竖炉工艺结构

竖炉工艺结构
竖炉工艺结构

竖炉工艺结构知识

球团竖炉

一种用于焙烧冶金球团的竖炉,属于冶金设备的技术领域。它包括由炉墙组成的炉膛,设于炉膛下端的锁风卸料装置,炉膛上部的球团料进口和设于炉膛内中部的破碎辊,炉墙下部设有供风喷口,炉膛内设有与炉膛内外相通的燃料管道,所述燃料管道炉膛内部分设有燃料喷嘴。它结构简单,燃料直接在炉内燃烧,炉宽方向温度均匀,热效率高,焙烧带供热足,球团产量高,质量均匀。

包括由炉墙(1)组成的炉膛,设于炉膛下端的锁风卸料装置(8),设于炉膛上部的球团料进口和设于炉膛内中部的破碎辊(5),其特征在于:炉墙(1)下部设有供风喷口(6),炉膛外设有与炉膛内相通的燃料管道(3),所述燃料管道(3)炉膛内

部分设有燃料喷嘴(2)。

球团竖炉的产品用于冶金高炉冶炼铁水的原料,产品形状为圆形,一般8-16

毫米。

球团竖炉原料一般为磁铁矿粉、褐铁矿粉、赤铁矿粉,辅料为硼润土。

一、球团竖炉的构造

竖炉按其断面形状分类,有圆形和矩形两种,圆形竖炉是早期出现的,现在除瑞士还保留了几座外,其余几乎都是矩形的。

国外竖炉的缺点主要有以下几点:

(1)电耗高。根据瑞典LKAB公司的分析,其电耗高达50kW·h/。电耗高的主要原因是它的料柱高,冷风向上通过焙烧带时,料层中气流速度高,阻力大,

主风机工作压力要求高,因而电耗大。

(2)国外竖炉球团一般采用高热值的燃料,重油或天然气,而且只限于焙

烧磁铁矿球团。

(3)下料速度不均、焙烧和固结不均、球团质量受影响。

国外竖炉本身是料仓式结构,排料时同一截面的球团矿下料速度不均匀,正对排料口中心下料快,两侧相应下料慢,使球团矿在炉内停留的时间不同,这

样焙烧和固结不均,影响球团质量。

(4)国外竖炉一般采用两条移动胶带以“乙” 字形线路布料,一座6.4m,宽2.44 m的竖炉布料一次要140s,布料车沿宽度方向要走8个来回。如再扩大炉型、布料周期必须延长,这就难以保持料面温度分布均匀,不利于操作,影响

球团质量。

我国竖炉的主要特点如下:

竖炉球团以高炉煤气为燃料,而不像国外竖炉采用高热值的燃料(重油)或天然气、焦炉煤气。这是因为我国新的炉型结构改善了炉内透气性,燃烧废气和冷却风穿透能力增加,气流分布均匀,焙烧制度合理,有稳定的均热带,为球

团再结晶和晶形长大固结创造了条件。

二、球团竖炉各部位工作环境

(一)燃烧室

我国8m2球团竖炉通常用矩形燃烧室,配制于竖炉炉膛的两侧。燃烧室大都是燃烧高炉煤气,燃烧后的废气形成一定的压力,由竖炉火口喷进炉膛焙烧球团矿,最后达到炉顶,经除尘放入大气。燃烧室的一个突出特点是正压操作。因此,燃烧室必须密封良好,不能有一点气体泄漏。

实践证明,竖炉炉体的一个薄弱环节就是燃烧室。目前,竖炉的一代寿命较短,仅1~3年,这与燃烧室有很大关系,这是由燃烧室的工作环境恶劣所决定的。燃烧室承受着1100~1120℃的高温及10~20kPa压力,如若砌筑质量不好,极易漏气漏火,所以燃烧室有时可能发生烧穿事故,严重地影响了竖炉的正常作业。另外,燃烧室温度较高,整个砌体因热膨胀而产生位移。现有的燃烧室底部框架都是自由地放置在混凝土平台上,平台表面粗糙,热膨胀产生的摩擦力

很大,因此容易导致顶部砌体开裂。

燃烧室不仅是正压操作,承受一定的压力,而且容易烧穿。烧穿部位大都是拱顶、拱脚、烧嘴、入孔等处,一经烧穿,压力便急剧下降,废气穿透料柱的能力受影响,所以燃烧室一定要密封好。

除此之外,燃烧室还受拱脚的水平推力作用及炉墙气体的侧压力作用。竖

炉的停开也造成一定的损坏。

竖炉燃烧室一般都砌成60°拱顶,由于拱的存在,便产生一定的水平推力,

拱顶越重,水平推力也就越大。

竖炉是正压操作,煤气要以一定的压力喷进燃烧室燃烧,生成的热废气有燃烧室火道喷入竖炉炉膛。由此可见,燃烧室密封不严,就不会形成足够的压力,满足不了焙烧球团矿的工艺要求。经过计算得知,侧壁所产生的气体压力是很大

的。

竖炉的生产要求停停开开对燃烧室损坏最大。竖炉长期处于生产状态,燃烧室也就处于高温状态。耐火砖膨胀到一定尺寸而停止,相对稳定。但是,如若发生停炉,燃烧室温度就降下来,特别是降到常温,砌体自然收缩。竖炉开、停。砌体也就膨胀、收缩,反复几次,砌体就产生裂纹,特别是拱脚,拱顶一活动,就会烧穿。因此,要保证燃烧室长寿,不仅要砌体符合要求、密封好。而且要提高竖炉作业率。这对延长燃烧室寿命至关重要。

综上所述,燃烧室是竖炉的一个薄弱环节,长期处于高温状态下,其工作

环境比较恶劣。

(二)导风墙

导风墙是竖炉中的又一个薄弱环节,它下面靠金属水梁支撑,常受高温作用、含尘气流的冲刷磨损,还要承受炉料的侧压力。因此,导风墙的工作环境也很恶劣。在水梁与砌体的结合处,特别是下部1m处的砌体最易脱落。所以,导风墙的材质、格孔尺寸及孔壁厚度的选择都很重要。

三、竖炉用耐火材料

(一)燃烧室

燃烧室是竖炉的主要砌体,一般采用粘土砖或高铝砖砌筑。如杭钢两个燃烧室砌砖量大约120t左右。砌缝要求小于2mm,拱顶等重要部位均采用701灰浆,炉底及其他部位采用一般泥浆。在砌砖过程中,由于工作面大,砖的数量多,如有一处达不到砌砖质量要求(如砖缝大、泥浆不饱满等),赤热的气体就会从这些薄弱处穿透并沿炉壳内壁窜动,从金属炉壳不严密处漏出。膨胀问题主要靠砌体外部的保温砖、鸡毛灰等填料,以便缓冲耐火砖砌体的膨胀或收缩。

本钢168m2竖炉焙烧带截面积宽为2.088m,长为7.056 m。拱干带高1.260 m,预热焙烧带高2.660 m,均热带2.570 m,冷却带为3.500 m,炉子排矿辊中心线至炉口高度为12.810 m,容积为190m3,喷火口以上是用耐火砖砌筑,以下

用高铝砖砌筑。

燃烧室采用半圆拱顶矩形燃烧室,其优点是结构简单,配制紧凑,密封性好,燃烧室压力低。为了保证其气密性,每层砖都采用磷酸盐泥浆砌筑,砖缝不大于2 m m。整个燃烧室砌体采用周边膨胀缝。此外,在燃烧室底部设置若干组多向滑动支座。一方面用以补偿热膨胀造成的位移,另一方面可减少捣固燃烧室

也很简单可靠。

(二)导风墙

竖炉采用导风墙技术,是我国的一个创新,它的存在,是炉内有了通道,有效地缩短了冷却风所通过的料层,使阻力大大减小,冷却风量相对增加,冷却效果得到改善,同时也使主风机电耗大大降低。导风墙工作条件恶劣,它不仅承受高温气流的冲刷,而且也受到球团矿巨大的侧压力及磨损。所以,要求导风墙用砖性能优异,一般采用优质粘土砖或高铝砖。

第三章高炉内的还原过程

第三章高炉内的还原过程 第一节炉料的蒸发、挥发和分解 一、水分的蒸发 炉料中的水以吸附水和化合水两种形式存在。吸附水存在于热烧结矿以外的一切炉料中,吸附水一般在l05℃以下即蒸发。吸附水蒸发对高炉冶炼并无坏处,因为炉喉煤气温度通常大于200℃,流速也很高,炉料中的吸附水在炉料入炉后,下降不大的距离就会蒸发完,水的蒸发仅仅利用了煤气的余热,不会增加焦炭的消耗;同时因水分的蒸发吸热,降低了煤气温度,对装料设备和炉顶金属结构的维护还带来好处。此外,煤气温度降低,体积减小,流速也因之降低,炉尘吹出量随之减少。在实际生产中,往往因炉顶温度过高,而向炉料或炉喉内打水以降低煤气温度。 二、碳酸盐分解 炉料中碳酸盐主要来自石灰石(CaC0 3)、白云石(MgC0 3 ),有时也来自碳酸铁(FeCO 3 ) 或碳酸锰(MnCO 3 )。 1.碳酸盐的分解当炉料加热时,碳酸盐按FeCO 3、MnC0 3 、MgCO 3 、CaCO 3 的顺序依次 分解。碳酸盐分解反应通式可写成: MeCO 3 = MeO十CO 2 一Q 反应式中Me代表Ca、Mg、Fe及Mn等元素。 碳酸盐的分解反应是可逆的,随温度升高,其分解压力升高,即有利于碳酸盐的分解。 高炉冶炼最常见的碳酸盐是作为熔剂用的石灰石。石灰石的分解反应为:

CaC0 3=CaO十CO 2 —42500×4.1868kJ 反应发生的条件是:当碳酸钙的分解压力(C0 2分压)PCO 2 大于气氛中C0 2 的分压PCO 2 时,该反应才进行。 CaCO 3在高炉内的分解温度与炉内总压力和煤气中C0 2 分压有关。据测定表明,石灰 石在高炉内加热到700~800℃开始分解,900~1000℃达到化学沸腾。 石灰石的分解速度和它的粒度有很大关系。因为CaCO 3 的分解是由表及里,分解一 定时间后,在表面形成一层石灰(CaO)层,妨害继续分解生成的C0 2 穿过石灰层向外扩散,从而影响分解速度。当大粒度分成若干小块时,比表面积增加,在相同条件下,分解生成的石灰量增多,未分解部分减少,粉状的石灰石在900℃左右即可分解完毕,而块状的要在更高的温度下才能完全分解。粒度愈大,分解结束的温度愈高。此外CaO层的导热性差,内部温度要比表面温度低;粒度愈大,温差愈大。因此,石灰石因块度的影响,分解完成一直要到高温区域。 2.碳酸盐分解对高炉冶炼的影响及其对策 碳酸盐在高炉内若能在较高部位分解,它仅仅消耗高炉上部多余的热量,但如前述 CaCO 3 若在高温区分解,必然影响到燃料的过多消耗。其影响可按以下分析进行估量: (1)CaCO 3分解是吸热反应,1kg CaCO 3 分解吸热425×4.1868kJ,或者每分解出1kgC0 2 吸热956×4.1868kJ。 (2) CaCO 3在高温区分解出的C0 2 ,一般有50%以上与焦炭中的C发生气化(溶损) 反应: C0 2 十C=2CO一39600×4.1868kJ/kg分子 反应既消耗C又消耗热量。因耗C而减少了风口前燃烧的C量,(两者在数量上是相当的)即减少了C燃烧的热量: C十1/202=CO十29970x4.1868U/kg分子 两项热量之和为69570×4.1868kJ/kg分子, (3)CaCO 3分解出的CO 2 冲淡还原气氛,影响还原效果。 综上分析,CaCO 3 分解造成热能损失,又影响还原和焦炭强度。据理论计算以及实践经验表明,每增加100KG石灰石,多消耗焦炭30KG左右。 为消除石灰石作熔剂的不良影响,可采取以下措施: a、生产自熔性(特别是熔剂性)烧结矿,使高炉少加或不加熔剂,实现熔剂搬家; b、缩小石灰石粒度,改善石灰石炉内分解条件,使入炉熔剂尽可能在高炉内较高部位完成分解; c、使用生石灰代替石灰石作熔剂.

20161025 煤基竖炉直接还原技术

武汉科思瑞迪科技有限公司(以下简称“科思瑞迪”)坐落于武汉市东湖新技术开发区,是以武汉桂坤科技有限公司为主体,整合相关社会资源,汇集了冶金、工业炉、机电技术等各专业技术人才,集数十年研发、工程及生产经验,组建的一家专业从事煤基竖炉直接还原技术的开发、推广及应用的科技公司。该公司的技术及成套核心设施已经在中国、越南、缅甸等国的工程项目中得到了应用,取得了良好的社会及经济效益。 煤基竖炉直接还原技术 李森蓉李建涛 (武汉科思瑞迪科技有限公司) 摘要:本文对煤基竖炉直接还原技术从工艺流程、技术指标、技术特点等方面进行了较为详实的介绍和分析;该技术生产海绵铁的质量有保证,市场发展前景可期,市场竞争力强。 关键词:煤基竖炉直接还原铁技术特点产品质量 直接还原是指铁矿石或含铁氧化物在低于熔化温度下还原成金属产品的炼铁过程;其所得的产品称为直接还原铁,简称DRI(Direct Reduction Iron),也称海绵铁。优质DRI由于其成分稳定,有害元素含量低,粒度均匀,不仅可以补充废钢资源的不足,而且还可以作为电炉炼钢的原料以及转炉炼钢的冷却剂,对保证钢材的质量特别是合金钢的质量,起着不可替代的作用,是冶炼特钢的优质原料;同时,高品位DRI还可以供粉末冶金行业使用【1】。 直接还原铁生产方法中,主要分为气基法和煤基法。由于我国天然气资源缺乏,但是煤炭资源丰富,煤基直接还原技术成为我国直接还原铁生产的重要工艺方法【2】。煤基直接还原是指直接以廉价的非焦煤作还原剂生产直接还原铁的方法。 在我国煤基直接还原技术主要是回转窑法和隧道窑法【3】,近几年也相继建设了多座转底炉装置,同时也建设了一些煤基连续式竖炉装置。在直接还原技术日益发展、大力提倡环保节能减排的今天,一些新的更先进的直接还原工艺及设备被迫切需要【4,5】。 煤基竖炉直接还原技术是一项符合中国能源结构特点的可大型化生产高品质海绵铁的直接还原铁生产技术【6】,可广泛用于处理高品位铁精粉制取高纯度还原铁粉用于粉末冶金领域,也可用于处理普通品位的铁精粉制取炼钢用海绵铁,处理复合铁矿生产普通铁水及提取钒、钛、硼等高附加值资源。 1发展历程 自2006年至今,已经成功的在中国大陆和国外设计安装了5代炉型五条生产线: 1)一条1000吨/年中试生产线; 2)一条5万吨/年和两条10万吨/年生产线:

球团工艺简介及生产流程图

烧结厂球团工艺简介及生产流程图 德晟金属制品有限公司烧结厂建设1座12m 2竖炉,利用系数 6.3t/m 2?h ,年产酸性球团矿60万t 。 车间组成及工艺流程 1.1 车间组成 车间组成:配料室、烘干机室、润磨室、造球室、生筛室、转运站、焙烧室、带冷机通廊、成品缓冲仓、风机房、煤气加压站、软水站、高低压配电室等。 1.2 工艺流程 工艺流程图见付图 1.2.1 精矿接受与贮存 竖炉生产主要原料为磁铁矿精粉,对铁精粉化学成分要求是 精矿进料采用汽车输送,汽车将精矿粉卸到下沉式精矿堆场,经抓斗吊运至配料仓。 进厂铁精粉化学成分 名称 TFe( %) Feo (%) SiO2(%) S(%) 粒度(-200mm ) 磁铁矿 份 ≥65 ≤23 ≤7 ≤0.2 ≥85

1.2.2膨润土接受与贮存 竖炉对膨润土化学成分要求是: 进厂膨润土化学指标 名称 吸水率(2h) ∕% 吸蓝量 (100g膨润土∕g) 膨胀容(2g 膨润土∕ml) 粒度 (-200mm) 水分 (%) 钠基膨 润土 ≥400 ≥30 15 ≥95 ≤10 袋装膨润土用汽车运入,储存在膨润土库,由库内设的电葫芦将袋装 膨润土运至膨润土配料仓平台,由人工抖袋将膨润土卸到膨润土配料仓。 1.2.3配料系统 配料矿槽采用单列配置,4个精矿配料仓,容积100m3,储量8.8h,三用一备;2个膨润土仓,膨润土仓为一用一备。配料室为地 下结构。采用自动重量配料,根据设定的给料量和铁精粉与膨润土的 配比,自动调节给料量。铁精粉通过仓下2m圆盘给料机和配料皮带 秤配料。膨润土通过螺旋给料机和螺旋秤配入皮带。圆盘给料机和螺 旋给料机采用变频控制。并且尽量做到铁精矿与膨润土两料流首尾重合。在配料室膨润土落料点处和膨润土设抽风除尘,采用布袋除尘器, 布袋除尘器采用反吹清灰方式。 设置铁精粉仓库和膨润土库。铁精粉仓库能容纳约9天的用量, 下沉式结构,铁精粉采用抓斗吊上料,设置2台10t抓斗吊。膨润土 库用来堆放袋装膨润土,膨润土设电葫芦环形轨道由电葫芦将袋装膨

35种废气处理工艺流程图

35种废气处理工艺流程图 简介 废气处理设备,主要是运用不同工艺技术,通过回收或去除减少排放尾气的有害成分,达到保护环境、净化空气的一种环保设备。 处理原理: 页脚内容30

稀释扩散法 原理:将有臭味地气体通过烟囱排至大气,或用无臭空气稀释,降低恶臭物质浓度以减少臭味。适用范围:适用于处理中、低浓度的有组织排放的恶臭气体。优点:费用低、设备简单。缺点:易受气象条件限制,恶臭物质依然存在。 水吸收法 原理:利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的。适用范围:水溶性、有组织排放源的恶臭气体。优点:工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理。缺点:净化效率低,应与其他技术联合使用,对硫醇,脂肪酸等处理效果差。 曝气式活性污泥脱臭法 原理:将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广。适用范围:截至2013年,日本已用于粪便处理场、污水处理厂的臭气处理。优点:活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达99.5%以上。缺点:受到曝气强度的限制,该法的应用还有一定局限。 多介质催化氧化工艺 原理:反应塔内装填特制的固态填料,填料内部复配多介质催化剂。当恶臭气体在引风机的作用下穿过填料层,与通过特制喷嘴呈发散雾状喷出的液相复配氧化剂在固相填料表面充分接触,并在多介质催化剂的催化作用下,恶臭气体中的污染因子被充分分解。适用范围:适用范围广,尤其适用于处理大气量、中高浓度的废气,对疏水性污染物质有很好的去除率。优点:占地小,投资低,运行成本低;管理方便,即开即用。缺点:耐冲击负荷,不易污染物浓度及温度变化影响,需消耗一定量的药剂。 页脚内容30

高炉炼铁工艺流程(经典)61411

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、 直接还原法、熔融还原法等,其 原理是矿石在特定的气氛中(还 原物质CO、H2、C;适宜温度 等)通过物化反应获取还原后的 生铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主 要方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧

化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

喷煤工艺流程图及概述.

炼铁一厂喷煤系统工艺流程图及概述 山西中阳钢铁有限公司一体系升级改造项目高炉工程制粉喷吹系统,制粉、收粉系统全部利旧;干燥系统除热风炉废气管道需改造外,其他设施利旧;对喷吹系统进行局部改造。 制粉喷吹系统主要工艺现状:制粉喷吹站厂房为混凝土结构,全封闭。煤粉制备系统采用单系列全负压制粉工艺,喷吹系统采用1个煤粉仓、下部六罐并列(每三罐分别对应405m3高炉)。整个系统即1套干燥气发生炉系统、1套磨煤机制粉系统、1套煤粉收集系统、2套喷吹系统(一个煤粉仓,下部六罐并列)。 新建1780m3高炉投产后,2座405m3高炉拟全部拆除,现有制粉喷吹站只为新1780m3高炉供给煤粉。新建1780m3高炉主管及分配器设置方案为:2根喷吹主管(一个主管对应一个分配器)及2个炉前分配器(1#分配器对应奇数风口,2#分配器对应偶数风口)的直接喷吹工艺。 喷吹系统与原系统的交接界面为:喷吹罐输煤阀后的喷吹主管起点。喷吹煤粉主管及分配器平台为本工程设计范围。 1、工艺条件及要求 1)原煤条件 单一煤种和混合煤均可喷吹,通常使用三种煤组成混合煤,安全措施上按强爆炸性烟煤设计。原煤的理化指标见表2.10-1。 表1 原煤的理化指标表 成分工业分析( % ) 粒度 mm 哈氏可磨系数 HGI V daf A ad M t S t.ad 设计要求≤25 ≤12 ≤14 ≤0.8 ≤50 ≥50 2)煤粉条件

煤粉质量要求见表2.10-2。 表2 煤粉质量要求表 项目数值备注 煤粉粒度:-200目70~80% <1mm 100% 煤粉水份≤1.3% 3)制粉喷吹能力 按高炉正常日产铁水量4005吨,正常喷吹能力为160kg/t铁计,高炉正常喷吹所需煤粉量为26.7t/h;按高炉正常日产铁水量4005吨,喷吹能力为200kg/t 铁计,高炉最大喷吹所需煤粉量为33.4t/h。 2、主要工艺参数 制粉喷吹系统主要工艺参数见表2.10-3。 表3 喷吹系统工艺参数 序号名称单位数值备注 1 高炉公称容积m31780 2 风口数个22 3 高炉热风压力(最大)MPa 0.35 4 喷吹站到最远风口距离m ~150 5 高炉喷吹量t/h 26.7 最大33.4 6 吨铁理论喷煤量kg/t 160 设备能力200 7 系统现状能力kg/t 110~120 不改造喷吹罐 8 加压、流化用氮气量Nm3/h 1600 0.85MPa(g)

35种废气处理工艺流程图

35种废气处理工艺流程图简介 废气处理设备,主要是运用不同工艺技术,通过回收或去除减少排放尾气的有害成分, 达到保护环境、净化空气的一种环保设备。 处理原理: GAGGAGAGGAFFFFAFAF

稀释扩散法 GAGGAGAGGAFFFFAFAF

原理:将有臭味地气体通过烟囱排至大气,或用无臭空气稀释,降低恶臭物质浓度以减少臭味。适用范围:适用于处理中、低浓度的有组织排放的恶臭气体。优点:费用低、设备简单。缺点:易受气象条件限制,恶臭物质依然存在。 水吸收法 原理:利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的。适用范围:水溶性、有组织排放源的恶臭气体。优点:工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理。缺点:净化效率低,应与其他技术联合使用,对硫醇,脂肪酸等处理效果差。 曝气式活性污泥脱臭法 原理:将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广。适用范围:截至2013年,日本已用于粪便处理场、污水处理厂的臭气处理。优点:活性污 GAGGAGAGGAFFFFAFAF

泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达99.5%以上。缺点:受到曝气强度的限制,该法的应用还有一定局限。 多介质催化氧化工艺 GAGGAGAGGAFFFFAFAF

原理:反应塔内装填特制的固态填料,填料内部复配多介质催化剂。当恶臭气体在引风机的作用下穿过填料层,与通过特制喷嘴呈发散雾状喷出的液相复配氧化剂在固相填料表面充分接触,并在多介质催化剂的催化作用下,恶臭气体中的污染因子被充分分解。适用范围:适用范围广,尤其适用于处理大气量、中高浓度的废气,对疏水性污染物质有很好的去除率。优点:占地小,投资低,运行成本低;管理方便,即开即用。缺点:耐冲击负荷,不易污染物浓度及温度变化影响,需消耗一定量的药剂。 低温等离子体 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的着火电压时,气体分子被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。 GAGGAGAGGAFFFFAFAF

高炉工艺流程

高炉工艺流程 炼铁是在高炉内进行还原反应过程,炉料-矿石、燃料和熔剂从无料钟炉顶装入炉内,从鼓风机来的冷风经热风炉后,形成热风从高炉风口鼓入,随着焦炭燃烧,产生热煤气流由下而上运动,而炉料则由上而下运动,互相接触,进行热交换,逐步还原,最后到炉子下部,还原成生铁,同时形成炉渣。积聚在炉缸的铁水和炉渣分别由出铁口和出渣口放出。 由铁的生产过程可知,高炉除了反应炉本体系统,还包括了热风炉、上料、炉顶、炉前、喷煤、冲渣、给排水、除尘系统等。其中各系统的工艺流程如下: 1.本体 高炉本体是利用铁矿石作原料生产铁水的主要设备,是生成铁反应的容器。高炉也是钢铁联合企业生产线中最重要的基础设备,铁水是转炉炼钢的主要原料,因此高炉生产的优劣直接关系到钢铁联合企业炼钢和钢材的生产,它主要包含了炉基,炉壁,炉喉冷却系统等,且都是利用循环水来冷却的。 2.热风炉 热风炉的作用是给高炉提供热风,是炉内反应的必备条件。1#高炉热风炉采用4个内燃式热风炉为高炉送热风、2个顶燃式热风炉作为预热炉加热助燃空气,同时高炉煤气和助燃空气还通过换热器进行预热。热风炉是用各种特殊材料建成,可以耐受很高的温度。炉内砌有许多格子砖,对热风炉的加热,也就是加热

这些格子砖。在加热期间,也被称为“燃烧”状态,高炉煤气和大量的助燃空气混合燃烧,热气到达炉顶,然后通过格子砖,使热风炉被加热,废气从热风炉烟道排出。当热风炉被加热到一定温度时(顶温1300-1350℃,烟道温度350-400℃),结束燃烧状态,然后准备向高炉提供热风,也就是准备换到“送风“状态。在送风期间,冷风通过格子砖反向吹进。砖的热量传递给流过的空气,被加热的空气也称作热风,通过环管送入高炉。正常生产时,4个热风炉循环送风,一般为2个同时送风,其余2个为燃烧或隔断状态,这样就能满足为高炉提供连续热风的要求。 3.上料 上料系统由料仓、输送、给料、排料、筛分、称量等设备组成。根据冶炼工艺要求,把矿、焦等原燃料配成一定重量和成分的“料批”,然后通过上料运输设备送至炉顶。1#高炉设计选择胶带机的上料方式。1#高炉上料系统设计遵循高效、紧凑、清洁、环保、节能、循环经济的技术思想,突破常规的上料模式,两座高炉共用一座联合料仓,焦、矿仓为并列布置。采用“无中继站”分散筛分和分散称量的直接上料工艺。采用烧结矿分级入炉技术,可以合理调整入炉原料粒度、控制炉内不同粒度原料的分布,从而提高煤气利用率和炉料的透气性,有利于高炉操作和控制炉墙温度,实现高炉长寿。5500m3高炉烧结矿选择在烧结厂分级。烧结矿、球团矿、块矿、杂矿、熔剂、焦炭等原、燃料通过供料系统的胶带机运送至供料转运站。高炉料仓仓上布置5条带卸料

竖炉操作工艺

竖炉工艺 一、竖炉工艺事故的处理: 竖炉炉况正常特征: (1)烘床炉料透气性好,无粘接现象,无粉尘,影响视线的现象。 烘床速度快,干球入炉,烘床工作均匀,料球无粘接并处于蠕动状态。 (2)燃烧室压力底而稳定,各烧嘴火焰燃烧一致。 (3)煤气、助燃风、冷却风的流量足,压力稳定,燃烧废气含氧 量>2%,且无CO存在。 (4)炉身各带温度基本稳定,同一水平面温度差小。 (5)布料量与排料量基本均衡,炉料下行顺畅,同一水平面下料 均匀。料面无陷落、停滞或粘篦子的现象。芦苇两排料口排料量基本均衡,排料温度低而且温度不大。 (6)产尘量少,而且单位时间内产量基本一致。 (7)球团矿化学成份稳定,质量完全合格。 二、炉况失常的征兆和调解: 1、成品球的欠烧: (1)征兆: ①排出的料球中呈红褐色,FeO>2%,抗压强度、转鼓指数不 合格,成品返矿量增加。 ②炉顶烘干速度慢,效果变坏,而且烟罩内蒸汽量增加。 ③除尘量增加。

④燃烧室压力升高。 (2)处理方法: ①增加废气量,冷却风量,加强烘干效果。 ②降低拍料速度,减少生球入炉量。 ③采取上诉措施后仍普遍欠烧应提高燃烧室温度,每次提高 20℃,24至48小时后观察成品球情况再确定是否继续提温。成品求过烧: (1)征兆: ①排出料球中有粘块或熔块增加。 ②伴随有炉料下降不顺行现象。 (2)处理方法: ①①加快排料速度,增加生球入炉量。 ②若生球量供不应求,可减少废气量与冷风量。 ③采取上述措施无效是应降低燃烧室温度,一般降低 20---50℃。 2.2.9.7烘干速度减慢: (1)征兆: ①烘干效果差,湿料粘结,湿球入炉。 ③炉篦有粘料,下料不顺。 ④炉料透气性变坏,燃料室压力增高。 ⑤废气量冷却风减少,煤气空气压力及相应支管压力升高。 ⑥烘床上温度较低,料面蒸汽增加,布料视线较差,严重时

竣工环境保护专项验收工作流程

第一章建设单位竣工环境保护验收工作流程 10.1 成立验收工作组 建设单位组织成立的验收工作组可包括项目的设计单位、施工单位、环境影响报告书(表) 编制机构、验收报告编制机构等技术支持单位和环保验收、行业、监测、质控等领域的技术专家。技术支持单位和技术专家的专业技术能力尽量足够支撑验收组对项目能否通过验收做出科学准确的结论。 10.2 现场核查 验收工作组现场核查工作的目的是核查验收监测报告内容的真实性和准确定,补充了解验收监测报告中反映不全面或不详尽的内容,进一步了解项目特点和区域环境特征等。现场核查是得出验收意见的必要环节和有效手段。现场核查要点可以参照环境保护部《关于印发建设项目竣工环境保护验收现场检查及审查要点的通知》(环办〔2015〕113号)执行。 10.3形成验收意见 验收工作组可以召开验收会议的方式,在勘查现场和对验收监测报告内容核查的基础上,严格依照国家有关法律法规、建设项目竣工环境保护验收技术规范、建设项目环境影响报告书 (表)和审批决定等要求对建设项目配套建设的环境保护设施进行验收,形成科学合理的验收意见。验收意见应当包括工程建设基本情况,工程变动情况,环境保护设施落实情况,环境保护设施调试效果和工程建设对环境的影响,验收存在的主要问题,验收结论和后续要求。对验收不合格的项目,验收意见中还应明确具体且具可操作性的整改要求。 10.4 公开验收报告 除按照国家需要保密的情形外,建设单位应当通过其网站或其他便于公众知晓的方式,向社会公开下列信息: (1)建设项目配套建设的环境保护设施竣工后,公开竣工日期; (2)对建设项目配套建设的环境保护设施进行调试前,公开调试的起止日期;

高炉、烧结、球团工艺流程

炼铁工艺是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例装入高炉,并由热风炉向高炉内鼓入热风助焦炭燃烧,原料、燃料随着炉内熔炼等过程的进行而下降。在炉料下降和煤气上升过程中,先后发生传热、还原、溶化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的溶剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气、炉渣两种副产品,高炉渣水淬后全部作为水泥生产原料。 高炉是用焦炭、铁矿石和熔剂炼铁的一种竖式的反应炉(如图2-3)。高炉是一个竖立的圆筒形炉子,其内部工作空间的形状称为高炉内型,即通过高炉中心线的剖面轮廓。现代高炉内型一般由圆柱体和截头圆锥体组成,由下而上分为炉缸、炉腹、炉腰、炉身和炉喉五段。由于高炉炼铁是在高温下进行的,所以它的工作空间是用耐火材料围砌而成,外面再用钢板作炉壳。 1-炉底耐火材料; 2-炉壳; 3-生产后炉内砖衬侵蚀线; 4-炉喉钢砖; 5-煤气导出管; 6-炉体夸衬; 7-带凸台镶砖冷却壁; 8-镶砖冷却壁; 9-炉底碳砖; 10-炉底水冷管;

11-光面冷却壁; 12-耐热基墩; 13-基座 l图2-3 高炉的结构 在高炉炉顶设有装料装置,通过它将冶炼用的炉料(由焦炭和矿石按一定比例组成)按批装入炉内。在高炉下部炉缸的上沿,沿圆周均匀地布置了若干个风口(100m3小高炉有 8-10个,4000m3以上的大高炉则有36-42 个)。加热到1000℃

以上的热风,经铜质水冷风口送入炉内,供焦炭燃烧形成高温煤气。在炉缸的底部设有铁口,可周期性或连续性地排放出液态生铁和炉渣。在风口和铁口之间还设有渣口以排放部分炉渣,减轻铁口负担。 l现代高炉采用优质耐火材料,例如炉底、炉缸部位用微碳孔碳砖,炉身下部和炉腰部位用铝碳砖或碳化硅砖,其它部位用优质高铝砖和高致密度的粘土砖等作炉衬。炉壳用含锰的高强度低合金钢制作,安装有性能好的含铬耐热铸铁、球墨铸铁或铜质立式冷却器,或铜质的卧式冷却器。 l4 工艺流程: 高炉冶炼过程是一个连续的生产过程,全过程是在炉料自上而下,煤气自下而上的相互接触过程中完成的。如图2-4所示。 l炉料从受料斗进入炉腔。在高炉底部的炉缸和炉腹中装满焦炭。炉腰和炉身中则是铁矿石、焦炭和石灰石,层层相间,一直装到炉喉。 l从风口鼓入的热风温度高达1000-1300℃,炉料中焦炭在风口前燃烧,迅速产生大量的热,使风口附近炉腔中心温度高达1800℃以上。 l由于底部焦炭很厚,燃烧不完全,因此,炉气中存在大量CO气体,在炉内造成了良好的还原性气氛,产生的CO气体在炉体中上升。同时,由于下部的焦炭燃烧产生空隙,上面的焦炭、矿石和熔剂在炉体内缓慢下降,速度大约为 0.5-1mm/s。炽热的CO气体在炉内上升过程中加热缓慢下降的炉料,并把铁矿石中铁氧化物还原为金属铁,铁矿石在570-1200℃之间受到CO气体和红热焦炭的还原,形成了海绵铁。海绵铁在1000-1100℃的高温下溶入大量的碳,因而铁的熔点下降,形成了生铁。生铁的熔点约为1200℃,以液体状态滴入炉缸。矿石中未被还原的物质形成熔渣,实现渣铁分离。最后调整铁液的成分和温度达到终点,定期从炉内排入炉渣和生铁。上升的高炉煤气流,由于将能量传给炉料而温度不断下降,最终形成高炉煤气从炉顶导出管排出。

高炉炼铁工艺流程(经典)

本文是我根据我的上传的上一个文库资料继续修改的, 以前那个因自己也没有吃透,没有条理性,现在这个是我在 基本掌握高炉冶炼的知识之后再次整理的, 比上次更具有系 统性。同时也增加了一些图片,增加大家的感性认识。希望 本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、 高炉炼铁原理 三、 高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 料舛调控阀 炉喉 ?-50012 炉身外壳 炉身< 耐火硅层 ,炉体支杂 炉 /热风管 -140012 环炉热风管 炉腹 -180012 其风咀 一出查口

、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示: --- ----- _ _ _ _ _ ---------------------------------------------------- 皆被机 炼钢 煤气清洗 -------- *废水沉淀分隅 早. J I ____ n ___ _□ i 煤气管网 ■ 注*凸策段诊均户咬哽R }jr rp : / / y^j Hyj j 1 9 u 12 LbJ D 小 5□ ;返矿畋带机] 粉1、 阳t ___________ 〔揪尘等) 制煤粉设番 卜一札收带机 十?尘〔乱料系统} 炉顶彼压站、沏滑站 炉顶高压操作设备 均排压设施 炉顶检修设俯 矿石中间漏斗 I ------- 1 I 豉虬机1* 热说炉 泥地、升口机 ttfttaa 机、炉前脱时 摆动涂嘲、炉甫胃生 高炉冷却没备、炉 换炉、燃烧控制 装置各种阀门. 缠水糟耳、余焦 回收装胃 他冥域车 戡水城车 除尘暴 冲渣 |、财法 消水分用 水沧在 热水泉房 土冷却修

煤基竖炉直接还原专业技术

-煤基竖炉直接还原技术

————————————————————————————————作者:————————————————————————————————日期: ?

武汉科思瑞迪科技有限公司(以下简称“科思瑞迪”)坐落于武汉市东湖新技术开发区,是以武汉桂坤科技有限公司为主体,整合相关社会资源,汇集了冶金、工业炉、机电技术等各专业技术人才,集数十年研发、工程及生产经验,组建的一家专业从事煤基竖炉直接还原技术的开发、推广及应用的科技公司。该公司的技术及成套核心设施已经在中国、越南、缅甸等国的工程项目中得到了应用,取得了良好的社会及经济效益。 煤基竖炉直接还原技术 李森蓉李建涛 (武汉科思瑞迪科技有限公司) 摘要:本文对煤基竖炉直接还原技术从工艺流程、技术指标、技术特点等方面进行了较为详实的介绍和分析;该技术生产海绵铁的质量有保证,市场发展前景可期,市场竞争力强。 关键词:煤基竖炉直接还原铁技术特点产品质量 直接还原是指铁矿石或含铁氧化物在低于熔化温度下还原成金属产品的炼铁过程;其所得的产品称为直接还原铁,简称DRI(Direct Reduction Iron),也称海绵铁。优质DRI由于其成分稳定,有害元素含量低,粒度均匀,不仅可以补充废钢资源的不足,而且还可以作为电炉炼钢的原料以及转炉炼钢的冷却剂,对保证钢材的质量特别是合金钢的质量,起着不可替代的作用,是冶炼特钢的优质原料;同时,高品位DRI还可以供粉末冶金行业使用【1】。 直接还原铁生产方法中,主要分为气基法和煤基法。由于我国天然气资源缺乏,但是煤炭资源丰富,煤基直接还原技术成为我国直接还原铁生产的重要工艺方法【2】。煤基直接还原是指直接以廉价的非焦煤作还原剂生产直接还原铁的方法。 在我国煤基直接还原技术主要是回转窑法和隧道窑法【3】,近几年也相继建设了多座转底炉装置,同时也建设了一些煤基连续式竖炉装置。在直接还原技术日益发展、大力提倡环保节能减排的今天,一些新的更先进的直接还原工艺及设备被迫切需要【4,5】。 煤基竖炉直接还原技术是一项符合中国能源结构特点的可大型化生产高品质海绵铁的直接还原铁生产技术【6】,可广泛用于处理高品位铁精粉制取高纯度还原铁粉用于粉末冶金领域,也可用于处理普通品位的铁精粉制取炼钢用海绵铁,处理复合铁矿生产普通铁水及提取钒、钛、硼等高附加值资源。 1发展历程 自2006年至今,已经成功的在中国大陆和国外设计安装了5代炉型五条生产线: 1)一条1000吨/年中试生产线; 2)一条5万吨/年和两条10万吨/年生产线:

企业环境保护流程图

企业建设项目行政许可事项指南 目录 企业环境保护流程图 (1) 上海市金山区环保局建设项目行政许可事项指南 (3) 建设项目法律法规问答 (17) 违反建设项目环境保护管理规定的行为及其法律责任 (32)

上海市金山区环保局建设项目 行政许可事项指南 建设项目环境影响报告审批 (一)设立依据: 1、《中华人民共和国环境保护法》第13条第2款; 2、《中华人民共和国环境影响评价法》第3条、第22条; 3、《中华人民共和国放射性污染防治法》第29条; 4、《中华人民共和国海洋环境保护法》第43条; 5、《建设项目环境保护管理条例》第6条、第9条、第10条; 6、《上海市环境保护条例》第18条。 (二)办理范围:金山区 (三)管理权限: 根据《建设项目环境影响评价文件分级审批规定》和《上海市建设项目环境影响评价分级管理规定》,属区环保局审批权限的,列入《建设项目环境保护分类管理名录》内的建设项目。 (四)数量限制:无数量限制。 (五)基本条件:

1、环境影响评价文件编制必须符合《环境影响评价技术导则》以及相关标准、技术规范的要求; 2、建设项目必须符合区域开发建设规划和环境功能区划的要求; 3、建设项目必须符合国家和本市产业政策; 4、建设项目产生的二氧化硫、烟尘、粉尘、COD、氨氮、石油类等主要污染物排放量必须控制在本市污染物排放总量控制指标之内; 5、建设项目向环境排放污染物必须达到国家、行业和本市的污染物排放标准; 6、建设项目应当符合《清洁生产促进法》有关规定,优先采用原材料消耗低、污染物产生量少的清洁生产工艺,合理、节约利用自然资源,从源头上控制污染; 7、改建、扩建项目的环境影响评价文件必须反映项目原有的环境状况,采取“以新带老”等措施,治理原有的污染源; 8、建设项目必须符合法律、法规、规章、标准规定的各项环境保护要求。 (六)申请材料: 1、建设项目环境影响评价审批申请表(格式文本,原件,一式二份); 2、环境影响评价文件(原件及pdf格式电子文档,环境

石灰竖炉(石灰立窑)工艺流程

【河南中材水泥设备制造网】石灰竖炉(又名石灰立窑、石灰回转窑),主要包括炉壁和设在炉壁上的烧嘴,在竖炉的中央植入一个柱状炉芯,炉芯和炉壁之间有环形间隙。 【关键词】石灰竖炉,石灰立窑,石灰回转窑,工艺流程 一、石灰竖炉工艺概述 装载机将合格的原燃料分别装入石灰石仓和煤炭仓,然后通过输送皮带运至混配料仓。原燃料按设定值用电子秤准确称量,通过振动绘料机均匀给料后进行混匀,然后由提升料车把混合料运至炉顶受料斗,通过炉顶蜗壳式布料器完成炉内布料。炉料靠自重缓慢向下运动,相继通过予热带、锻烧带、冷却带。炉料在下降过程中,与炽热的上升煤气流进行着复杂的热交换,并伴随着石灰石的分解和生石灰的晶粒的发育成长过程。当全过程完成时,也被助燃空气冷却降温至 4 0 -- 6 0℃,然后由卸料机在不漏气的情况下卸至炉外成品皮带上。由多斗提升机将石灰运至成品料仓。如果需要筛分,先进行筛分后装入块灰仓和粉灰仓。 2..工艺特点 (1) 自动称量、均匀配料 对入炉石灰石和煤炭准确称量和合理配比是石灰竖炉优质锻烧和节能降耗的关键环节之一。 (2)均匀给料、旋转布料 炉顶加料系统由受料斗、传动和旋转布料器组成。由料车向旋转布料器均匀而定量给料,促使物料在入炉前进一步混合。旋转布料器是圆周式定点布料,可自动也可手动定点布料,炉内断面上石灰石和煤炭呈"点、网"状分布,料面呈"M"形状,从而使炉内气流分布均匀,对锻烧带稳定起到了关键性的作用。 (3)合理供风、密封出灰

该部分由离心风机、风帽、卸灰机组成。风机按要求定量供风。风帽则是我们自行设计,风帽保证炉内供风均匀,有效地抑制了竖炉的偏烧和过烧现象。卸灰机可使园周各处排料均匀,保证料柱均匀平稳下降和料柱异常时的及时排除,既保证了炉内气流稳定和防止炉气外泄,又提高了现场环境。 (4)自动控制,安全可靠 该石灰炉系统采用了自动控制技术。在布料、混配、供风和卸灰等关键设备上使用了以确保各个关键设备的安全运行。 3..原料要求 (1)石灰石 最佳粒度40~80mm。其中,》80mm 和《40mm 粒度总量应《5%,但上限不得超过10Omm, 下限不得小于30mm;质量要求为ZBD53002-90 二级普通石灰石标准,即为CaO>53%,泥沙含量《1%. (2)无烟煤、型煤 粒度为30mm;质量要求:以无烟煤为原料,灰份《10%,挥发份《10%,发热值:6000大卡。 5.竖炉石灰技术指标 成品氧化钙≥90%,活性度≮300毫升,生烧过烧率《8%煤耗135公斤/吨石灰。 二、中材水泥设备生产的石灰竖炉(石灰立窑)技术特点

高炉炼铁工艺流程(经典之作)

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、直

接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

零件结构的工艺性

零件结构的工艺性 一、零件结构工艺性概念 机械加工零件的结构工艺性 由于一般情况下切削加工的劳动耗费最多.因而零件结构的切削加工工艺性更为重要。下面将就单件小批生产中对它考虑的一般原则及实例进行简要分析。 ①尽量减少不必要的加工面积 减少加工面积不仅可减少机械加工的劳动量,而且还可以减少刀具的损耗,提高装配质量。图 2(b)中的轴承座减少了底面的加工面积,降低了修配的工作量,保证配合面的接触。图3(b)中减少了精加工的面积,又避免了深孔加工。 (a) (b) 图2 减少轴承座底面加工面积 设计零件 设计结构 选择材料 确定尺寸 使用性能:能用、好用、耐用 工艺要求:好做、好装、好修

(a) 错误(b) 正确 (a) (b) 图3 避免深孔加工的方法 (a) 错误 (b) 正确 ②尽量避免或简化内表面的加工 因为外表面的加工要比内表面加工方便经济,又便于测量。因此,在零件设计时应力求避免在零件内腔进行加工。如图4所示,将图(a)中件2上的内沟槽a加工,改成图(b)中件1的外沟槽加工,这样加工与测量就都很方便。 3、有利于提高劳动生产率 (a) (b) 图5 退刀槽尺寸一致 (a) 错误(b) 正确 ①零件的有关尺寸应力求一致,并能用标准刀具加工。如图5(b)中改为退刀槽尺寸一致,则减少了刀具的种类,节省了换刀时间。如图6(b)采用凸台高度等高,则减少了加工过程中刀具的调整。如图7(b)

的结构,能采用标准钻头钻孔,从而方便了加工。 (a) (b) 图6 凸台高度相等 (a) 错误(b) 正确 (a) (b) 图7 便于采用标准钻头 (a) 错误(b) 正确 ②减少零件的安装次数:零件的加工表面应尽量分布在同一方向,或互相平行或互相垂直的表面上;次要表面应尽可能与主要表面分布在同一方向上,以便在加工主要表面时,同时将次要表面也加工出来;孔端的加工表面应为圆形凸台或沉孔,以便在加工孔时同时将凸台或沉孔全锪出来。如:图8(b)中的钻孔方向应一致;图9(b)中键槽的方位应一致。

污染治理设施工艺流程及操作规程

第一条为加强我厂建设项目的环保后续管理,严格执行污染防治设施与主体工程同时设计、同时施工、同时投入使用(简称环保“三同时”)的规定,根据有关法律、法规,结合本厂实际,制定本办法。 第二条环保“三同时”管理指建设项目污染防治设施和主体工程开始设计至正式投产使用前的管理过程。 第三条凡有污染物排放且达不到排放标准及要求的建设项目,须执行环保“三同时”管理规定。 第四条凡需实行环保“三同时”管理的项目,分别由本局项目审批处、监督管理处、市环境监理所、市固废管理中心〔以下简称责任处(所)〕负责管理,具体分工如下: (一)市局项目审批处负责重点管理项目的环保“三同时”管理; (二)市局监督管理处负责餐饮娱乐业的环保“三同时”管理; (三)市局水源保护处负责水源保护区内非重点管理项目的环保“三同时”管理; (四)市环境监理所负责其它项目的环保“三同时”管理; (五)市局项目审批处为本局建设项目环保“三同时”管理的牵头组织部门; (六)市固废管理中心负责固体废物(含危险废物)综合利用、处理处置项目的环保“三同时”管理。 第二章工程方案设计、审查 第五条建设单位必须在进行主体工程建设前,委托持有《深圳市环境保护工程技术资格证书》的单位,按照建设项目的环境影响报告书(表)和环境影响审批批复意见的要求,对污染防治设施进行设计。 第六条建设单位应当将治理工程设计方案委托有资格的环保咨询机构进行评估,经评估认可并与治理单位签定工程合同后,将设计方案、评估意见书和工程合同报本局备案。 第三章定期申报与检查 第七条建设单位应从收到建设项目环境影响审查批复之日起,定期向本局责任处(所)申报污染治理工程和项目主体工程建设的进展情况。除试运转期为

球团竖炉工艺介绍

12㎡×2球团竖炉工艺介绍 一.配料工艺介绍: 1.配料料仓布局,膨润土(1#和2#仓)铁精粉(3#-7#仓)由东向西一字排列。 2.原料入仓方式,袋装膨润土使用小型电动吊车起吊至料仓上方,包装袋下部开口,膨润土直接装入料仓。吊车配备电子吊钩称,在起吊入仓时分别对每袋膨润土计量并记录,每班汇总数量上报厂部;铁精粉使用装载机车辆运输入仓。 3.原料计量方式,配料室每个料仓下料口配备圆盘给料机和电子计量皮带秤,按照配比调整出料量,并记录数值。 4.原料经过配料皮带机输送到烘干混合机。 二.烘干混合工艺介绍: 1.混合的目的,使不同种类原料水分、粒度、成分等指标充分混合,得到均一稳定的造球原料。 2.烘干的目的,原料进场水份高低不同,为稳定造球原料水分在(7.5±0.5%)区间,使用烘干炉煤气与空气混合燃烧产生高温烘干气体,控制调整混合料水分。 3.烘干混合后的原料经过烘干皮带机输送到造球室。 三.造球工艺介绍: 1.设备布局,1#,2#造球室分别对应1#,2#竖炉。1#,2#造球室各3个造球盘,每个造球盘上方对应混合料仓和给料皮带。 2.造球原理,铁精粉被水润湿在滚动过程中靠毛细引力、分子引力、摩擦力等作用形成一定粒度的生球,并使生球具有一定强度能够入炉焙烧。 3.生球团经过生球皮带机输送到辊式筛分机。 四.辊式筛分机介绍: 1.筛分原理,通过调整相临圆辊之间的距离,把整个筛分机辊面分成Ф<9mm,9-16mm和>16mm三个区域。生球经过筛面时不同直径的生球被筛分三级,Ф9-16mm粒级入炉焙烧,Ф<9mm和>16mm粒级不合格生球由返料皮带机输送返回造球室。(粒级区间可按实际生产调整) 2.合格生球经过生球皮带机输送到竖炉布料。 五.竖炉焙烧工艺介绍: 1.布料工艺,合格生球通过往复梭式布料车均匀铺在“人”字型烘干床上。 2.焙烧工艺,生球由炉顶向下经过烘干→预热→焙烧→均热→冷却过程。 3.红热球团由振动卸料机和链板机输送到带式冷却机。 六.成品冷却系统介绍: 1.带式冷却机,台车底部为通风篦板,按冷却需求开启4台鼓风机。带冷机排矿温度≤150℃。 2.成品球团经过成品皮带机输送至高炉或汽运落地库存。 七.脱硫系统介绍: 1.脱硫原理,制备消石灰CaO+H 2O→Ca(OH) 2 烟气脱硫SO 2+Ca(OH) 2 →CaSO 3 +H 2 O 2.系统流程,烟气→电除尘→风机→石灰浆液逆流喷淋→浆液真空过滤→脱硫石膏排出。

相关文档
最新文档