,主要的参考文件有: GB/T 24548-2009 燃料电池电动汽车术语

氢燃料电池项目可行性研究报告

氢燃料电池项目可行性研究报告 投资分析/实施方案

氢燃料电池项目可行性研究报告 目前以燃料电池技术为基础的应用已经很广阔,现阶段主要分布在叉、固定式和便携式三个方面,燃料电池车正在大力推进中,未来将遍及所有 能源相关下游包括汽车、发电和储能等领域。燃料电池车相比传统汽车, 具有无污染,“零排放车”,无噪声,无传动部件的优势,相比电动车, 具有续航里程长,充电时间段,起动快(8秒钟即可达全负荷)的优势,因此非常具有发展前景。 该氢燃料电池项目计划总投资5670.49万元,其中:固定资产投资4115.98万元,占项目总投资的72.59%;流动资金1554.51万元,占项目 总投资的27.41%。 达产年营业收入11347.00万元,总成本费用8723.89万元,税金及附 加106.65万元,利润总额2623.11万元,利税总额3091.57万元,税后净 利润1967.33万元,达产年纳税总额1124.24万元;达产年投资利润率 46.26%,投资利税率54.52%,投资回报率34.69%,全部投资回收期4.38年,提供就业职位216个。 报告依据国家产业发展政策和有关部门的行业发展规划以及项目承办 单位的实际情况,按照项目的建设要求,对项目的实施在技术、经济、社 会和环境保护、安全生产等领域的科学性、合理性和可行性进行研究论证;

本报告通过对项目进行技术化和经济化比较和分析,阐述投资项目的市场必要性、技术可行性与经济合理性。 ......

氢燃料电池项目可行性研究报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

关于电容器的报告论文

超级电容器电极材料的制备与研究 摘要:超级电容器作为一种新型储能器件,具有能量密度和功率密度高、比容量大等特点。它在电动汽车、移动通讯和国防等领域有巨大的市场前景,因此受到国内外研究人员的关注。在影响超级电容器性能的所有因素中,电极材料的性能起着决定性的作用。因此,本论文选定二氧化锰、碳纳米管、氧化镍作为超级电容器的电极材料,旨在制备和研究具有良好电容特性的超级电容器电极材料。论文的主要研究内容有: (1)利用化学沉淀法制备Mn02粉末材料并研究其电化学行为。采用循环伏安法对Mn02电极材料进行测试,在1mol/L Na2S04电解液、.0.2-+0.8V扫描电位内,不同扫描速率下电极均表现出理想的电容特性,当扫描速率等于lmV/s时得到最大比容量253.5F/g。研究了40℃和150"O热处理温度的Mn02材料在100mA/g充放电流密度下的恒流充放电特性结果比容量接近,但是150℃热处理得到的M_n02材料具有更好的循环充放电性能。 (2)研究碳纳米管(carbon nanotubes,CNTs)电极材料的循环伏安特性和恒流充放电性能。碳纳米管具有理想的双电层电容特性,但是未处理过的碳纳米管材料比容量偏小。在lmol /L Na2S04溶液、.0.2--+0.8V扫描电位内,以lmV/s的扫描速率进行循环伏安测试,结果得到最大比容量为27.3F/g。 (3)采用浓硝酸对碳纳米管进行回流处理并研究其电化学行为。对回流处理碳纳米管材料进行SEM和TEM表征,发现碳纳米管原本封闭的端口被打开,催化剂已经被去除。在50mA /g电流密度下,回流时间越长的碳纳米管材料比容量越高,80h回流得到的电极比容量最大,达至1J38.3F/g,比回流之前的8.3F/g要高。 (4)采用不同的催化剂在泡沫镍导电基体上生长碳纳米管作为超级电容器电极并研究其电容特性。经SEM和TEM测试,制备的材料是长5mn、直径100nm左右的定向碳纳米管(alligned carbon nanotubes,ACNTs)。这种定向碳纳米管电极具有很高的比容量。在1mol/LNa2S04电解液、.0.¨0.8V电位范围内,0.IMNi催化剂制备的电极材料在扫描速率等于1mv/s时最高比容量达至1J278.2F/g (5)研究二氧化锰/CNTs复合电极材料的电容特性。结果表明,复合电极具有二氧化锰的高比容量特性,同时也具有碳纳米管的良好循环充放电性能。 (6)研究氧化镍电极材料的电容特性。将制备的Ni(OH)2粉末进行热处理得到NiO材料。比较不同工艺条件制备的NiO材料,发现反应溶液pH值等于11.7、热处理温度500。C 以及热处理时间8h的NiO电极材料比容量最高,在lmol/L NazS04溶液、.0.2~+0.8V扫描电位内,1mV/s扫描速率下达到38.2F/g。 1、超级电容器的特点 超级电容器【11(Supcrcapacitor)是一种介于传统电容器和电池之间的新型储存电能的器件。根据命名角度的不同超级电容器又有不同的名称,如超大容量电容器(Ultracapacitor,uc)、电化学电容器(Electrochemical Capacitor,EC)、双电层电容器(Electric Double Layer Capacitor,EDLC)等。它具有比传统电容器高得多的能量密度和比容量,同时又具有比电池大得多的功率密度。超级电容器一般具有如下特点: (1)具有高的能量密度和功率密度。它的能量密度为传统静电电容器的10--20倍,功率密度是电池的l啦100倍,可达到10kW/kg左右。 (2)具有瞬间释放大电流、充电时间短、充电效率高的优点。超级电容器可以在短时间内释放出几百到几千安培的电流。这个特点使得电容器非常适合用于短时间高功率输出的场合。 (3)具有循环寿命长的优点。超级电容器充放电过程中发生的电化学反应具有良好的可逆性,不易出现类似电池中活性物质那样的晶型转变、脱落、枝晶穿透隔膜等引起寿命终止的现象。其实际充放电次数可以达到10万次以上,是电池的10.100倍。

相关文档
最新文档