导数中的单调性问题

导数中的单调性问题
导数中的单调性问题

导数二:导数中的单调性问题

一、常见基本问题:

(1) 求已知函数的单调区间,要注意函数的定义域; (2)已知函数的单调性,求参数的取值范围。 例1、已知函数2()2ln f x x a x =+. (1)求函数()f x 的单调区间; (2)若函数2

()()g x f x x

=

+在[1,2]上是减函数,求实数a 的取值范围. 解:(1)函数()f x 的定义域为(0,)+∞.

① 当0a ≥时, '()0f x >,()f x 的单调递增区间为(0,)+∞;

② 当0a <时2('()x x f x x

=

.

当x 变化时,'(),()f x f x 的变化情况如下:

由上表可知: 函数()f x 的单调递减区间是;

单调递增区间是)+∞. (2)由22()2ln g x x a x x =

++得222'()2a g x x x x

=-++, 由已知()g x 为[1,2]上的单调减函数,则'()0g x ≤在[1,2]上恒成立,

即22220a

x x x -

++≤在[1,2]上恒成立, 即21

a x x ≤-在[1,2]上恒成立.

令21()h x x x =-,在[1,2]上2211

'()2(2)0h x x x x x

=--=-+<,

()h x ∴在[1,2]为减函数. min

7()

(2)2h x h ==-

7

2

a ∴≤-. 例2. 已知函数f (x )=(a +1)ln x +ax 2+1., 讨论函数f (x )的单调性;

解: f (x )的定义域为(0,+∞),2121

()2a ax a f x ax x x

+++'=+=

, 当a ≥0时,()0f x '>,故f (x )在(0,+∞)上单调递增. 当a ≤-1时,()0f x '<,故f (x )在(0,+∞)上单调递减. 当-1<a <0时,令()0f x '=,解得x =-

a +1

2a

则当x ∈时,()0f x '>;当)x ∈+∞时,()0f x '<

故f (x )在上单调递增,在)+∞上单调递减. 二、针对性练习

1.已知函数)0)(11()(>+=x nx x x f ,设()F x =),)(('2R a x f ax ∈+讨论函数()F x 的单调性;

解:22

121

()12(0),()2(0)ax F x ax nx x f x ax x x x

+'=++>=+=

> ①当0≥a 时,恒有()0f x '>,F (x )在),0(+∞上是增函数;

②当0a <时,令()0f x '>,得2210ax +>,解得x >

令()0f x '<,得2210ax +<,解得0x << 综上,当0≥a 时,F (x )在),0(+∞上是增函数;

当0a <时,F (x )在)21,0(a -

上单调递增,在),21

(+∞-a

上单调递减.

2.已知函数b

x ax

x f +=

2

)(,在1=x 处取得极值为2. (1)求函数)(x f 的解析式;

(2)若函数)(x f 在区间(,21)m m +上为增函数,求实数的取值范围;

解:(1)已知函数b x ax x f +=2)(,2

22)

()

2()()('b x x ax b x a x f +-+=∴ 又函数)(x f 在1=x 处取得极值2,???==∴2

)1(0

)1('f f

即??

?==??

?

?

??=+=-+14210

2)1(b a b a a b a 14)(2+=∴x x x f (2)222

222)

1(44)1()2(4)1(4)('+-=+-+=x x x x x x x f 由0)('>x f ,

得0442>-x ,即11<<-x 所以1

4)(2+=x x

x f 的单调增区间为(-1,1)

因函数)(x f 在(m ,2m +1)上单调递增,

则有???

??>+≤+-≥m m m m 121121,

解得01≤<-m 即]01(,-∈m 时,函数)(x f 在(m ,2m +1)上为增函数

知识点一-导数与函数的单调性

1.函数的单调性:在某个区间( a,b )内,如果f (x) . 0 ,那么函数y = f (x)在这个区间内单调递增;如果f (x) :::0,那么函数y = f(x)在这个区间内单调递减?如果f(x)=0,那么函数y = f(x)在这个区间上是常数函数? 注:函数y = f (x)在(a,b )内单调递增,贝U f (x)亠0,f (x) . 0是y = f (x)在(a,b )内单调递增的充分不必要条件? 2.函数的极值:曲线在极值点处切线的斜率为0,并且,曲线在极大值点左侧切线的斜率为正,右侧为 负;曲线在极小值点左侧切线的斜率为负,右侧为正. 一般地,当函数 y = f(x)在点沧处连续时,判断f(X。)是极大(小)值的方法是: (1)如果在X。附近的左侧f ' (x) 0 ,右侧f'(x)::: ,那么f(X0)是极大值. (2)如果在X o附近的左侧f '(X):::0 ,右侧f'(x) 0,那么f(X0)是极小值. 注:导数为0的点不一定是极值点 知识点一:导数与函数的单调性 方法归纳: 在某个区间(a,b )内,如果f (x) ?0,那么函数y = f (x)在这个区间内单调递增;如果「(x) :::0,那 么函数y二f(x)在这个区间内单调递减?如果f (x) =0,那么函数y二f(x)在这个区间上是常数函数?注:函数y = f (x)在(a,b )内单调递增,贝U f (x) _ 0 , f (x) 0是y = f (x)在(a,b )内单调递增的 充分不必要条件? 例1】(B类)已知函数f(x)=x3 bx2 cx d的图象过点P(0, 2),且在点M(-1, f(-1))处的切线方程为6x「y ?7 = 0 ? (I)求函数y = f(x)的解析式;(n)求函数y=f(x)的单调区间? 【解题思路】注意切点既在切线上,又原曲线上?函数f(x)在区间[a,b]上递增可得:f'(x)_0 ;函数 f (x)在区间[a,b]上递减可得:f'(x) E0. 3 【例2】(A类)若f(x)二ax x在区间[—1,1]上单调递增,求a的取值范围? 【解题思路】利用函数 f (x)在区间[a,b]上递增可得:f'(x)_0;函数f(x)在区间[a,b]上递减可得: f '(x)岂0.得出恒成立的条件,再利用处理不等式恒成立的方法获解 a 【例 3 】(B 类)已知函数f(x)=l nx,g(x) (a 0),设F(x^ f (x) - g(x). x (I)求函数F(x)的单调区间;

专题5 导数的应用-含参函数的单调性讨论(答案)

〖专题5〗导数的应用—含参函数的单调性讨论 “含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解 [典例1]讨论x a x x f + =)(的单调性,求其单调区间. 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f <<<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并. [变式练习1]讨论x a x x f ln )(+=的单调性,求其单调区间.

导数与函数的单调性练习题

2.2.1导数与函数的单调性 基础巩固题: 1.函数f(x)= 21 ++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.021 C.a>2 1 D.a>-2 答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>2 1 . 2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( ) A .a ≥0 B .a <-4 C .a ≥0或a ≤-4 D .a >0或a <-4 答案:C 解析:∵f ′(x )=2x +2+a x ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1) 上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),02 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +

1.3.1函数的单调性与导数教案

§1.3.1函数的单调性与导数 【教学目标】 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法。 【教学重点】利用导数判断函数单调性。 【教学难点】利用导数判断函数单调性。 【内容分析】 以前,我们用定义来判断函数的单调性. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)<f (x 2),那么函数f (x )就是区间I 上的增函数. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)>f (x 2),那么函数f (x )就是区间I 上的减函数。 在函数y=f(x)比较复杂的情况下,比较f(x 1)与f(x 2)的大小并不很容易. 如果利用导数来判断函数的单调性就比较简单。 【教学过程】 一、复习引入 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=. 2.法则1 )()()]()([' ' ' x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '=. 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? . 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数求导的基本步骤是:分解——求导——相乘——回代. 5.对数函数的导数: x x )'(ln = e x x a a log 1 )'(log =. 6.指数函数的导数:x x e e =)'(; a a a x x ln )'(=. 二、讲解新课 1. 函数的导数与函数的单调性的关系: 我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数 342+-=x x y 的图像 可以看到: 在区间(2,∞+)内,切线的斜率为正,函数y=f(x) 的 y =f (x )=x 2-4x +3 切线的斜率 f ′(x ) (2,+∞) 增函数 正 >0 (-∞,2) 减函数 负 <0 3 2 1 f x () = x 2-4?x ()+3 x O y B A

利用导数求函数的单调区间

利用导数求函数的单调区间 一学习目标: 1结合实例,找出函数的单调性与导数的关系; 2会利用导数研究函数的单调性,会求简单函数的单调区间。 二重点、难点: 重点:求函数的单调区间. 难点:求含参数函数的单调区间。. 三教材分析 本节课主要对函数单调性求法的学习; 它是在学习导数的概念的基础上进行学习的,同时又为导数的应用学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写) 它是历年高考的热点、难点问题 四教学方法 开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法 五教学过程 预习学案: 1.函数单调性的定义是什么?函数的单调区间怎样求? 2.讨论以下问题 (1)求函数y=x的导数,判断其导数的符号; (2)求函数y=x2的导数,判断其导数的符号. 3.根据上述问题,思考导数的符号与函数的单调性之间的关系,并加以总结: 设函数y=f(x)在区间(a,b)内可导: 如果在(a,b)内,______________,则f(x)在此区间是增函数; 如果在(a,b)内,______________,则f(x)在此区间是减函数. 4.根据上述总结,思考一下,函数在某个区间上是单调递增函数,是不是其导数就一定大于零呢?如果函数在某个区间上是单调递减函数,是不是其导数就一定小于零?能否举个例子说明一下?

小测验: 1.当0>x 时,()x x x f 4+ =的单调减区间 2.函数53 123++-=x x y 的单调增区间为_______________,单调减区间为______________. 利用导数求函数的单调区间(讲授学案)——冯秀转 题型:求函数的单调区间 例1、求下列函数的单调区间; (1)x x y 23+= (2)()221 ln x x x f -= 注意:求函数单调区间时必须先考虑函数的定义域. (小结)求函数单调区间的步骤: 练习:求()x e x x f 2=的单调区间。

1.3.1函数的单调性与导数教案

1.3.1函数的单调性与导数教案 谷城一中杨超 教学目标 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法 教学重点:探索函数的单调性与导数的关系,求单调区间. 教学难点:利用导数判断函数的单调性 教学过程 一.回顾与思考 1、函数单调性的定义是什么? 2、判断函数的单调性有哪些方法?比如判断y=x2的单调性,如何进行?(分别用定义法、图像法完成) 3、函数x =怎么判断单调性呢?还有其他方法吗? 22+ x y ln 二.新知探究函数的单调性与导数之间的关系 【情景引入】函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个Array基本的了解.函数的单调性与函数的导数一样都是反 映函数变化情况的,那么函数的单调性与函数的导数 是否有着某种内在的联系呢? 【思考】如图(1),它表示跳水运动中高度h随 时间t变化的函数2 =-++的图像,图 h t t t () 4.9 6.510 (2)表示高台跳水运动员的速度v随时间t变化的函 数' ==-+的图像.运动员从起跳到最 v t h t t ()()9.8 6.5 高点,以及从最高点到入水这两段时间的运动状态有什么区别? 【引导】随着时间的变化,运动员离水面的高度的变化有什么趋势?是逐渐增大还是逐步减小? 【探究】通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h随时间t的增加而增加,即() h t是增函数.相应地,' =>. v t h t ()()0 Array(2)从最高点到入水,运动员离水面的 高h随时间t的增加而减少,即() h t是减函 数.相应地' v t h t ()()0 =<, 【思考】导数的几何意义是函数在该点 处的切线的斜率,函数图象上每个点处的切 线的斜率都是变化的,那么函数的单调性与

导数在函数中的应用

第二课时 导数在函数中的应用 【学习目标】 1.理解导数在研究函数的单调性和极值中的作用; 2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; 4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 【重点难点】 ①利用导数求函数的极值;②利用导数求函数的单调区间;③利用导数求函数的最值;④利用导数证明函数的单调性;⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题;⑦导数与解析几何相综合的问题。 【高考要求】B 级 【自主学习】1. 函数的单调性 ⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则)(x f 为 .(逆命题不成立) (2) 如果在某个区间内恒有0)(='x f ,则)(x f . 注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. (3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ; ② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根; ③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间; ④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区间内的增减性. 2.可导函数的极值 ⑴ 极值的概念:设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点. ⑵ 求可导函数极值的步骤: ① 求导数)(x f ';

用导数求函数的单调性

用导数求函数的单调性 南江县第四中学 何其孝 指导老师:范永德 一、第一段:点明课题、展示目标、自主学习 1、展示学习目标 (1)理解)0(0(x)f <>'时,f(x)在0x x =附近单调性; (2)掌握用导数求函数的单调区间。 2、板书课题:用导数求函数的单调性 3、学生围绕学习目标看教材第89-93页,进行自主学习。(约10分钟) 二、第二段:合作探究、启发点拨 1、探究1:怎样从导数的几何意义,判断)0(0(x)f <>'时,f(x)在0x x =附近单调性?点拨:以直代曲 探究2:用导数求函数单调性的步骤 点拨:(1)求定义域 (2)求导函数(x)f ' (3)求)0(0(x)f <>',判断函数的单调性 (4)写出f(x)的单调区间 2、应用举例 例 判断下列函数的单调性,写出f(x)区间 (1) )(0,x x,-sinx f(x)π∈= (2) 12432f(x)23+-+=x x x

解:f′(x)=6x2 + 6x -24 当f′(x)>0,解得:2 1712171+->--',判断函数的单调性 (4)写出f(x)的单调区间 作业:课本第98页 习题3.3A 组1、(3) (4) 2、(3) (4)

《导数在研究函数中的应用-函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿 周国会 一、教材分析 1教材的地位和作用 “函数的单调性和导数”这节新知识是在教材选修1—1,第三章《导数及其应用》的函数的单调性与导数.本节计划两个课时完成。在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。培养学生数形结合思想、转化思想、分类讨论的数学思想。能利用导数研究函数的单调性;会求函数的单调区间.在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。 (一)知识与技能目标: 1、能探索并应用函数的单调性与导数的关系求单调区间; 2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。 (二)过程与方法目标: 1、通过本节的学习,掌握用导数研究函数单调性的方法。 2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。 (三)情感、态度与价值观目标: 1、通过在教学过程中让学生多动手、多观察、勤思考、善总结, 2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。(四)教学重点,难点 教学重点:利用导数研究函数的单调性、求函数的单调区间。 教学难点:探求含参数函数的单调性的问题。 二、教法分析 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。解关于含参数的问题,注意分类讨论点的确认,灵活应用已知函数的单调性求参数的取值范围。采用启发式教学,强调数形结合思想、转化思想、分类讨论的数学思想的应用,

高中数学选修2-2函数的单调性与导数

1.3.1函数的单调性与导数 [学习目标] 1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间(其中多项式函数的最高次数一般不超过三次). 知识点一函数的单调性与其导数的关系 在区间(a,b)内函数的导数与单调性有如下关系: 思考以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易,如何利用导数来判断函数的单调性? 答案根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈下降的状态,即函数单调递减. 知识点二利用导数求函数的单调区间 利用导数确定函数的单调区间的步骤: (1)确定函数f(x)的定义域. (2)求出函数的导数f′(x). (3)解不等式f′(x)>0,得函数的单调递增区间;解不等式f′(x)<0,得函数的单调递减区间. 知识点三导数绝对值的大小与函数图象的关系

一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化较快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.也就是说导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度. 如图,函数y =f (x )在(a,0)和(0,b )内的图象“陡峭”,在(-∞,a )和(b ,+∞)内的图象“平缓”. 题型一 利用导数确定函数的单调区间 例1 求下列函数的单调区间. (1)f (x )=3x 2-2ln x ;(2)f (x )=x 2·e - x ; (3)f (x )=x +1x . 解 (1)函数的定义域为D =(0,+∞).∵f ′(x )=6x -2x ,令f ′(x )=0,得x 1=33,x 2=- 3 3(舍去),用x 1分割定义域D ,得下表: ∴函数f (x )的单调递减区间为? ???0, 33,单调递增区间为??? ?3 3,+∞. (2)函数的定义域为D =(-∞,+∞).∵f ′(x )=(x 2)′e - x +x 2(e - x )′=2x e - x -x 2e - x =e - x (2x -x 2),令f ′(x )=0,由于e - x >0,∴x 1=0,x 2=2,用x 1,x 2分割定义域D ,得下表: ∴f (x )的单调递减区间为(-∞,0)和(2,+∞),单调递增区间为(0,2). (3)函数的定义域为D =(-∞,0)∪(0,+∞). ∵f ′(x )=1-1 x 2,令f ′(x )=0,得x 1=-1,x 2=1,用x 1,x 2分割定义域D ,得下表:

(完整版)利用导数研究函数的单调性(超好复习题型)

利用导数研究函数的单调性 考点一 函数单调性的判断 知识点: 函数()f x 在某个区间(),a b 内的单调性与其导数的正负关系 (1)若 ,则()f x 在(),a b 上单调递增; (2)若 ,则()f x 在(),a b 上单调递减; (3)若 ,则()f x 在(),a b 是常数函数. 1、求下列函数的单调区间. (1)()ln f x x e x =+ (2)2 1()ln 2 f x x x =- (3)()()3x f x x e =- (4)()2x f x e x =- (5)()3ln f x x x =+ (6)ln ()x f x x = (7)2()(0)1 ax f x a x =>+ (8)32333()x x x x f x e +--=

2、讨论下列函数的单调性. (1)()ln (1),f x x a x a R =+-∈ (2)3(),f x x ax b a R =--∈ (3)2 ()ln ,2 x f x a x a R =-∈ (4)32(),,f x x ax b a b R =++∈ (5)2()(22),0x f x e ax x a =-+> (6)2 1()2ln (2),2 f x x a x a x a R =-+-∈ (7)2()1ln ,0f x x a x a x =-+-> (8)221 ()(ln ),x f x a x x a R x -=-+∈

3、已知函数32(),f x ax x a R =+∈在4 3 x =-处取得极值. (1)确定a 的值; (2)若()()x g x f x e =,讨论函数()g x 的单调性. 4、设2()(5)6ln ,f x a x x a R =-+∈,曲线()y f x =在点()1,(1)f 处的切线与y 轴相交于点()0,6. (1)确定a 的值; (2)求函数()f x 的单调区间. 5、(2016全国卷2节选)讨论2()2 x x f x e x -=+的单调性, 并证明当0x >时,(2)20x x e x -++>. 6、(2016年全国卷1节选)已知函数2()(2)(1)x f x x e a x =-+-.讨论()f x 的单调性.

函数的单调性与导数教学设计

《函数的单调性与导数》教学设计 教材分析 1、内容分析 导数是微积分的核心概念之一,是高中数学教材新增知识,在研究函数性质时有独到之处,体现了现代数学思想.本节的教学内容属导数的应用,是在学习了导数的概念、运算和几何意义的基础上学习的内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打下了基础. 由于学生在高一已经掌握了函数单调性的定义,并会用定义判定函数在给定区间上的单调性.通过本节课的学习应使学生体验到,用导数判断函数的单调性比用定义要简捷的多(尤其对于三次和三次以上的多项式函数,或图像难以画出的函数而言),充分展示了导数的优越性. 2、学情分析 在必修一中,学生学习了单调函数的定义,并会用定义判断或证明函数在给定区间上的单调性,在前几节,学生学习了导数的概念、几何意义及运算法则,已经掌握了利用导数研究函数单调性的必备知识. 用定义证明函数在给定区间的单调性的方法是作差、变形、判断符号.而对大部分函数而言,变形环节是非常繁琐,甚至是无法做到的,并且不清楚“给定区间”是如何给出的,这就要求同学们积极探索更好的方法来判断函数的单调性和探求函数的单调区间,以此来激发学生的学习兴趣. 教学目标 依据新课标纲要和学生已有的认知基础和本节的知识特点,我制定了以下教学目标: 1、知识与技能目标: 借助于函数的图象了解函数的单调性与导数的关系;培养学生的观察能力、归纳能力,增强数形结合的思维意识.

2、过程与方法目标: 会判断具体函数在给定区间上的单调性;会求具体函数的单调区间. 3、情感、态度与价值观目标: 通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯。 教学重点、难点 教学重点:1、利用导数判断函数的单调性. 2、会求不超过三次的多项式的单调区间。 教学难点:1、函数的单调性与导数的关系 2、提高灵活应用导数法解决有关函数单调性问题的能力. 教学重难点的解决方法 通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题;通过几何画板的动态演示,使抽象的知识直观化、形象化,以促进学生的理解. 教法设计: 1、自主探究法:让学生自己发现问题,自己归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力. 2、比较法:对同一个问题,采用不同的方法,从中体会导数法的优越性. 教学媒体 根据本节课的教学要求及学生学习的需要,我对本节课的教学媒体设计如下 1:多媒体辅助教学:制作直观,有效地多媒体课件,可以节省课堂时间,也给学生直观认识和感觉; 2:投影仪的辅助教学:利用投影把学生的解题过程及方法及时展示,可以提高学生学习数学的兴趣. 课型:新授课 教学过程 教学过程设计意图

导数在函数单调性中的应用——分类讨论专题复习

高三二轮复习函数单调性讨论(文科压轴第(1)问) 一、解答题 1.已知函数,.讨论的单调性; 【解】:Ⅰ,. 当时,,在上是单调增函数; 当时,. 当时,,当时,, 在上单调递增,在上单调递减. 综上,当时,在上是单调增函数,当时,在上单调递增,在上单调递减; 2.已知函数.试讨论函数的单调性; 【解】:1, 时,在恒成立,故在递增, 时,由,解得:,由,解得:,故在递减,在递增; 3.已知函数(a>0).讨论函数f(x)的单调性; 【解】:(1)解:.①当0<a≤1时,由f'(x)<0,得[(1+a)x-1][(1-a)x+1]<0, 解得; 由f'(x)>0,得[(1+a)x-1][(1-a)x+1]>0,解得. 故函数f(x)的单调递减区间为(0,),单调递增区间为(,+∞). ②当a>1时,由f'(x)<0,得或; 由f'(x)>0,得. 故函数f(x)的单调递减区间为(0,),(,+∞),单调递增区间为. 4.已知函数. 当时,求函数的单调增区间; 若函数在上是增函数,求实数a的取值范围; 【解】:当时,. 则 令,得,即,解得:或. 因为函数的定义域为, 所以函数的单调增区间为. 由函数.因为函数在上是增函数,所以 对恒成立 即对恒成立.所以即实数a的取值范围是. 5.设函数. 当为自然对数的底数时,求的极小值; 若在上为单调增函数,求m的取值范围. 【解】:(1)由题设,当时,,则,()∴当,,在 上单调递减,当,,在上单调递增,当时,取得极小值,,∴的极小值为2. (2)因为在上为单调增函数,所以对于恒成立,即对于恒成立,进而

6.已知函数. (1)讨论的单调区间; (2)若恒成立,求实数的取值范围. 【解】:(1)的定义域为,, ①当时,,所以的减区间为,无增区间. ②当时,令得;令得;所以的单调递增区间为, 单调递减区间为. 综上可知,当时,的减区间为,无增区间; 当时,的单调递增区间为,单调递减区间为. 7.设函数.求函数的单调区间和极值. 【解】:由,得, 当时,,函数在上单调递增,函数无极大值,也无极小值; 当时,由,得或舍去. . 函数在处取得极小值,无极大值. 综上可知,当时,函数的单调递增区间为,函数既无极大值也无极小值; 当时,函数的单调递减区间是,单调递增区间为, 函数有极小值,无极大值. 8.已知函数.(1)求的单调区间; 【解】:(1). 当时,由,得,,∴函数的递减区间是; 当时,由得,∴当时,;当时,. ∴函数的递增区间是,递减区间是; 综上,当时,函数的递减区间是; 当时,函数的递增区间是,递减区间是. 9.已知函数. (1)求函数的单调区间; (2)若对任意,函数的图像不在轴上方,求的取值范围. 【解】:(1)函数的定义域为,. 当时,恒成立,函数的单调递增区间为. 当时,由,得或(舍去), 则由,得,由,得, 所以的单调递增区间为,单调递减区间为. (2)对任意,函数的图像不在轴上方,等价于对任意,都有恒成立,即在上. 由(1)知,当时,在上是增函数,又,不合题意; 当时,在处取得极大值也是最大值,所以. 令,所以.

(完整版)用导数求函数的单调区间含参问题

用导数求函数的单调区间——含参问题 一、问题的提出 应用导数研究函数的性质:单调性、极值、最值等,最关键的是求函数的单调区间,这是每年高考的重点,这也是学生学习和复习的一个难点。其中,学生用导数求单调区间最困难的是对参数分类讨论。尽管学生有分类讨论的意识,但是找不到分类讨论的标准,不能全面、准确分类 二、课堂简介 请学生求解一下问题,写出每一题求单调区间的分类讨论的特点。 例1、 求函数R a a x x x f ∈-= ),()(的单调区间。 解:定义域为),0[+∞ ,23)('x a x x f -=令,0)('=x f 得,3 a x = (1) 0≤a ,0)('≥x f 恒成立,)(x f 在),0[+∞上单调递增; (2) 0>a ,令0)('>x f 得∴> 3a x )(x f 在)3,0[a 上单调递减,在),3 [+∞a 上单调递增。 所以,当0≤a 时,)(x f 在),0[+∞上单调递增;当0>a 时,)(x f 在)3 ,0[a 上单调递减,在),3 [+∞a 上单调递增。 分类讨论特点:一次型,根3 a 和区间端点0比较 例2、 求函数R a x a ax x x f ∈+-+-=,1)1(2131)(23的单调区间。 解:定义域R ),1)](1([1)('2---=-+-=x a x a ax x x f 令,0)('=x f 得1,121=-=x a x (1) 211>>-a a 即,令0)('>x f 得∴<->11x a x 或)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调递增。 (2) 21 1==-a a 即,0)('≥x f 恒成立,所以)(x f 在R 上单调递增。 (3) 211<<-a a 即,令0)('>x f 得∴>-<11x a x 或)(x f 在)1,(--∞a 上单调递增,)1,1(-a 上单调递减,),1(+∞上单调递增。 所以,当2>a 时,)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调

导数讨论含参函数的单调性

导数讨论含参函数的单调性 【思想方法】 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 【典例讲解】 例1 讨论x a x x f +=)(的单调性,求其单调区间 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号)I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数,即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(', a x x a x x f <<<<-?≠<00)0(0)('或,此时)(x f 在),(a --∞和),(+∞a 都是单调 增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和 ),(+∞a ;)(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 解:x a x x f ln )(+=的定义域为),0(+∞ )0(1)('>+=+ =x x a x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立,此时)(x f 在),0(+∞为单调增函数, 即)(x f 的增区间为),0(+∞,不存在减区间; II) 当0?>>)0(0)(';a x x x f -<<0)0(0)(' 此时)(x f 在),(+∞-a 为单调增函数,)(x f 在),0(a -是单调减函数, 即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -. 例2.讨论x ax x f ln )(+=的单调性 解:x ax x f ln )(+=的定义域为),0(+∞ )0(11)('>+=+ =x x ax x a x f (它与1)(+=ax x g 同号)

导数的应用(-)单调性

函数的单调性 沈阳第十一中学 赵拥权 1.已知函数1)(3--=ax x x f 在实数集R 上单调递增,求a 的取值范围 2.设函数ax x x f -=ln )(在),1(+∞上是单调减函数求a 的取值范围 3.函数ax e x g x -=)(在),1(+∞-上是单调增函数求a 的取值范围 4.设ax x x x f 22131)(23++- =.若)(x f 在),32(+∞上存在单调递增区间,求a 的取值范围; 5.的取值范围;则在定义域内是增函数,函数m x x mx x f 2ln )(2-+= 6.[]的取值范围;上不单调,则在函数t t t x x x x f 1,ln 3421)(2+-+- = 7.3)2(3 1)(23++++=x b bx x x f 函数在R 上不单调,则b 的取值范围; 9.(]的取值范围;时增函数,则函数a x x ax x f 1,0,12)(2∈-= 10.已知函数若f(x)在区间 上是减函数,求实数a 的取值范围; 11. 已知函数 若f(x)在定义域上是增函数,求实数a 的取值范围; 10.已知函数ln ()x x k f x e +=(k 为常数, 2.71828e =???是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值; (Ⅱ)求()f x 的单调区间; 11.已知a 、b 为常数,且a ≠0,函数f (x )=-ax +b +ax ln x ,f (e )=2,(e =2.71828…是自然对数的底数)。 (Ⅰ)求实数b 的值; (Ⅱ)求函数f (x )的单调区间;

专题2.13 利用导数求函数的单调性、极值、最值(解析版)

第十三讲 利用导数求函数的单调性、极值 、最值 【套路秘籍】 一.函数的单调性 在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时: ①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x ); ②求方程f ′(x )=0的根; ③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值 (1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值. (2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 【套路修炼】 考向一 单调区间 【例1】求下列函数的单调区间: (1)3 ()23f x x x =-; (2)2 ()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析 【解析】(1)由题意得2 ()63f x x '=-. 令2 ()630f x x '=->,解得2x <- 或2 x >. 当(,2x ∈-∞- 时,函数为增函数;当)2 x ∈+∞时,函数也为增函数. 令2 ()630f x x '=-<,解得22x - <<.当(22 x ∈-时,函数为减函数.

(完整版)利用导数求函数单调性题型全归纳

利用导数求函数单调性题型全归纳 一.求单调区间 二.函数单调性的判定与逆用 三.利用单调性求字母取值范围 四.比较大小 五.证明不等式 六.求极值 七.求最值 八.解不等式 九.函数零点个数(方程根的个数) 十.探究函数图像 一.求单调区间 例1. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间 解: ()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++. 则令()()g x f x '=,因为当0,1a a >≠,所以2 ()2ln 0x g x a a '=+> 所以()f x '在R 上是增函数,又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+, 故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞, 变式:已知()x f x e ax =-,求()f x 的单调区间 解:' ()x f x e a =-,当0a ≤时,' ()0f x >,()f x 单调递增 当0a >时,由' ()0x f x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增 由' ()0x f x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增 综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间 当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞, 二.函数单调性的判定与逆用 例2.已知函数32 ()25f x x ax x =+-+在1132 (,)上既不是单调递增函数,也不是单调递减 函数,求正整数a 的取值集合 解:2 ()322f x x ax '=+-

相关文档
最新文档