同济大学---高数上册知识点

同济大学---高数上册知识点
同济大学---高数上册知识点

高等数学上册复习要点

一、函数与极限

(一)函数

1、函数定义及性质(有界性、单调性、奇偶性、周期性);

2、反函数、复合函数、函数的运算;

3、初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数;

4、函数的连续性与间断点;

函数在连续

第一类:左右极限均存在.

间断点可去间断点、跳跃间断点

第二类:左右极限、至少有一个不存在.

无穷间断点、振荡间断点

5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定

理及其推论.

(二)极限

1、定义

1)数列极限

2)函数极限

左极限:右极限:

2、极限存在准则

1)夹逼准则:

1)

2)

2)单调有界准则:单调有界数列必有极限.

3、无穷小(大)量

1)定义:若则称为无穷小量;若则称为无穷大量. 2)无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小

1 ;

2 (无穷小代换)

4、求极限的方法

1)单调有界准则;

2)夹逼准则;

3)极限运算准则及函数连续性;

4)两个重要极限:

a)b)

5)无穷小代换:()

a)

b)

c)()

d)()

e)

二、导数与微分

(一)导数

1、定义:

左导数:

右导数:

函数在点可导

2、几何意义:为曲线在点处的切线的斜率.

3、可导与连续的关系:

4、求导的方法

1)导数定义;

2)基本公式;

3)四则运算;

4)复合函数求导(链式法则);

5)隐函数求导数;

6)参数方程求导;

7)对数求导法.

5、高阶导数

1)定义:

2)公式:

(二)微分

1)定义:,其中与无关.

2)可微与可导的关系:可微可导,且

三、微分中值定理与导数的应用

(一)中值定理

1、罗尔定理:若函数满足:

1);2);3);

则.

2、拉格朗日中值定理*:若函数满足:

1);2);

则.

3、柯西中值定理:若函数满足:

1);2);3)

(二)洛必达法则

(三)公式

(四)单调性及极值

1、单调性判别法:,,则若,则

单调增加;则若,则单调减少.

2、极值及其判定定理:

a)必要条件:在可导,若为的极值点,则.

b)第一充分条件:在的邻域内可导,且,则①若当

时,,当时,,则为极大值点;②若当

时,,当时,,则为极小值点;③若在的

两侧不变号,则不是极值点.

c)第二充分条件:在处二阶可导,且,,则

①若,则为极大值点;②若,则为极小值

点.

3、凹凸性及其判断,拐点

1)在区间I上连续,若,则称在区间I 上的图形是凹的;若,则称

在区间I 上的图形是凸的.

2)判定定理:在上连续,在上有一阶、二阶导数,则

a) 若,则在上的图形是凹的;

b) 若,则在上的图形是凸的.

3)拐点:设在区间I上连续,是的内点,如果曲线经

过点时,曲线的凹凸性改变了,则称点为曲线的拐点.(五)不等式证明

1、利用微分中值定理;

2、利用函数单调性;

3、利用极值(最值).

(六)方程根的讨论

1、连续函数的介值定理;

2、定理;

3、函数的单调性;

4、极值、最值;

5、凹凸性.

(七)渐近线

1、铅直渐近线:,则为一条铅直渐近线;

2、水平渐近线:,则为一条水平渐近线;

四、不定积分

(一)概念和性质

1、原函数:在区间I上,若函数可导,且,则称为

的一个原函数.

2、不定积分:在区间I上,函数的带有任意常数的原函数称为在区

间I上的不定积分.

3、基本积分表(P188,13个公式);

4、性质(线性性).

(二)换元积分法

1、第一类换元法(凑微分):

2、第二类换元法(变量代换:三角代换、倒代换、根式代换等):

(三)分部积分法:(反对幂指三,前U后V’)

(四)有理函数积分

1、“拆”;

2、变量代换(三角代换、倒代换、根式代换等).

五、定积分

(一)概念与性质:

1、定义:

2、性质:(7条)

性质7 (积分中值定理)函数在区间上连续,则,使

(平均值:)

(二)微积分基本公式(N—L公式)

1、变上限积分:设,则

推广:

2、N—L公式:若为的一个原函数,则(三)换元法和分部积分

1、换元法:

2、分部积分法:

(四)反常积分

1、无穷积分:

2、瑕积分:

(a为瑕点)

(b为瑕点)两个重要的反常积分:

1)

2)

同济高数上册公式大全

第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次

) ()! 12()1(...!5!3sin ) (! ...!3!211 2125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! )) 1()...(1(...! 2) 1(1)1(2n n x o x n n x x x +---+ +-+ +=+ααααααα )(1 2)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则 定理1 设函数)(x f 、)(x F 满足下列条件: (1)0)(lim 0 =→x f x x ,0)(lim 0 =→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3)) ()(lim x F x f x x ''→存在(或为无穷大),则 这个定理说明:当) ()(lim x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)() (lim 0x F x f x x ''→;当 ) ()(lim x F x f x x ''→为无穷大时,)() (lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则. ∞ ∞ 型未定式 定理2 设函数)(x f 、)(x F 满足下列条件: (1)∞=→)(lim 0 x f x x ,∞=→)(lim 0 x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; )() (lim )()(lim 00x F x f x F x f x x x x ''=→→) ()(lim )()(lim 00x F x f x F x f x x x x ''=→→

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

同济大学___高数上册知识点

高等数学上册复习要点 一、 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数; 4、 函数的连续性与间断点; 函数)(x f 在0x 连续)()(lim 00 x f x f x x =→ 第一类:左右极限均存在. 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二) 极限 1、 定义 1) 数列极限 εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 εδδε<-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当 左极限:)(lim )(0 0x f x f x x -→-= 右极限:)(lim )(0 0x f x f x x + →+=

)()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2) a z y n n n n ==→∞ →∞lim lim a x n n =∞→lim 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=?; Th2 αβαβαβββαα' ' =''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→x x x b) e x x x x x x =+=++∞→→)11(lim )1(lim 1 0 5) 无穷小代换:(0→x ) a) x x x x x arctan ~arcsin ~tan ~sin ~ b) 2 2 1~cos 1x x -

大一同济上册高数(一些重要公式及知识点)

同济上册高数总结 微分公式与积分公式 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

同济高等数学公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

同济高等数学公式大全

同济高等数学公式大全 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222?????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 2 2)ln(2 21 cos sin 22 2222 2222222 22222 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

高数上册公式大全(同济六版)

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

同济高数上册公式大全

第一章函数与极限 一. 函数的概念 1. 两个无穷小的比较 设 lim f(x) 0, limg(x) 0 且血丄凶 l g(x) (1) l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[ g(x)],称g(x) 是比f(x)低阶的无穷小。 (2) l 工0,称f (x)与g(x)是同阶无穷小。 (3) l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2. 常见的等价无穷小 当x - 0时 a 1 - cos.L X — sin x ~ x ,tan x ~ x , arcsinx ~ x , arccosx ~ x , x 1- cos x ~ x A 2/2 , e -1 ~ x , ln(1 x) ~ x , (1 x) 1~ x 求极限的方法 1 ?两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g(x) < f (x) < h(x) 若 lim g(x) A,lim h(x) A ,则 lim f(x) A 2 ?两个重要公式 sin x 彳 公式1 lim 1 x 0 x 公式 2lim (1 x)1/x e x 0 3 ?用无穷小重要性质和等价无穷小代换 4?用泰勒公式 当x 0时,有以下公式,可当做等价无穷小更深层次 sin x cosx 2 x 3 x 2! 3! 3 5 x x 3! 5! 2 4 x x 2! 4! n! OX 〉 2n 1 1)n A / 2n 1 、 o(x ) 2n n x 2n x x

同样适用. 使用洛必达法则时必须注意以下几点: (1) 洛必达法则只能适用于“ 0 ”和“一”型的未定式,其它的未定式须 先化简变形成“ ”或“一”型才能运用该法则; (2) 只要条件具备,可以连续应用洛必达法则; (3) 洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不 能断 In(1 x) 3 f... ( 1) n n 1 x / n o(x ) n (1 x) (1) 2! x 2 (1)-( (n 1))x n n! o(x n ) arcta n x 2n 1 n 1 X 2n 1 1) o(x ) 2n 1 5 ?洛必达法 则 定理1 (1) f(x)、F(x)满足下列条件: lim F(x) 0 ; x x o (2) (3) 设函数 lim f (x) 0 , x x f(x)与F(x)在X 。的某一去心邻域内可导,且 上存在(或为无穷大),则im 丄? -■ ■ x x 0 F(x) 3存在时,佃出 x x 0 F(x) lim x x o F (x) F (x) 0 ; ..f (x) lim x x 0 F (x) 这个定理说明:当 匕为无穷大时, lim x 冷 F (x) lim 卫勺也是无穷大. x X o F(x) 也存在且等于lim x x 0 F (x) f (x).当 lim x x o F (x) 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值 的方法称为洛必达(L H ospital )法则. 一型未定式 X o 定理2设函数f(x)、 lim f(x) x X 0 f(x)与F(x)在X 。的某一去心邻域内可导,且 F(x) 0 ; ..f (x) lim x x F (x) (1) (2) F(x)满足下列条件: ,lim F(x) ; x x o 存在(或为无穷大),则叫鵲 注:上述关于x x 0时未定式一型的洛必达法则,对于x (3) ..f (x) lim x x o F (x) 时未定式一型

同济高等数学公式大全

同济高等数学公式大全文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222?????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 2 2)ln(221 cos sin 22 2222 2222222 22222 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

同济大学---高数上册知识点

高等数学上册复习要点 」、函数与极限 (一)函数 1、函数定义及性质(有界性、单调性、奇偶性、周期性); 2、反函数、复合函数、函数的运算; 3、初等函数:幕函数、指数函数、对数函数、三角函数、反三角函数; 4、函数的连续性与间断点; 函数f(x)在X o连续> lim f(x)二f(x°) X T X o ‘第一类:左右极限均存在? 间断点可去间断点、跳跃间断点 .第二类:左右极限、至少有一个不存在? 无穷间断点、振荡间断点 5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其 推论. (二)极限 1、定义 1)数列极限 limX n=a= PEA。,m N EN,x/n>N, x^ a < s n T°o 2)函数极限 lim f (x) = A= * > 0,我> 0, %,当0^|x-x°|"时,f(x)-A —X r X o

左极限:f(X0) = lim f (X) 右极限:f(X。)= lim f (x) X T X o I X o

lim f (x)二 A 存在二 f (x0) = f(x 0 ) X _;Xo 2、 极限存在准则 1) 夹逼准则: 1) y^ X^ Z n ( n - n °) 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若lim 〉二0则称为无穷小量;若lim 〉八:则称为无穷大量 2) 无穷小的阶:高阶无 穷小、同阶无穷小、等价无穷小、 k 阶无穷小 2 ) lim y n = lim z n = a 丿 n ^^ n -^c lim x n 二 a n 》:: Th1 :~ :二: o(: ) ? Th2 -?:,? ,lim 一存在, a r lim —= a lim —(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: 「 sin x 彳 a) li 叫 1 b) X r ° x 1 lim (1 x)x X r 0 lim (V -)^ e x 』: x a) x ~ si n x ?tan x ?arcs in x ?arcta nx

高数公式大全

高等数学公式 (tanx) sec2 x 2 (arcsin x) 1 1 x2 (cot x) csc (secx) secx x tanx (arccos x) 1 1 x2 (cscx) cscx cot x 1 (a x) a x ln a (arctan x) 2 1 x (log a x) 1 x ln a (arccot x) 1 1 x2 导数公式:基本积分表: kdx kx C (k 为常数)x u dx x u 1 C u 1 1 dx x ln x C 1 1 x2 dx arctan x C 1 dx 1 x2 arcsin x C cosxdx sin x C sin xdx cosx C 1 cos2 x dx sec2 xdx tan x C 1 2 dx sin x 2 csc xdx cot x C secx tan xdx secx C cscxcot xdx cscx C e x dx e x C a x a x dx C ln a 两个重要极限: lim sin x 1 x 0 x lim(1 1 x e x x )

三角函数公式: sin 2 2sin cos cos 2 2cos 2 1 1 2sin 2cos2sin2 2 2 sin cos 1 2 2 sec 1 tan 零点定理:设函数 f x 在闭区间a, b 上连续,且 f a f b 0 ,那么在开区间a, b 上至少一点,使f 0 。(考点:利用定理证明方程根的存在性。当涉及唯一根时,还需证明方程对应的函数的单调 性) 罗尔定理:如果函数 f x 满足三个条件: (1 )在闭区间a, b 上连续; (2 )在开区间a, b 内可导; (3 )在区间端点处的函数值相等,即 f a f b , 那么在a, b 内至少有一点 a b ,使得f0 。(选择题:选择符合罗尔定理条件的函数;证 明题) 拉格朗日中值定理:如果函数 f x 满足 (1 )在闭区间a,b 上连续; (2 )在开区间a,b 内可导, 那么在a, b 内至少有一点 a b ,使等式 f b f a f b a 成立。(证明题) 定积分应用相关公式 1 b 函数的平均值y f x dx b a a 空间解析几何和向量代数: 空间两点的距离 d M 1 M 2 2 x2 x1 2 y1 y2 2 z1z2 '

同济大学---高数上册知识点

高等数学上册复习要点 一、函数与极限 (一)函数 1、函数定义及性质(有界性、单调性、奇偶性、周期性); 2、反函数、复合函数、函数的运算; 3、初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数; 4、函数的连续性与间断点; 函数在连续 第一类:左右极限均存在. 间断点可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二)极限 1、定义 1)数列极限 2)函数极限 左极限:右极限:

2、极限存在准则 1)夹逼准则: 1) 2) 2)单调有界准则:单调有界数列必有极限. 3、无穷小(大)量 1)定义:若则称为无穷小量;若则称为无穷大量. 2)无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小 1 ; 2 (无穷小代换) 4、求极限的方法 1)单调有界准则; 2)夹逼准则; 3)极限运算准则及函数连续性; 4)两个重要极限: a)b) 5)无穷小代换:() a) b)

c)() d)() e) 二、导数与微分 (一)导数 1、定义: 左导数: 右导数: 函数在点可导 2、几何意义:为曲线在点处的切线的斜率. 3、可导与连续的关系: 4、求导的方法 1)导数定义; 2)基本公式; 3)四则运算; 4)复合函数求导(链式法则); 5)隐函数求导数; 6)参数方程求导; 7)对数求导法. 5、高阶导数

1)定义: 2)公式: (二)微分 1)定义:,其中与无关. 2)可微与可导的关系:可微可导,且 三、微分中值定理与导数的应用 (一)中值定理 1、罗尔定理:若函数满足: 1);2);3); 则. 2、拉格朗日中值定理*:若函数满足: 1);2); 则. 3、柯西中值定理:若函数满足: 1);2);3) 则 (二)洛必达法则

同济高等数学公式大全

同济高等数学公式大全 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222?????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 2 2)ln(221 cos sin 22 2222 2222222 22222 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

同济六版上册高数总结(一些重要公式及知识点)

同济六版上册高数 微分公式与积分公式 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高数上册归纳公式篇完整

高数上册归纳公式篇完整 The pony was revised in January 2021

公式篇 目录 一、函数与极限 1.常用双曲函数 2.常用等价无穷小 3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 2.n阶导数公式 3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 4.参数方程求导公式 5.微分近似计算 三、微分中值定理与导数的应用 1.一阶中值定理 2.高阶中值定理 3.部分函数使用麦克劳林公式展开

4.曲率 四、定积分 1.部分三角函数的不定积分 2.几个简单分式的不定积分 五、不定积分 1.利用定积分计算极限 2.积分上限函数的导数 3.牛顿-莱布尼茨公式和积分中值定理 4.三角相关定积分 5.典型反常积分的敛散性 6.Γ函数(选) 六、定积分的应用 1.平面图形面积 2.体积 3.弧微分公式 七、微分方程

1.可降阶方程 2.变系数线性微分方程 3.常系数齐次线性方程的通解 4.二阶常系数非齐次线性方程(特定形式)的特解形式 5.特殊形式方程(选) 一、函数与极限 1.常用双曲函数(sh(x).ch(x).th(x)) 2.常用等价无穷小(x→0时) 3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 (凡是“余”求导都带负号) 2.n阶导数公式 λ 特别地,若n = 3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较函数的0阶导数可视为函数本身

4.参数方程求导公式 5.微分近似计算(x ?很小时) (注意与拉格朗日中值定理比较) 常用: (与等价无穷小相联记忆) 三、微分中值定理与导数的应用 1.一阶中值定理()(x f 在],[b a 连续,),(b a 可导) 罗尔定理(端点值相等)()(b f a f =) 拉格朗日中值定理 柯西中值定理(0)('≠x g ≠0) 2.高阶中值定理()(x f 在),(b a 上有直到)1(+n 阶导数) 泰勒中值定理 n R 为余项

同济大学高等数学公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22= '='?-='?='-='='2 2 22 11 )cot (11 )(arctan 11 )(arccos 11 )(arcsin x x arc x x x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x xdx x C x dx x x C x xdx x dx C x xdx x dx x x )ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x a x a dx C x x xdx C x x xdx C x xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

高数公式大全

高数公式大全

高等数学公式·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)

相关文档
最新文档