高考数学立体几何新题型的解题技巧.

高考数学立体几何新题型的解题技巧.
高考数学立体几何新题型的解题技巧.

第六讲 立体几何新题型的解题技巧

【命题趋向】在2007年高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系.

2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.

3.多面体及简单多面体的概念、性质多在选择题,填空题出现.

4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.

【考点透视】(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版.

①理解空间向量的概念,掌握空间向量的加法、减法和数乘.

②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图.

空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.

不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.

求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】

考点1 点到平面的距离

求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题

例1(2007年福建卷理)如图,正三棱柱的所有棱长都为,为中点. (Ⅰ)求证:平面

; (Ⅱ)求二面角的大小; (Ⅲ)求点到平面

的距离.

考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力.

解答过程:解法一:(Ⅰ)取中点,连结. 为正三角形,. 正三棱柱中,平面平面,

平面

连结

,在正方形

中,

分别为

的中点,

, . 在正方形中,,

平面.

(Ⅱ)设

与交于点,在平面

中,作于

,连结,由(Ⅰ)得

平面

为二面角的平面角. 在中,由等面积法可求得

. 所以二面角的大小为.

A

B

C

D

A B C

D

O

F

(Ⅲ)中,,.

在正三棱柱中,到平面的距离为.

设点到平面的距离为.

由,得,

点到平面的距离为.

解法二:(Ⅰ)取中点,连结.

为正三角形,.

在正三棱柱中,平面平面,

平面.

取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,

,,.

,,

,.

平面.

(Ⅱ)设平面的法向量为.

,.,,

令得为平面的一个法向量.

由(Ⅰ)知平面,

为平面的法向量.

,.

二面角的大小为.

(Ⅲ)由(Ⅱ),为平面法向量,

点到平面的距离.

小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面的距离转化为容易求的点K 到平面的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.

例2.( 2006年湖南卷)如图,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.

(Ⅰ)证明PQ⊥平面ABCD;

(Ⅱ)求异面直线AQ与PB所成的角;

(Ⅲ)求点P到平面QAD的距离.

命题目的:本题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.

过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方

法二关键是掌握利用空间向量求空间距离和角的一般方法.

解答过程:

方法一(Ⅰ)取AD的中点,连结PM,QM.

因为P-ABCD与Q-ABCD都是正四棱锥,

Q B

C

P

A

D

O

M

x

z

A

B

C

D

O

F

y

所以AD ⊥PM ,AD ⊥QM . 从而AD ⊥平面PQM . 又平面PQM ,所以PQ ⊥AD .

同理PQ ⊥AB ,所以PQ ⊥平面ABCD . (Ⅱ)连结AC 、BD 设,由PQ ⊥平面ABCD 及正四棱锥的性质可知O 在PQ 上,从而P 、A 、Q 、C 四点共面.取OC 的中点N ,连接PN . 因为

,所以

从而AQ ∥PN ,∠BPN (或其补角)是异面直线AQ 与PB 所成的角. 因为

所以

.

从而异面直线AQ 与PB 所成的角是.

(Ⅲ)连结OM ,则

所以∠MQP =45°.

由(Ⅰ)知AD ⊥平面PMQ ,所以平面PMQ ⊥平面QAD . 过P 作PH ⊥QM 于H ,PH ⊥平面QAD .从而PH 的长是点P 到平面QAD 的距离. 又

.

即点P 到平面QAD 的距离是

.

方法二

(Ⅰ)连结AC 、BD ,设.

由P -ABCD 与Q -ABCD 都是正四棱锥,所以PO ⊥平面

ABCD ,QO ⊥平面ABCD .

从而P 、O 、Q 三点在一条直线上,所以PQ ⊥平面ABCD . (Ⅱ)由题设知,ABCD 是正方形,所以AC ⊥BD .

由(Ⅰ),QO ⊥平面ABCD . 故可分别以直线CA 、DB 、QP 为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P (0,0,1),A (,0,0),

Q (0,0,

-2),B (0,,0). 所以

于是

.

(Ⅲ)由(Ⅱ),点D 的坐标是(0,-

,0),

,设是平面QAD 的一个法向量,由

. 取x =1,得

.

所以点P 到平面QAD 的距离.

考点2 异面直线的距离

此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离. 典型例题

Q

B

C

P

A D

z

y

x

O

例3 已知三棱锥,底面是边长为的正三角形,棱

的长为2,且垂直于底面.分别为的中点,求CD 与SE 间的距离.

思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所

求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求

点到平面的距离. 解答过程:

如图所示,取BD 的中点F ,连结EF ,SF ,CF ,

为的中位线,∥∥面,

到平面的距离即为两异面直线间的距离. 又

线面之间的距离可转化为线上一点C 到平面

的距离,设其为h ,由题意知,,D 、E 、F 分别是

AB 、BC 、BD 的中点,

在Rt 中,

在Rt 中,

由于

,即,解得

故CD 与SE 间的距离为

.

小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 考点3 直线到平面的距离

此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化. 典型例题

例4. 如图,在棱长为2的正方体

中,G 是

的中点,求BD 到平面

的距离.

思路启迪:把线面距离转化为点面距离,再用点到平面距离 的方法求解. 解答过程: 解析一

∥平面,

上任意一点到平面的距离皆为所求,以下求

点O 平面

的距离,

,平面

, 又平面

平面,两个平面的交线是

,

作于H ,则有平面

,即OH 是O 点到平面

的距离.

在中,

.

.

即BD 到平面的距离等于

.

解析二

∥平面,

上任意一点到平面的距离皆为所求,以下求点B 平面

的距离.

设点B 到平面

的距离为h ,将它视为三棱锥

的高,则

B

A

C

D

O

G

H

,

即BD 到平面的距离等于.

小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离. 考点4 异面直线所成的角

此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点.

典型例题

例5(2007年北京卷文)

如图,在中,,斜边.可以通过以

直线为轴旋转得到,且二面角的直二面角.是的中点.

(I )求证:平面平面;

(II )求异面直线与所成角的大小.

思路启迪:(II)的关键是通过平移把异面直线转化到一个三角形内.

解答过程:解法1:(I)由题意,,,

是二面角是直二面角,

,又,

平面,

又平面.

平面平面.

(II)作,垂足为,连结(如图),则,

是异面直线与所成的角.

在中,,,

又.

在中,.

异面直线与所成角的大小为.

解法2:(I)同解法1.

(II)建立空间直角坐标系,如图,则,,,,

,,

异面直线与所成角的大小为.

小结:求异面直线所成的角常常先作出所成角的平面图形,作法有:①平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,如解析一,或利用中位线,如解析二;②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系,如解析三.一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的范围:.

例6.(2006年广东卷)如图所示,AF、DE分别是⊙O、⊙O1的直径.AD与两圆所在的平面均垂直,AD=8,BC是⊙O的直径,AB=AC =6,OE//AD.

(Ⅰ)求二面角B—AD—F的大小;

(Ⅱ)求直线BD与EF所成的角.

命题目的:本题主要考查二面角以及异面直线所成的角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.

过程指引:关键是用恰当的方法找到所求的空间距离和角并掌握利用空间向量求空间距离和角的一般方法. 解答过程: (Ⅰ)∵AD 与两圆所在的平面均垂直,

∴AD ⊥AB , AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.

由于ABFC 是正方形,所以∠BAF =450. 即二面角B —AD —F 的大小为450;

(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,,0),B (

,0,0),D (0,

,8),E (0,0,8),F (0,

,0)

所以,

设异面直线BD 与EF 所成角为,则 .

故直线BD 与EF 所成的角为

.

考点5 直线和平面所成的角

此类题主要考查直线与平面所成的角的作法、证明以及计算. 线面角在空间角中占有重要地位,是高考的常考内容. 典型例题

例7.(2007年全国卷Ⅰ理) 四棱锥中,底面为平行四边形,侧面底面.已知,

,,

(Ⅰ)证明; (Ⅱ)求直线与平面所成角的大小.

考查目的:本小题主要考查直线与直线,直线与平面的位置关系,

二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. 解答过程:解法一:(Ⅰ)作,垂足为,连结,由侧面底面, 得底面. 因为,所以, 又,故为等腰直角三角形,, 由三垂线定理,得. (Ⅱ)由(Ⅰ)知,依题设,

故,由,,,得

,.

的面积

连结,得的面积 设

到平面

的距离为,由于,得

,解得

. 设

与平面

所成角为,则.

所以,直线与平面

所成的我为

. 解法二: (Ⅰ)作,垂足为,连结

,由侧面

底面,得

平面

因为,所以.

为等腰直角三角形,

S

D B

C

A

S

如图,以为坐标原点,为轴正向,建立直角坐标系

,所以

(Ⅱ)取中点,

, 连结

,取

中点,连结

,.

与平面内两条相交直线,

垂直.

所以

平面,与的夹角记为,

与平面

所成的角记为

,则

互余.

所以,直线

与平面

所成的角为

. 小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值. 考点6 二面角

此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点,应重视. 典型例题 例8.(2007年湖南卷文) 如图,已知直二面角,,,,,,直线和平面所成的角为

(I )证明;

(II )求二面角

的大小.

命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.

过程指引:(I )在平面内过点作于点,连结. 因为,

,所以

又因为,所以. 而,所以,,

从而

,又

所以平面.因为平面,故

(II )解法一:由(I )知,

,又

,所以

过点作于点,连结,由三垂线定理知,.

故是二面角的平面角. 由(I )知,,所以是和平面所成的角,则,

不妨设,则,

中,

,所以

A

B

C Q

P A

B C

Q

P O H

于是在中,.

故二面角的大小为. 解法二:由(I )知,,,,故可以为原点,分别以直线为

轴,轴,轴建立空间直角坐标系(如图). 因为,所以是和平面

所成的角,则

不妨设,则,

. 在

中,

所以. 则相关各点的坐标分别是

,,

所以,.

设是平面

的一个法向量,由

取,得

易知是平面

的一个法向量.

设二面角的平面角为,由图可知,

所以

故二面角的大小为.

小结:本题是一个无棱二面角的求解问题.解法一是确定二面角的棱,进而找出二面角的平面角.无棱二面角棱的确定有以下三种途径:①由二面角两个面内的两条相交直线确定棱,②由二面角两个平面内的两条平行直线找出棱,③补形构造几何体发现棱;解法二则是利用平面向量计算的方法,这也是解决无棱二面角的一种常用方法,即当二面角的平面角不易作出时,可由平面向量计算的方法求出二面角的大小. 例9.( 2006年重庆卷)如图,在四棱锥P -ABCD 中,P A 底面ABCD ,DAB 为直角,AB ‖CD ,AD =CD =2AB , E 、F 分别为PC 、CD 的中点. (Ⅰ)试证:CD 平面BEF ;

(Ⅱ)设P A =k ·AB ,且二面角E -BD -C 的平面角大于,

求k 的取值范围.

命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.

过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法. 解答过程: 解法一:(Ⅰ)证:由已知DF AB 且DAD 为直角,故ABFD 是矩形,从而CD BF .

又P A 底面ABCD,CD AD ,故由三垂线定理知CD

PD .在

△PDC 中,E 、F 分别 PC 、CD 的中点,故EF ∥PD ,从而CD EF ,由此得CD 面BEF . (Ⅱ)连结AC 交BF 于G .易知G 为AC 的中点.连接EG ,则在△P AC 中易知EG ∥P A .又因

P A 底面ABCD ,故EG 底面ABCD .在底面ABCD 中,过G 作GH BD ,垂足为H ,连接EH .由三垂线定理知EH BD .从而EHG 为二面

角E -BD -C 的平面角.

设AB=a ,则在△P AC 中,有 EG =

P A =

ka .

以下计算GH ,考察底面的平面图.连结GD .

A B C Q

P O

x y z

因S△GBD=BD·GH=GB·DF.

故GH=.

在△ABD中,因为AB=a,AD=2a,得BD= a.

而GB=FB=AD=a,DF=AB,从而得

GH===

因此tan∠EHG==

由k>0知是锐角,故要使>,必须

>tan=

解之得,k的取值范围为k>

解法二:

(Ⅰ)如图,以A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间直角坐标系,设AB=a,则易知点A,B,C,D,F的坐标分别为

A(0,0,0),B(a,0,0),C(2a,2a,0),D(0,2a,0), F(a,2a,0).

从而=(2a,0,0), =(0,2a,0),

·=0,故.

设P A=b,则P(0,0,b),而E为PC中点.故E.

从而=,·=0,故.

由此得CD面BEF.

(Ⅱ)设E在xOy平面上的投影为G,过G作GH BD垂足为H,由三垂线定理知EH BD.

从而EHG为二面角E-BD-C的平面角.

由P A=k·AB得P(0,0,ka),E,G(a,a,0).

设H(x,y,0),则=(x-a,y-a,0),=(-a,2a,0),

由·=0得-a(x-a)+2a(y-a)=0,即

x-2y=-a①

又因=(x-a,y,0),且与的方向相同,故=,即

2x+y=2a②

由①②解得x=a,y=a,从而=,||=a.

tan∠EHG===.

由k>0知,∠EHG是锐角,由EHG>得tan∠EHG>tan即>

故k的取值范围为k >.

考点7 利用空间向量求空间距离和角

众所周知,利用空间向量求空间距离和角的套路与格式固定.当掌握了用向量的方法解决立体几何问题这套强有力的工具时,不仅会降低题目的难度,而且使得作题具有很强的操作性.

典型例题

例10.(2007年江苏卷)

如图,已知是棱长为的正方体,

点在上,点在上,且.

(1)求证:四点共面;

(2)若点在上,,点在上,

,垂足为,求证:平面;

(3)用表示截面和侧面所成的锐二面角的大小,求.

命题意图:本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力.

过程指引:解法一:

(1)如图,在上取点,使,连结,,则

,.

因为,,所以四边形,都为平行四边形.

从而,.

又因为,所以,故四边形是平行四边形,由此推知,从而.

因此,四点共面.

(2)如图,,又,所以,

因为,所以为平行四边形,从而.

又平面,所以平面.

(3)如图,连结.

因为,,所以平面,得.

于是是所求的二面角的平面角,即.

因为,所以

,.

解法二:

(1)建立如图所示的坐标系,则,,,

所以,故,,共面.

又它们有公共点,所以四点共面.

(2)如图,设,则,

而,由题设得,

得.

因为,,有,

又,,所以,,从而,.

故平面.

(3)设向量截面,于是,.

而,

,得,,解得,,

所以. 又平面

,所以和的夹角等于或(为锐角).

于是.

小结:向量法求二面角的大小关键是确定两个平面的法向量的坐标,再用公式求夹角;点面距离一般转化为在面BDF 的法向量上的投影的绝对值. 例11.(2006年全国Ⅰ卷)

如图,l 1、l 2是互相垂直的两条异面直线,MN 是它们的公垂线段,点A 、B 在l 1上,C 在l 2上,AM =MB =MN (I )证明AC NB ;

(II )若,求NB 与平面ABC 所成角的余弦值.

命题目的:本题主要考查异面直线垂直、直线与平面所成角的有关 知识,考查空间想象能力、逻辑思维能力和运算能力.

过程指引:方法一关键是用恰当的方法找到所求的空间角; 方法二关键是掌握利用空间向量求空间角的一般方法. 解答过程:

解法一: (Ⅰ)由已知l 2⊥MN , l 2⊥l 1 , MN ∩l 1 =M, 可得 l 2⊥平面ABN . 由已知MN ⊥l 1 , AM =MB =MN ,可知AN =NB 且AN ⊥NB . 又AN 为AC 在平面ABN 内的射影. ∴AC ⊥NB

(Ⅱ)∵Rt △CAN ≌Rt △CNB , ∴AC =BC ,又已知∠ACB =60°,因此△ABC 为正三角形.

∵Rt △ANB ≌Rt △CNB , ∴NC =NA =NB ,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心,连结BH ,∠NBH 为NB 与平面ABC 所成的角.

在Rt △NHB 中,cos ∠NBH = HB NB = 33AB 2

2AB = 6

3.

解法二: 如图,建立空间直角坐标系M -xyz . 令MN=1, 则有A (-1,0,0),B (1,0,0),N (0,1,0),

(Ⅰ)∵MN 是 l 1、l 2的公垂线, l 1⊥l 2, ∴l 2⊥平面ABN .

l 2平行于z 轴. 故可设C (0,1,m ). 于是 =(1,1,m ), =(1,-1,0). ∴·=1+(-1)+0=0 ∴AC ⊥NB .

(Ⅱ)∵ =(1,1,m ), =(-1,1,m ), ∴||=||, 又已知∠ACB =60°,∴△ABC 为正三角形,AC =BC =AB =2. 在Rt △CNB 中,NB =2, 可得NC =2,故C (0,1, 2).

连结MC ,作NH ⊥MC 于H ,设H (0,λ, 2λ) (λ>0). ∴=(0,1-λ,-2λ), =(0,1, 2) ∵ · = 1-λ-2λ=0, ∴λ= 1

3

,

∴H (0, 13, 23), 可得=(0,23, - 23), 连结BH , 则=(-1,13, 2

3

),

∵·=0+29 - 2

9

=0, ∴⊥, 又MC ∩BH =H , ∴HN ⊥平面ABC , ∠NBH 为NB 与平面ABC 所成的角. 又=(-

1,1,0),

N

M

H

C

B

A

N

M

H

x

C

B

o

z

y

∴cos ∠NBH = =

43

23

×2 = 63. 考点8 简单多面体的有关概念及应用,主要考查多面体的概念、性质,主要以填空、选择题为主,通常结合多面体的定义、性质进行判断. 典型例题

例12 . 如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为 时容积最大.

[思路启迪]设四边形一边AD ,然后写出六棱柱体积,利用均值不等式,求出体积取最值时AD 长度即可. 解答过程:如图(2)设AD =a ,易知∠ABC =60°,且∠ABD =30°AB =

a .

BD =2a 正六棱柱体积为V . V ==

≤ .

当且仅当 1-2a =4a

a =

时,体积最大, 此时底面边长为1-2a =1-2×=

.

∴ 答案为

.

例13 .如图左,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE 的中点,将△ABC 沿DE 、EF 、DF 折成三棱锥后,GH 与IJ 所成角的度数为( )

A 、90°

B 、60°

C 、45°

D 、0°

[思路启迪] 画出折叠后的图形,可看出GH ,IJ 是一对异面直线,即求异面直线所成角. 过点D 分别作IJ 和GH 的平行线,即AD 与DF ,所以 ∠ADF 即为所求. 因此GH 与IJ 所成角为60°,答案:B 例14.长方体ABCD -A 1B 1C 1D 1中,

① 设对角线D 1B 与自D 1出发的三条棱分别成α、β、角

求证:cos 2α+cos 2β+cos 2=1

② 设D 1B 与自D 1出发的三个面成α、β、角,求证: cos 2α+cos 2β+cos 2=2

[思路启迪] ①因为三个角有一个公共边即D 1B ,在构造 的直角三角形中,角的邻边分别是从长方体一个顶点出 发的三条棱,在解题中注意使用对角线长与棱长的关系 ③ 利用长方体性质,先找出α,β,,然后利用各边 ④ 所构成的直角三角形来解.

解答过程:①连接BC 1,设∠BD 1C 1=α,长方体三条棱 长分别为a ,b ,c ,设D 1B = 则cos 2α=

同理cos 2β=

,cos 2=

B

A C D E

F G H I

J (A 、B 、C )

D E

F G H I J A B

C

A

D

A 1

B 1

C 1

D 1

高考数学考试的答题技巧和方法_答题技巧

高考数学考试的答题技巧和方法_答题技巧 一、答题和时间的关系 整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很“亏”。 高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。 二、快与准的关系 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。 三、审题与解题的关系 有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。 四、“会做”与“得分”的关系 要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”,高中生物。 五、难题与容易题的关系 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。 选择题绝大部分是低中档题,所以必须争取多得分或得满分。选择题的答法审题要慢,答题要快。因此对选择题除直接求解外,还要做到不择手段,即小题要小做,小题要尽量巧做。答选择题常用的方法还有:数形结合法(根据题意做出草图,结合图象解决问题);特例检验法(利用特殊情况代替题设中的普遍条件,得出结论);筛选法(根据各选项的不同,从选项中选特殊情况检验是否符合题意);等价转化法(化陌生为熟悉);构造法(如立几中的“割补”思想)。另外,答选择题不要恋战,要学会暂时放弃。

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

2020年高考数学答题技巧(全套完整精品)

2020 年高考数学答题技巧(全套完整精品) 一、考前准备 1.调适心理,增强信心 (1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考; (2)合理安排饮食,提高睡眠质量; (3)保持良好的备考状态,不断进行积极的心理暗示; (4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。 2.悉心准备,不紊不乱 (1)重点复习,查缺补漏。对前几次模拟考试的试题分类梳理、整合,既可按知识分类,也可按数学思想方法分类。强化联系,形成知识网络结构,以少胜多,以不变应万变。 (2)查找错题,分析病因,对症下药,这是重点工作。 (3)阅读《考试说明》,确保没有知识盲点。 (4)回归课本,回归基础,回归近年高考试题,把握通性通法。 (5)重视书写表达的规范性和简洁性,掌握各类常见题型的表达模式,避免“会而不对,对而不全”现象的出现。 (6)临考前应做一定量的中、低档题,以达到熟悉基本方法、典型问题的目的,一般不再做难题,要保持清醒的头脑和良好的竞技状态。 3.入场临战,通览全卷最容易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此时保持心态平稳是非常重要的。刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作铺垫,一般可在五分钟之内做完下面几件事: (1)填写好全部考生信息,检查试卷有无问题; (2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定); (3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B 两类:A 类指题型比较熟悉、容易上手的题目;B 类指题型比较陌生、自我

最新-江苏高考数学立体几何真题汇编

A B C D E F 2008-2018江苏高考数学立体几何真题汇编 (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ??? E , F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)? ?????CB =CD F 是BD 的中点 ? CF ⊥BD ? ?? AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD

B C? (2009年第16题) 如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C . 求证:(1)EF∥平面ABC (2)平面A1FD⊥平面BB1C1C 证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC, 因为EF?平面ABC,BC?平面ABC,所以EF∥平面ABC (2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1, 又A1D?平面A1B1C1,故CC1⊥A1D, 又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C?平面BB1C1C 故A1D⊥平面BB1C1C,又A1D?平面A1FD, 故平面A1FD⊥平面BB1C1C

P A B C D D P A B C F E (2010年第16题) 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离. 证明:(1)因为PD ⊥平面ABCD , BC ?平面ABCD ,所以PD ⊥BC . 由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD . 因为PC ?平面PCD ,故PC ⊥BC . 解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍. 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F . 易知DF = 2 2 ,故点A 到平面PBC 的距离等于2. (方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h . 因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1. 由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3 . 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC . 又PD =DC =1,所以PC =PD 2+DC 2=2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC = 2 2 . 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3 ,得h =2, 故点A 到平面PBC 的距离等于2.

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

高考数学的解题技巧指导

高考数学的解题技巧指导 1.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显, 从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很 多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。 2.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范 围时,取特殊点代入验证即可排除。 3.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量 角尺直接量出结果来。 1.熟悉基本的解题步骤和解题方法 解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一 些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题 的步骤,往往很容易找到习题的答案。 2.审题要认真仔细 对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取 信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并 从中找出隐含条件。 有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常 是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际 解题时,应特别注意,审题要认真、仔细。 3.认真做好归纳总结 在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解 题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的 解题时间。 4.熟悉习题中所涉及的内容 解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

历年全国理科数学高考试题立体几何部分精选(含答案)

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

(一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ?=?= 即 30 30x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{PB BC ?=?= 可取m=(0,-1,3-) 27cos ,727 m n ==- 故二面角A-PB-C 的余弦值为 27-

(二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 23 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1, DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

2019高考数学试题汇编之立体几何(原卷版)

专题04 立体几何 1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则 A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是 A.158 B.162 C.182 D.324

4.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 5.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC , BC P 到平面ABC 的距离为___________. 6.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长 方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 7.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方 体1111ABCD A B C D 挖去四棱锥O ?EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3 ,不考虑打印损耗,制作该模型所需原料的质量为___________g. 8.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网 格纸上小正方形的边长为1,那么该几何体的体积为__________.

高中数学解题方法及解析大全

最全面的高考复习资料 目录 前言 (2) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第一章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

高考数学答题策略与答题技巧电子教案

高考数学答题策略与 答题技巧

高考数学答题策略与答题技巧 一、历年高考数学试卷的启发 1.试卷上有参考公式,80%是有用 的,它为你的解题指引了方向; 2.解答题的各小问之间有一种阶梯关 系,通常后面的问要使用前问的结论。如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。当然,我们也要考虑结论的独立性; 3.注意题目中的小括号括起来的部分,那往往是解题的关键; 二、答题策略选择 1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答; 2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要“小题大做”。注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,写了就可能得分。 三、答题思想方法

1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……; 4.选择与填空中出现不等式的题目,优选特殊值法; 5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法; 6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏; 7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式; 8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点); 9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可; 10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

历年江苏高考数学立体几何真题汇编含详解

历年江苏高考数学立体几何真题汇编(含详解) (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ? ??? ?E ,F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)??????? ?? ?CB =CD F 是BD 的中点 ? CF ⊥BD ? ??? ?AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD (2009年第16题) 如图,在直三棱柱ABC —A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上, A 1D ⊥ B 1 C . 求证:(1)EF ∥平面ABC (2)平面A 1FD ⊥平面BB 1C 1C 证明:(1)由E ,F 分别是A 1B ,A 1C 的中点知EF ∥BC , 因为EF ?平面ABC ,BC ?平面ABC ,所以EF ∥平面ABC (2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1, 又A 1D ?平面A 1B 1C 1,故CC 1⊥A 1D , 又因为A 1D ⊥B 1C ,CC 1∩B 1C =C , CC 1、B 1C ?平面BB 1C 1C 故A 1D ⊥平面BB 1C 1C ,又A 1D ?平面A 1FD , 故平面A 1FD ⊥平面BB 1C 1C (2010年第16题)

2007年高考理科数学“立体几何”题

2007年高考“立体几何”题 1.(全国Ⅰ) 如图,正四棱柱1111ABCD A B C D -中,12AA AB =, 则异面直线1A B 与1AD 所成角的余弦值为( ) A . 15 B . 25 C . 3 5 D . 45 解:如图,连接BC 1,A 1C 1,∠A 1BC 1是异面直线1A B 与1AD 所成的角,设AB=a ,AA 1=2a ,∴ A 1B=C 1B=5a , A 1C 1=2a ,∠A 1BC 1的余弦值为4 5 ,选D 。 一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知 正三棱柱的底面边长为2,则该三角形的斜边长为 . 解:一个等腰直角三角形DEF 的三个顶点分别在 正三棱柱的三条侧棱上,∠EDF=90°,已知 正三棱柱的底面边长为AB=2,则该三角形 的斜边EF 上的中线DG=3. ∴ 斜边EF 的长为23。 四棱锥S ABCD -中,底面ABCD 为平行四边形, 侧面SBC ⊥底面ABCD .已知45ABC =∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. 解法一: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD . 因为SA SB =,所以AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 1 A A B 1B 1A 1D 1C C D C 1A C F A D B C A S

数学答题技巧---2019高考数学冲刺_答题技巧

更多免费资料Q群94014946,梦奇最可爱制作 2019高考数学选择题答题秘诀 数学选择题在当今高考试卷中,不但题目多,而且占分比例高。数学选择题具有概括 性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。 解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中 间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏 漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制 在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。 高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的 解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想, 但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而, 在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面 提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是 解选择题的基本策略。 (一)数学选择题的解题方法 1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再 与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。 例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为() 解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 故选A。 例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l有且仅有一个平面与α垂直;③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直。其中正确命题的个数为() A.0B.1C.2D.3 解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正 确的,故选D。 例3、已知F1、F2是椭圆+=1的两焦点,经点F2的的直线交椭圆于点A、B, 若|A B|=5,则|A F1|+|BF1|等于() A.11B.10C.9D.16 解析:由椭圆的定义可得|A F1|+|A F2|=2a=8,|B F1|+|BF2|=2a=8,两式相加后将|A B|=5=|A F2|+|BF2|代入,得|A F1|+|BF1|=11,故选A。 例4、已知在[0,1]上是的减函数,则a的取值范围是() A.(0,1)B.(1,2)C.(0,2)D.[2,+∞) 解析:∵a>0,∴y1=2-ax是减函数,∵在[0,1]上是减函数。 ∴a>1,且2-a>0,∴1

立体几何 高考真题全国卷

(2018 文 I )在平行四边形中,,,以为折痕将折起,使点到达点的位置,且. ⑴证明:平面平面; ⑵为线段上一点,为线段上一点,且,求三棱锥的体积. (2018 文 I I )如图,在三棱锥中,, ,为的中点. (1)证明:平面; (2)若点在棱上,且,求点到平面的距离. ABCM 3AB AC ==90ACM =?∠AC ACM △M D AB DA ⊥ACD ⊥ABC Q AD P BC 2 3 BP DQ DA ==Q ABP -P ABC -AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =C POM A B C P O M

(2018 文 III )如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. ⑴证明:平面AMD ⊥平面BMC ; ⑵在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. (2017 文 I )如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ; (2)若PA=PD=AB=DC,90APD ∠=,且四棱锥P-ABCD 的体积为8 3 ,求该四棱锥的侧面积.

(2017 文 II )如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD , 1 ,2 AB BC AD BAD == ∠90.ABC =∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积. (2017 文 III )如图,四面体ABCD 中,△ABC 是正三角形,AD=CD . (1)证明:AC ⊥BD ; (2)已知△ACD 是直角三角形,AB=BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.

高考数学答题规律和思路汇总

高考数学答题规律和思路汇总 1函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……; 4选择与填空中出现不等式的题目,优选特殊值法; 5求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法; 6恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏; 7圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必 须先考虑是否为二次及根的判别式; 8求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简注意去掉不符合条件的特殊点; 9求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可; 10三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围; 11数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的 思想; 12立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之 间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题; 13导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意 点是否在曲线上;

高考数学压轴题解题技巧和方法

圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11, (,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意 斜率不存在的请款讨论),消去四个参数。 如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 02 20=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点, ∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ;

(2)求|||PF PF 1323 +的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。y p x p x y t x 210=+>+=()() (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。 <2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。 (1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。 最值问题的处理思路: 1、建立目标函数。用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x 、y 的范围; 2、数形结合,用化曲为直的转化思想; 3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值; 4、借助均值不等式求最值。 典型例题 已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B , |AB|≤2p (1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

相关文档
最新文档