酶法水解大豆分离蛋白的研究_迟晓星

酶法水解大豆分离蛋白的研究_迟晓星
酶法水解大豆分离蛋白的研究_迟晓星

大豆蛋白水解液脱苦的研究_百度文库.

中图分类号:TQ645.9+9;文献标识码:A;文章篇号:1007-2764(200401-0012-032 大豆蛋白水解液脱苦的研究 朱海峰 1 班玉凤 1 周克仲 2 (1.沈阳工业大学辽阳校区化工学院,辽阳 111003 (2.辽阳石油化纤公司,辽阳111003 摘要:大豆蛋白酶解常常会产生苦味,蛋白质水解物苦味肽的苦味是长期困扰其应用的问题。本文研究了酶法与微生物法对大豆蛋白水解液脱苦的效果。结果表明:采用端肽酶黑曲霉酸性蛋白酶(3000u/g与内切酶枯草杆菌碱性蛋白酶(Alcalase 2.4L协同作用水解大豆蛋白可有效降低水解液苦味,并且由酿酒酵母对水解液进一步处理后,大豆蛋白水解液的苦味降至更低。 关键词:大豆蛋白水解液;脱苦;黑曲霉酸性蛋白酶;酿酒酵母 大豆蛋白是植物性食物中氨基酸组成比例最合理的蛋白质。通过水解大豆蛋白制成蛋白肽混合物可以提高大豆蛋白的加工性能、营养性以及生理保健功能。但水解后,原来处于蛋白质内部的疏水性氨基酸就会暴露出来,使水解产物呈现出一定的苦味,限制了水解产物的最终应用,因此必须将苦味消去。脱苦的主要方法有选择性分离法、掩盖法、膜分离法、和酶法。文献中报道的在大豆蛋白水解液中多采用活性炭吸附法或活性炭吸附法与包埋法结合法进行脱苦 [1~2], 但在脱苦过程中营养成分会有所损失。本文在制取大豆蛋白肽工艺中采用酶法和微生物法来脱除大豆蛋白水解液的苦味。 1 材料与方法 1.1 实验原料及药品 枯草杆菌(Alcalase 碱性蛋白酶 2.4L :食品级 (酶活力 2.4AU/g ,丹麦 NOVO 公司出品;

黑曲霉酸性蛋白酶:食品级 (酶活力 3000u/g,北京房山酶制剂厂出品; 大豆蛋白(含水量 7.35%,蛋白质含量 69.6% :市售; 酿酒酵母:大连理工大学生化实验室提供; 其它试剂为国产试剂。 1.2 实验仪器 精密酸度计:pHS-2型,上海雷磁仪器厂; 台式离心机:80-1型, 江苏省金坛市医疗仪器厂; 超级恒温水浴:501型,上海市实验仪器厂; 水夹套式三口玻璃发酵罐:250ml ,自加工; 磁力搅拌器:78-1型,国华电器有限公司。收稿日期:2003-10-29 作者简介:朱海峰(1970~ ,男,讲师,研究方向为生物酶催化 1.3 工艺流程 大豆蛋白→酶解→灭酶→离心→水解液→脱苦→脱色→ 浓缩→喷雾干燥 1.4 实验方法 1.4.1 酶解反应 将大豆蛋白在 105℃下干燥至恒重,称取一定量上述原料加入发酵罐 (置于磁力搅拌器上 , 按照设计的底物浓度向发酵罐中补适量自来水。连接发酵罐和超级恒温水浴,启动磁力搅拌器和超级恒温水浴,然后在搅拌下以一定方式加入蛋白酶(单酶或双酶进行水解。水解结束后,水解液经过高温灭活(95℃下加热 5min ,在 4000 r/min的条件下离心 10min ,取适量上清液供分析用,同时小心取出全部残渣经充分干燥后用于测定降解率 HR 。 HR 定义为:(底物投料量-剩余残渣量 /底物投料量。 1.4.2 蛋白质水解度(HD 测定 根据文献[3~5]介绍的甲醛滴定法测定。水解度的定义为在水解过程中打开的肽键占蛋白质肽键总数的百分比。

酶法水解原淀粉

(翻译)酶法水解原淀粉 摘要:原淀粉颗粒存在半微晶结构能抵抗淀粉酶的水解,但是当淀粉糊化时很容易被水解和转化为糖和糊精。影响酶在体内和体外水解的速率和历程的各因素是相互关联的,在这方面的研究也是很复杂的。本文试图讨论一下这方面的问题并给读者提供一些跟这些特征有关的重要信息资源,文章中的每个不同的标题都可以转换成一个综述,因此应该根据文章素材选择性的阅读。 内容 1.引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.颗粒大小. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.颗粒形状. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.混合颗粒. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.直链淀粉的含量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.脂质的量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.磷酸盐含量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.结晶度和双螺旋. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.环境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.糊化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.淀粉酶的来源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.其它影响因素. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.结论. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.引言: 加工过的淀粉已经从半微晶的结构转变为无定型结构,而原淀粉则不然,因此原淀粉颗粒可以抗酶解,淀粉类食品在烹调时可以保存较高的营养价值。细菌、真菌、植物、动物和人类生产的α-淀粉酶(尽管不一定有相同的化学结构)是一种内切酶,从分子内部任意的水解α-1, 4键,可以降低淀粉分子的分子量(直链淀粉和支链淀粉)。经过大量的水解,淀粉最终转化为糖和糊精,称为各种DE糖浆,在这里,水解能力是以水解产物(每单位质量)当作葡萄糖量来结算的。商业葡萄糖浆就是利用这种方法生产的,过去葡萄糖浆的生产多用无机酸来水解淀粉,酶处理可以生产更高质量的产品。 如上所述,α-淀粉酶在自然界中到处都存在。许多动物(包括人类)是在唾液或胰腺中分泌酶的,许多动物的胰腺(该胰腺进入人类的十二指肠)将食品淹没时,利用其中的淀粉酶将淀粉水解,此时所生成的任何葡萄糖都可以被小肠直接吸收,刷状缘酶(生产麦芽糖的麦芽糖酶和水解糊精α-1,6键的糊精酶)和α-淀粉酶使葡萄糖的消化过程继续进行,更多的葡萄糖被人体吸收。考虑到α-淀粉酶水解淀粉颗粒的产物,读者会提到更多细节性的工作。没有被消化的淀粉被输送到动物的大肠内,在肠内被肠内菌群发酵(产生气体),热量以短链脂肪酸的形式释放随可能被吸收掉。据一些作者(Dobreva and Ivanova, 1989).)报道直链和支链淀粉水解的方式是不同的。 α-淀粉酶水解原淀粉的控制与水解机制将在下面进行论述。 很多评论是建立在体外研究的基础上的,这些研究与体内研究有着不同的的动力

大米蛋白质的酶法水解及其性质研究

大米蛋白质的酶法水解及其性质研究注 王章存姚惠源 (江南大学食品学院,无锡214036) 摘要本文通过三种蛋白酶催化反应动力学特性的比较,确定用碱性蛋白酶Alcalase作为水解大米分离蛋白的酶制剂,并通过正交试验分别获得高溶解性、高发泡性、高乳化性大米蛋白水解物的酶反应条件。本实验所得到的大米蛋白水解物最大溶解度为50.2%,最大发泡力为50m L,最大乳化力为73.6mL/g。 关键词大米蛋白蛋白酶蛋白质水解 0前言 大米蛋白以其合理的氨基酸组成、较高的生物利用率及特有的低敏性等特点被视为优质蛋白质11-32。而在味精和淀粉生产中的大量副产品蛋白质未被充分利用,其主要原因是大米蛋白的水溶性较差,为此大米蛋白的开发利用被列入国家十五科技攻关课题。目前国内外对大米蛋白的提取多采用碱溶技术。作者认为对大米蛋白的开发利用宜首先获得高纯度大米蛋白,然后采用不同的改性方法使其适用于不同的用途。为此作者曾制备蛋白含量达90%的大米分离蛋白粉。当然该分离蛋白的物化功能尚不能满足食品加工的需要。为此本文探讨酶法水解大米分离蛋白(RPI)改善其物化功能性的技术措施。 1材料和方法 1.1材料 大米分离蛋白:由本实验室制备,蛋白质含量89.5%,粗灰分1.2%。 蛋白酶为诺维信公司产品,酶制剂品种是Pro-tamex,Alcalase和Neutrase(标示每g酶活力分别为1. 5,3.0和1.5安森单位)。 市售纯正花生油。 1.2试验方法 1.2.1三种蛋白酶的比较(复合酶Protamex、碱性酶 注:国家十五科技攻关项目 收稿日期:2003-03-11 王章存:男,1963年出生,博士研究生,副教授,粮油食品生物技术研究Alcalase、中性酶Neutrase) 配制5%的大米分离蛋白的悬浊液(pH值为7.0、7.5、7.0分别用于复合酶P(Protamex)、碱性酶A(A-l calase)和中性酶N(Neutrase)试验),酶的用量分别为0.1%(E/S),于50e下保温,每隔30min取样一次,沸水浴中灭酶3min,离心(1000r/min@5min)后,测定上清液中蛋白质含量。 1.2.2酶水解反应条件的优化 采用正交试验方法,以获得高溶解性、高发泡性、高乳化性的蛋白水解物为目的,考查的影响因子是蛋白浓度、酶添加量和反应时间。 每组试验结束后在45e以下真空浓缩和干燥。所得产物用于溶解、发泡和乳化性能指标的测定。1.2.3测定方法 蛋白质含量测定:采用Folin-酚试剂法142。 蛋白质溶解度:以上清液中蛋白质含量占反应体系中蛋白总量的百分比表示。 起泡性测定:取3g样品加50mL去离子水,用0.05mol/LNaOH或HCl调pH7后搅拌30min,再加去离子水至100mL作为测试液(水温为35e),于1000r/min转速下搅拌3min,立即测定泡沫体积。放置30min后测定下层析出液体的体积,以判断泡沫的稳定性。 乳化性测定152:取1%的蛋白质溶液50mL加入纯花生油,并用电导仪监测至电导率下降为零时停止加油,此时滴加花生油的总量即为该蛋白质样品的最大乳化量,以每g蛋白质乳化油的毫升数表示(mL/ g)。 2003年10月第18卷第5期 中国粮油学报 Journal of the Chinese Cereals and Oils Association Vol.18,No.5 Oct.2003

酶水解法应用于高淀粉含量食品中亚硝酸盐测定

酶水解法应用于高淀粉含量食品中亚硝酸盐测定 ----样品前处理方法的探讨 [摘要]:针对GB 5009.33-2010《食品安全国家标准食品中亚硝酸盐与硝酸盐的测定》中,高淀粉含量样品在样品前处理时常因淀粉糊化导致过滤液含有可溶性淀粉而呈现浑浊,影响测定结果。文章通过采用α-淀粉酶温水水解样品后水浴加热提取亚硝酸盐作为前处理方法。排除滤液浑浊的干扰,旨在提高检测结果的准确度。结果表明:加标回收率为97.5%--99.1%,相对标准偏差(RSD)<10.0%,结果准确,精密度高。 [关键词]:婴幼儿米粉;亚硝酸盐;α-淀粉酶 目前检测食品中亚硝酸盐的检验依据是GB 5009.33-2010 《食品安全国家标准食品中亚硝酸盐与硝酸盐的测定》[1],该标准第一法为离子色谱法,样品在经过沉淀蛋白质、除去脂肪后,再使用几种固相萃取柱(碳十八柱、银柱、钠柱)提取,这些萃取柱价格较高,使用中还需要固相萃取装置,在基层单位不容易开展。该标准第二法为分光光度法(亚硝酸盐采用盐酸萘乙二胺法),该法适用于腌腊肉类、酱卤肉类、腌菜类等食品,该标准第三法为乳及乳制品中亚硝酸盐与硝酸盐的测定。 在实际工作中,各种肉制品和乳制品都能很好的采用相应的检验依据,得到良好的实验结果。但是当遇到婴幼儿米粉时,无论采用第二法或第三法测定,均不能得到透明的过滤液,在样品前处理的试验过程中发现在加入亚铁氰化钾与乙酸锌溶液后,沉淀不完全,过滤液中任然含有可溶性淀粉而呈现浑浊,严重影响测量结果。 文章通过采用α-淀粉酶温水水解样品后再水浴加热提取亚硝酸盐,作为

样品的前处理方法。

解决了在检测过程中由于过滤液浑浊进而影响比色的困扰,取得满意的结果。 1 试验部分 1. 1 原理 1.2仪器 7200 型分光光度计,上海尤尼柯。 1.3试剂 α-淀粉酶,亚硝酸钠标准溶液5μg/mL,饱和硼砂溶液: 50 g / L ; 乙酸锌溶液:220 g /L ; 亚铁氰化钾溶液: 106 g / L ;对氨基苯磺酸溶液:4 g/ L;盐酸萘乙二胺溶液: 2 g / L。 1.4 操作步骤 1.4.1样品处理 取样品10 g 于150 mL烧杯中, 加α-淀粉酶0. 2 g ,搅拌均匀, 加入约60度的蒸馏水100 mL, 再次搅拌均匀, 静置10~ 15 min, 加入50g/ L饱和硼砂溶液12. 5 mL, 将试样转移至250 mL 容量瓶中, 于沸水浴中加热15 min, 取出冷却后分别加入220 g / L 乙酸锌溶液5 mL, 106 g / L亚铁氰化钾溶液5 mL,加水至刻度, 摇匀, 放置30 min, 过滤, 滤液备用。同时做试剂空白。 1.4.2 测定 取25.00 mL样品处理液于50 mL具塞比色管中,另取0. 00, 0. 20, 0. 40,0. 60, 0. 80, 1. 00, 1. 50, 2. 00, 2. 50 mL亚硝酸钠标准溶液, 分别置于50 mL 具塞比色管中。于标准管与试验管中分别加入对氨基苯磺酸溶液2 mL, 混匀静置3 ~5 min, 再加入盐酸萘乙二胺溶液1mL, 加水至刻度, 混匀静置15 min, 用

大豆蛋白酶解产物功能特性的研究进展#(优选.)

大豆蛋白酶解产物功能特性的研究进展 摘要:总结了大豆蛋白酶解产物功能特性,主要阐述了大豆蛋白酶解产物的生物活性肽功能特性、轻度酶解产物功能特性以及苦味肽,并作出了展望。 关键词:大豆蛋白酶解产物生物活性肽轻度酶解苦味肽功能特性 由于大豆蛋白的高营养价值和低成本使它在食品工业 上的应用日益广泛,在过去十年里,大豆蛋白开始应用到咖啡增白剂、乳品饮料、蛋黄酱和可食用膜等产品当中。然而,大豆蛋白本身的溶解性,热稳定性,乳化性和起泡性限制了它在某些食品中的应用。通过蛋白酶水解来改善大豆蛋白的功能特性是目前比较可行的方法之一,以下将对酶解所产生的不同分子量的产物特性进行具体阐述。 1 生物活性肽功能特性 大豆活性肽的分子量范围大多在500~2000之间,大部分可以直接被人体吸收。在较宽的pH范围内有很好的溶解性,持水能力比原蛋白有很大提高。其生物活性主要有以下几个方面。 1.1 降血脂和胆固醇 国外专家研究指出,增加膳食中大豆活性肽含量,可以

降低血清胆固醇浓度。在小鼠喂饲试验中,添加大豆活性肽有利于降低极低密度脂蛋白合成,从而促进肝脏载脂蛋白的合成,防止脂肪在肝脏的积累,促进脂肪的运输和代谢。 1.2 抗氧化活性 大豆活性肽的抗氧化活性明显高于大豆蛋白本身。酶解是提高大豆蛋白抗氧化性的有效方法之一,大豆活性肽的抗氧化性是多肽氨基酸序列的一种本质特性。不同的酶,其水解专一性不同,导致水解产物的抗氧化性也不同。大豆活性肽对小鼠体内脂肪过氧化抑制作用强于酪蛋白活性肽,在对红血球抗氧化防御能力的提高方面与酪蛋白活性肽相当,可增强红血球对自由基的攻击抵抗作用。 1.3 低过敏原性 很多食物中由于过敏原的存在,会导致一些特异性过敏反应,如一些皮肤病、呼吸道疾病甚至过敏性休克就是由于这个原因所引起。大豆蛋白中也存在着过敏原,但已有研究表明,蛋白降解是降低或消除过敏原的有效方法。通过酶免疫测定法对大豆活性肽的抗原性进行测定,结果指出,活性肽抗原性比大豆蛋白降低1%~2%。 1.4 降血压 血压在血管紧张素转换酶(ACE)的作用下进行调节,血管紧张素I不具有活性,在ACE作用下可以转变为血管紧张素Ⅱ。血管紧张素Ⅱ具有收缩血管平滑肌的功能,从而引

大豆蛋白的分离提纯与药用前景

大豆蛋白的分离提纯及药用前景

目录 第一章绪论 第二章大豆分离蛋白的提取方法 (2) 2.1 碱提酸沉法 (2) 2.2 膜分离方法 (3) 2.3 起泡法 (3) 第三章分离蛋白产品在医药领域的作用及前景 (5) 3.1 大豆肽 (5) 3.2 大豆卵磷脂 (6) 第四章结论 (8) 参考文献 (9)

大豆蛋白的分离提纯及药用前景 摘要 大豆的蛋白含量较高而且营养丰富,一般含蛋白30%—50%。大豆蛋白含有8 种人体必需氨基酸,且比例比较合理,只是赖氨酸相对稍高,而蛋氨酸和半胱氨酸含量较低。目前大豆蛋白已成为一种重要的蛋白资源,特别是大豆分离蛋白含蛋白质90%以上,是 一种优良的食品原料。 大豆分离蛋白主要由11S球蛋白(Glycinin )和7S球蛋白(B -con-glycinin )组成,大约占整个大豆籽粒贮存蛋白的70%。这两种球蛋白的组成、结构和构象不同,大豆分离蛋白的功能特性也不同。大豆分离蛋白在提取、加工和贮运过程中会发生物理和化学变化,这些适当的改变可以提高大豆蛋白在食品、药品中应用的功能特性。 本文综述了大豆分离蛋白的提取和改性方法,以及大豆分离蛋白在食品生物特别是医药领域的应用前景。 关键词:大豆蛋白,分离方法,应用前景

第一章绪论 大豆营养价值高,资源丰富, 原料成本低。食品工业的飞速发展迫切需要具有功能特性和营养特性的蛋白质, 作为食品的原料成分或添加基料。除了提供人体所必需的氨基酸外,还具有一定的加工特性和生理活性。为此,加强或改善大豆的功能特性和生物活性, 开发新的功能食品, 成为食品及医疗保健业亟待解决的问题。在食品、医疗等领域, 大豆的研究与应用备受国外的关注。 大豆经清洗、破碎、脱皮、压片和正已烷浸出后,可得到脱脂大豆片,即白豆片。由于白豆片的NSI (水溶性氮指数)值高,为提取分离蛋白提供了可靠的保证。所谓分离蛋白,就是从白豆片里除去非蛋白质成分得到含蛋白90%以上的蛋白粉。大豆分离蛋白是理想的植物蛋白,其中含有人体必需的8 种氨基酸(亮氨酸、异亮氨酸、赖氨酸、蛋氨酸、氨酸、色氨酸、苯丙氨酸和缬氨酸)大豆分离蛋白不仅具有很高的营养性,而且具有乳化性、吸水性、吸油性、凝胶性、粘结性和分散性等众多的功能性。在食品加工业中,它广泛应用于肉制品、面制品和饮料等加工上。大豆分离蛋白生产中的副产品还可以进一步加工成纤维素和低聚糖。它们都是有利于人体健康的功能性物质。 从大豆中分离蛋白是一种提取的植物蛋白质,主要用于食品、化工、生物工程等领域。在食品工业中,可以作为肉食品、冷饮、烘烤食品、乳制品等的添加剂,还可以利用分离蛋白生产出很多的高附加值的产品。其实,在这些产品中,有很多具有预防、治疗疾病的功效,所以如果能将其应用在医药中间体,药品辅料或直接作为某些药品的主要原料进行研发生产,会有非常广阔的应用空间。我国从国外引进了很多的生产技术和设备,进而逐步实现了技术和设备的国产化。国对分离蛋白的提取和性能方面也进行了大量的研究。目前国的生产技术和设备逐步成熟,分离蛋白的许多指标基本上能满足实际生产需要。为了进一步的提高生产和科研水平,我们对分离蛋白的提取进行的系统的研究。

大豆分离蛋白的主要工艺流程

1 大豆分离蛋白的主要技术性能指标 水份:≤6% 干基粗蛋白:≥90% 水溶氮指数:≥60% TPC:≤10000个 大肠杆菌:0个 色泽:浅黄/乳白 气滋味:具有分离蛋白特有的气滋味 PH值:6.8~7.2 密度:过200目筛95%,过270目筛 90% 产品的功能特性将根据不同应用领域来确认 乳化型:通过1(蛋白):4(水):4(脂肪)的测试,肠体光亮、有弹性,无油、水渗出。 高凝胶型:通过1(蛋白):5(水):2(脂肪)的测试,肠体光洁度好,有弹性,无油、水渗出。 高分散(注射)型:1:10(蛋白:水)试验:稍搅拌溶解,静置三分钟无分层,0.5mm注射针头完全通过。 2 大豆分离蛋白工艺流程 低温豆粕——萃取——分离——酸沉——分离——水洗——分离——中和——杀菌——闪蒸——干燥——超细粉碎——混合造粒——喷涂——筛选——金属检测——包装 3 工艺简要描述: 萃取:将大豆低温豆粕置入萃取罐中按1:9的比例加入9倍的水,水温控制为40C0,加入碱使溶液在PH为9的条件下低温豆粕豆粕中的蛋白溶解于水中。 分离:将低温豆粕溶液送入高速分离机,将混合溶液中的粗纤维

(豆渣)与含有蛋白的水(混合豆乳)分离开。豆渣排到室外准备作饲料销售。混合豆乳回收置入酸沉罐中。 酸沉:利用大豆蛋白等电点为4.2的原理,加入酸调整酸沉罐中混合豆乳的PH到4.2左右。使蛋白在这个条件下产生沉淀。 分离:将酸沉后的混合豆乳送入分离机进行分离,使沉淀的蛋白颗粒与水分离。水(豆清水)排入废水处理场治理后达标排放。回收蛋白液(凝乳)到暂存罐。 水洗:按1(凝乳):4的比例加水入暂存罐中搅拌。使凝乳中的盐份和灰份溶解于水中。 分离:将暂存罐中的凝乳液送入离心机进行分离。水排入废水处理场治理达标排放,凝乳回收入中和罐。 中和:加入碱入中和罐,使凝乳的PH调整到7。 杀菌:将中和后的凝乳利用140C0的高温进行瞬时杀菌 干燥:将杀菌后的溶解送入干燥塔,在干燥温度为180C0的条件下将溶解干燥。 筛选:对干燥的大豆分离蛋白进行初步筛选。使98%通过100目标准筛。 超微粉碎:用特殊超微粉碎机对产品进行粉碎,使90%通过200目标准筛造粒:产品随后进行造粒设备进行造粒,使产品粒度均匀。 筛选:对产品进行进一步筛选。 喷涂:在产品表面喷涂表面活性剂,提高产品乳化稳定效果。 金属检测:对产品进行金属检测。 包装:检测后的产品进行自动包装系统,按规定的重量进行包装。

关于酶水解法测定玉米中淀粉含量方法的探讨

酶水解法测定玉米中淀粉含量方法的探讨 刘海明,王旭艳 承德避暑山庄企业集团有限责任公司质检部,河北、承德067500 摘要:测定玉米中淀粉含量的方法很多,我们按GB/T5514-2008[1]标准用酶水解法对玉米中的淀粉含量进行测定,由于测定结果偏低、偏差较大,我们对此标准中的关键环节的条件进行了实验调整。并对实验中存在的问题进行了分析和探讨,对玉米淀粉含量的准确测定起到重要的作用,希望给同行的朋友带来帮助。 关键词:玉米淀粉含量酶水解 前言:玉米淀粉是淀粉的主要品种,占世界淀粉总量80%,广泛用于食品、制糖、发酵、医药和化工等,玉米淀粉主要在玉米胚乳中,由单一的葡萄糖分子脱水聚合而成的,葡萄糖分子以a-1,4一糖苷键,a-1,3一糖苷键、a-1,6一糖苷键链接而成的天然物质,质量分数在70%~80%之间,淀粉含量的测定方法有酸水解法,酶水解法和旋光法等,我们主要探讨一下酶水解法,依据是GB/T5514-2008标准方法,为保证淀粉含量测定的准确性,对标准中的相关环节进行了实验,对标准方法中存在的问题和不足之处一一分析,提出了问题的解决办法,为进一步完善本标准提出了建议。供大家商榷。 正文: 1 实验原理:试样经除去脂肪及可溶性糖类后,其中淀粉经淀粉酶水解成小分子糖,再用盐酸水解成还原性单糖,最后按GB/T5009.7测定还原糖,并折算成淀粉含量。 2 实验试剂(除非另有说明,均使用分析纯试剂): 2.1 淀粉酶溶液:称取耐高温a-淀粉酶0.5 g,加100 mL水溶解,临用现配 2.2 碘溶液:称取 3.6 g碘化钾溶于20 mL水中,加人1.3 g碘,溶解后加水稀释至100 mL。 2.3 甲基红指示液:称取0.1 g甲基红用95%乙醇溶液定容至100mL 2.4 6mol/L盐酸:取浓盐酸100mL加水至200mL, 2.5 200g/L氢氧化钠溶液。 2.6 水:应符合GB/T 6682中三级水的要求。 2.7 碱性酒石酸铜甲液:称取15g硫酸铜(CU S04?5H2O)及0.050g 亚甲基蓝,溶于水中并定容至1000 mL.保存于棕色瓶中。 2.8 碱性酒石酸铜乙液:称取50 g 酒石酸钾钠和75 g 氢氧化钠,溶于水中,再加入4g亚铁氰化钾,完全溶解后,用水定容至1000 mL,贮存于橡胶塞玻璃瓶内. 2.9 葡萄糖标准溶液(1mg/mL):称取1 g(精确至0.0001 g) 经过98-100℃干燥2h 的葡萄糖,加水溶解后加入5mL盐酸,并以水定容至1000 mL. 此溶液每毫升相当于1.0mg葡萄糖。 3 材料与方法 3.1 材料 3.1.1玉米:本单位收购的玉米,产地:东北和承德,种类:粉质和胶质玉米。 3.1.2酶制剂:酶活力为14万U/mL耐高温a一淀粉酶 3.2 实验仪器设备 3.2.1 粉碎机:粉碎样品,使其完全通过孔径0.45 mm(40目)筛。 3.2.2 回流冷凝装置: 接受瓶为250 mL 3.2.3 天平:分度值0.001g 3.2.4 三角瓶:150mL 3.2.5 容量瓶:250mL 3.2.6 分样筛:孔径0.45 mm(40目) 3.3 实验方法

大豆分离蛋白工艺

大豆分离蛋白工艺 摘要:作为一种食品添加剂,大豆分离蛋白广泛应用于各种各样的食品体系中。 大豆分离蛋白的成功应用在于它具有多种样的功能性质,功能性质是大豆分离蛋白最为重要的理化性质,如凝胶性、乳化性、起护色注、粘度等。本文主要大豆分蛋白的一种制取工艺。 关键字:大豆分离蛋白、分离工艺、影响因素、设备 前言 大豆分离蛋白是重要的植物蛋白产品, 除了营养价值外,它还具有许多重要的功能性质, 这些功能性质对于大豆蛋白在食品中的应用具有重要的价值。大豆蛋白的功能性质可归为三类一是蛋白质的水合性质( 取决于蛋白质-水相互作用),二是与蛋白质-蛋白质相互作用有关的性质,三是表面性质[1]。水合性质包括:水吸收及保留能力、湿润性、肿胀性、粘着性、分散性、溶解度和粘度。而蛋白分子间的相互作用在大豆蛋白发生沉淀作用、凝胶作用和形成各种其它结构(例如面筋) 时才有实际的意义。表面性质主要是指乳化性能和起泡性能[2]。 1.功能特性 1.1乳化性 乳化性是指将油和水混合在一起形成乳状液的性能。大豆分离蛋白是表面活性剂, 它既能降低水和油的表面张力,又能降低水和空气的表面张力。易于形成稳定的乳状液。乳化的油滴被聚集在油滴表面的蛋白质所稳定,形成一种保护层。这个保护层可以防止油滴聚集和乳化状态的破坏, 促使乳化性能稳定。在烤制食品、冷冻食品及汤类食品的制作中, 加入大豆分离蛋白作乳化剂可使制品状态稳定。 1.2水合性 大豆分离蛋白沿着它的肽链骨架,含有很多极性基,所以具有吸水性、保水性和膨胀性。 1.2. 1吸水性 一般是指蛋白质对水分的吸附能力,它与即水份活度、pH、深度、蛋白质的颗粒大小、颗粒结构、颗粒表面活性等都是密切相关的。随水份活度的增强,其吸水性发生快——慢——快的变化。 1.2. 2保水性 除了对水的吸附作用外,大豆蛋白质在加工时还有保持水份的能力,其保水性与粘度、pH、电离强度和温度有关。盐类能增强蛋白质吸水性却削弱分离蛋白的保水性。最高水分保持能力在pH= 7,温度35~55℃时,为14g水/g蛋白质。1.2. 3膨胀性 膨胀性即蛋白质的扩张作用,是指蛋白质吸收水分后会膨胀起来。它受温度、pH 和盐类的影响显著,加热处理增加大豆蛋白的膨胀性,80℃时为最好,70~100℃之间膨胀基本接近[3]。 1.3吸油性 1.3. 1促进脂肪吸收作用

大豆蛋白的组成

大豆蛋白的组成 大豆, 蛋白 根据蛋白质的溶解性进行分类,大豆蛋白可分为两大类:清蛋白(非酸沉蛋 白)和球蛋白(酸沉蛋白)。 根据蛋白质分子大小,用超离心沉降法对水解浸出脱脂粕所得的蛋白进行测定,按溶液在离心机中沉降速度来分,可分为四个组分,即:2S,7S,11S,15S (S为沉降系数),每一组分是一些重量接近的分子混合物。如果将每一组分的蛋白质进一步分离,可以获得蛋白质单体或相类似的蛋白质。 主要成分是7S和11S,占全部蛋白质的70%以上。约有80%的蛋白质分子量在 10万以上。 (1)2S组分:低相对分子质量的2S组分含有胰蛋白酶抑制素、细胞色素C和两种局部检定的球蛋白等,在N-末端结合有天冬氨酸。这些低相对分子量的蛋白通常存在于乳清中,常常需要进行加热以消除不良作用而有利于消化。(2) 7S组分:7S组分有四种不同种类的蛋白质组成,即:血球凝集素、脂肪氧化酶、β-淀粉酶和7S球蛋白,其中7S球蛋白所占的比例最大。占7S组分 的1/3,占大豆蛋白总量的1/4。 7S球蛋白是一种糖蛋白,含糖量约为5%,其中3.8%甘露糖,1.2%的氨基葡萄糖。与11S球蛋白相比,色氨酸,蛋氨酸,胱氨酸含量略低,赖氨酸含量较高,因此7S蛋白更能代表大豆蛋白氨基酸的组成。 据分析,7S蛋白质是一个具有9个亚基的四元结构。7S多肽是紧密的折叠起来的,其中α-螺旋,β-折叠型和不定型绕圈装等亚基结构,分别占5%,35%和60%。在三级结构中,一个分子只有3个色氨酸残基侧链,全部处于分子表面,35个酪氨酸残基侧链几乎全部处于分子内部的疏水区;4个胱氨酸残基侧链中每2个结合在一起,形成-S-S-结合。 (3)11S组分:组分比较单一,到目前为止只发现一种11S球蛋白。 11S球蛋白也是一种糖蛋白,只不过糖的含量比7S少得多,只有0.8%。11S球蛋白含有较多的谷氨酸、天冬酰胺的残基以及少量的谷氨酸、色氨酸和胱氨酸,它的二级结构与7S球蛋白几乎没有什么区别。在三级结构中,一个分子有86个酪氨酸残基侧链和23个色氨酸残基侧链,,其中有34-37个酪氨酸、10个色氨酸处于立体结构的表面,其余的则处于立体分子的疏水区域。另外,在一个分子中,大约有44个胱氨酸残基侧链,其中一部分以-SH基形式存在,一 部分以-S-S-形式存在。 11S组分有一个特性,即冷沉性。脱脂大豆的水浸出蛋白液在0-2℃水中放置后,约有86%的11S组分沉淀出来,利用这一特征可分离浓缩11S组分。

大豆分离蛋白酶法改性研究进展

万方数据

万方数据

万方数据

大豆分离蛋白酶法改性研究进展 作者:肖怀秋, 李玉珍, 兰立新, 李继睿, XIAO Huai-qiu, LI Yu-zhen, LAN Li-xin,LI Ji-rui 作者单位:湖南化工职业技术学院应用化学系,株洲市,412004 刊名: 酿酒 英文刊名:LIQUOR MAKING 年,卷(期):2007,34(5) 参考文献(21条) 1.刘艳秋;陈光Protamex复合蛋白酶水解大豆分离蛋白的研究[期刊论文]-食品科学 2005(06) 2.Wendee ChiangD Function properties of soy protein hydrolysate producedfrom a continuous membrane reactor system 1999 3.Jin-Yeol Lee;Hyun Duck Lee;Cherl-Ho Lee Characterization of hy drolysatesproduced by mild-acid treatment and enzymatic hydrolysis of defatted soybean flour 2001(34) 4.Nakai s Sturcture-relationship of food proteins with and emphasis on the importance of protein hydrophobicity 1983(04) 5.S Petruccelli;M C Anon Relationship between the Method of Obtention and the Structural and FunctionalProperties of Soy Protein Isolates.l.Structural and Hydration properties 1994 6.赵国华;明建;陈宗道酶解大豆分离蛋白乳化特性的研究[期刊论文]-中国粮油学报 2002(02) 7.陶红;梁歧双酶水解降低大豆寡肤苦味研究[期刊论文]-食品工业科技 2003(zk) 8.张梅;周瑞宝;马智刚醇法大豆浓缩蛋白酶法改性研究[期刊论文]-中国油脂 2003(12) 9.M QI Solubility and Emulsifying Properties of Soy Protein Isolates Modified by Parcreatin[外文期刊] 1997(06) 10.Sook Y Kim Functional Properties of Proteolytic Emzyme Modified Soy Protein Isolate 1990 11.WU Wu Hydrophobicity,Solubility,and Emulsifying Properties of Soy Protein Peptides Prepared by Papain Modification and Ultrafiltration[外文期刊] 1998(07) 12.郭永;张春红大豆蛋白改性的研究现状及发展趋势[期刊论文]-粮油加工与食品机械 2003(07) 13.Zheng Guo;Anders F Vikbjerg;Xuebing Xu Enzymatic modification of phospholipids for functional applications and human nutrition[外文期刊] 2005(23) 14.刘欣;徐红华;李铁晶微生物蛋白酶改性大豆分离蛋白的研究进展[期刊论文]-大豆通报 2005(04) 15.潘进权;刘耘大豆多肽研究概况[期刊论文]-粮油加工与食品机械 2004(07) 16.Garcia M C Composition and Chracterization of soybean and related products 1997(04) 17.Katsumi Studies on the coagulation of soymilk-protein by commercial proteinase 1987 18.卢阳;王凤翼;孔繁东大豆蛋白酶水解物抗氧化性的研究[期刊论文]-大连轻工业学院学报 2001(04) 19.刘大川;杨国燕酶改性大豆分离蛋白的制备及产品功能性的研究[期刊论文]-中国油脂 2004(12) 20.高安全;姬学亮;张二琴大豆蛋白酶法改性研究[期刊论文]-开封大学学报 2004(03) 21.刘景顺;黄纪念;谭本刚大豆分离蛋白的改性研究 1997(04) 本文链接:https://www.360docs.net/doc/aa16217438.html,/Periodical_nj200705020.aspx

酶水解技术研究进展

1. 国内外酶水解技术研究进展 酶对有机磷矿化、水解和氧化等过程具有重要作用。相比于传统表征环境样本有机磷形态及其生物有效性的化学提取方法,用酶水解技术表征有机磷可较好地模拟有机磷的潜在生物有效性[1]。酶水解技术最早应用于土壤肌醇六磷酸盐(植酸)生物有效性研究。Jackman和Black [2]二人希望通过酶水解技术确定植酸水解效率是否受植酸溶解性或植酸酶活性限制,或者二者共同限制。结果发现,底物(植酸)溶解性是决定植酸水解效率的主要因子,而不是植酸酶活性。随后,酶水解技术出现于水环境中有机磷生物有效性研究。 Strickland 和Solorzano[3]以无机焦磷酸酶和碱性磷酸酶检测了藻类培养液和海水中酶可水解磷,结果表明酶活性决定着样本中酶可水解磷量。而且,酶制剂纯度和特异性的不足、样本本身存在的酶干扰以及水样中底物浓度较低造成酶水解技术分析水环境样品有机磷难度较大。 近20 年来,酶水解技术被广泛应用于土壤、有机肥料、水体、沉积物、腐殖质等环境样品[4-9]。Turner 等[4]选择碱性磷酸酶、磷酸二酯酶和植酸酶分析了澳大利亚草地水可提取有机磷组成特征,将土壤水可提取有机磷分为3 种类型:(1) 活性正磷酸单酯(碱性磷酸单酯酶水解释放的正磷酸盐量);(2) 正磷酸二酯(碱性磷酸单酯酶与磷酸二酯酶水解共同作用释放的正磷酸盐量减去活性正磷酸单酯);(3) 植酸磷(植酸酶水解释放的减去活性正磷酸单酯和正磷酸二酯的和)。后来,Monbet 等[6]对Turner 等的酶水解方法进行了改进,将碱性磷酸酶、磷酸二酯酶和植酸酶进行组合,表征了环境条件下水体溶解性有机磷(DOP)生物有效性。Zhou 等[10]研究了武汉东湖样品磷酸酯酶可水解磷,发现磷酸酯酶可水解磷含量升高会引起磷酸酯酶活性增强。Zhu 等[11]将化学连续提取法与酶水解法结合分析了滇池表层沉积物有机磷形态及其生物有效性,发现滇池沉积物中12.1-27.2%的有机磷具有潜在生物可利用性。 2 湖泊有机磷形态及生物有效性 湖泊有机磷存在于水体和沉积物中,根据溶解性可将其分为溶解态和颗粒态。溶解态有机磷主要由磷脂、磷酸糖类和膦酸盐等组成[12],颗粒态有机磷主要来自生物体[13]。在湖泊水体中,溶解态有机磷最高可占总磷的50%- 90%[14-15],有机磷也是湖泊沉积物磷的主要形态[16]。湖泊水体有机磷研究多通过膜过滤将有机磷分为溶解性有机磷(DOP)和颗粒态有机磷,然后采用分子光谱学、原子光谱学、酶水解法等方法分析溶解性有机磷[17]。此外,采用超滤、膜透析和反渗透等前处理技术预先对溶解性有机磷进行分子量分级[12][18-19],可以在不破坏溶解性有机磷原有结构的前提下表征不同有机组分的性质差异和生物有效性,获悉溶解性有机磷组分构成和官能团信息。 湖泊沉积物有机磷形态研究主要采用土壤有机磷化学连续分级方法,它以不同特性的提取剂(溶解性、氧化还原性和酸碱性等)连续对沉积物分级提取,通过各级提取液中有机磷含量可以得出各形态有机磷迁移转化能力、活性及潜在生物有效性等信息[20]。Sommers 等[21] (1972)最早采用连续分级提取方法将沉积物有机磷分为碱性、中性和酸性三种形态。Bowman 和Cole[22] (1978)最早提出了相对系统的土壤有机磷分级提取体系,将其分为活性、中活性、中稳性和高稳性有机磷。Oluyedun 等[23] (1991)将上述两种方法应用于北美洲的安大略湖沉积物有机磷形态研究,发现两种提取方法可提取有机磷总量相似,而各分级提取的有机磷含量上存在差异。同时,Oluyedun 等[24]研究也表明土壤有机磷形态连续提取方法适合于湖泊沉积物中有机磷形态分析。然而,早期有机磷提取方法存在提取方法较繁琐、有机磷提取率不高等缺陷。于是,Ivanoff 等[20] (1998)对早期有机磷连续分级提取方法进行了改进,将有机磷分成活性、中活性和非活性有机磷,增加了对残渣态有机磷的分析,弥补了前人对有机磷提取回收率不高的缺陷。

国内大豆分离蛋白生产的现状

国内大豆分离蛋白生产的现状、差距及建议 1、现状 大豆分离蛋白(SoyProteinIsolate, 简称SPI) 是以大豆为原料, 采用先进的加工技术制取的一种蛋白质含量高达90% 以上的功能性食品的添加剂由于它具有良好的溶解性,乳化性、起泡性、持水性和粘弹性等特性, 又兼有蛋白质含量高的 营养性,所以被广泛地应用于肉制品(例如西式火腿、火腿肠午餐肉,三文治、灌肠、香肠及肉馅等), 冷饮制品(例如冰淇淋、 奶油、雪糕、布丁等), 烘焙食品(例如面包、糕点等)。目前世界大豆分离蛋白的年产量约40~50 万t,增长势头十分强劲。 早在50 年代初, 美国已研究开发出大豆分离蛋白, 但是由于技术难度大, 直到70 年代其生产技术才趋于完善和成熟。目前,国际上居垄断地位的大豆分离蛋白生产厂商主要有美国,日本、巴西生产的大豆分离蛋白在国际市场上也占有一定 份额。 我国80 年代初开始生产大豆分离蛋白,迄今为止, 已建、自建、合资和独资的大豆分离蛋白生产厂已有10 多家, 年生产能力约 3 万t,主要在黑龙江、吉林,在哈尔滨,开封,山东、河南等地已建和正在筹建的生产厂。我国大豆分离蛋白的 生产与发展是和食品工业,尤其是肉食品(例如西式火腿)等的迅速发展,需求量大增密切相关。由于国内生产的大豆分离蛋白 的质量与国外相比有较大差距,所以每年大约进口大豆分离蛋白达 2 万t 左右,给国内大豆分离蛋白市场造成严重冲击,给企业 带来很大压力。当前,如何提高大豆分离蛋白的功能特性, 使之达到国际上同类产品的质量指标要求,乃是急待解决的任务。 2 、大豆分离蛋白的功能特性 大豆籽粒中约含蛋白质38%~42%, 碳水化合物(包括粗纤维)25%~27%, 脂肪16%~20%, 水分10%~12%, 灰分3%~5% 。可将大豆籽粒加工成大豆蛋白粉(含蛋白质50%), 浓缩蛋白( 含蛋白质70%), 分离蛋白(含蛋白质90%) 以及组织蛋白,纤维蛋白等产品。大豆蛋白经修饰!改性制取的高纯度大豆分离蛋白具有良好的溶解性、乳化性、起泡性、持水性和粘弹性等功能性乃是大豆分离蛋白非常重要的性质, 而大豆蛋白的组成和结构是决定大豆分离蛋白功能特性的重要因素。 大豆蛋白质是由一系列氨基酸通过肽键结合而成的高分子有机聚合物,它主要由清蛋白和球蛋白组成,其中清蛋白约占5%, 球蛋白约占90% 。由于大豆球蛋白是椭园球形, 故此命名。球蛋白溶于水或碱溶液,加酸调pH 值的等电点4、5, 则沉淀析出,故又称酸沉蛋白, 而清蛋白无此特性, 故又称为非酸沉蛋白。球蛋白中主要为11S 和7S 蛋白,约占总蛋白的70%, 其余为2S 和15S 等,11S 球蛋白的分子量 为17~35 万, 为疏水性聚合体。7S 球蛋白的分子量为14~17 万,为疏水性聚合体。7S 和11S 球蛋白对大豆蛋白的功能特性起着十分重要 的主导作用。国外对7S 和11S 球蛋白的分子结构!功能特性,蛋白质修饰技术以及高品质多功能系列大豆分离蛋白产品的生产工艺进行了 大量深入细致的研究,并取得了重大成果,属于绝密高科技。球蛋白和清蛋白均属于贮藏蛋白,它与大豆加工性能关系密切,而大豆生物活性蛋白,例如胰蛋白酶抑制剂、血球凝集素,脂肪氧化酶等,在总蛋白中所占比例虽然很少,但对大豆制品的质量却关系重大。 3 、大豆分离蛋白的生产工艺

相关文档
最新文档