拉普拉斯变换实验报告答案

拉普拉斯变换实验报告答案
拉普拉斯变换实验报告答案

评分:《信号与系统》

实验报告

实验题目:拉普拉斯变换

实验班级:

姓名:

学号:

指导教师:

实验日期:

拉普拉斯变换实验

一、实验目的:

1、了解拉普拉斯变换及其逆变换的符号方法;

2、了解由系统函数零、极点分布决定时域特性,并绘制出图形;

3、了解由系统函数零、极点分布决定时域特性,并绘制出图形。

二、实验设备:多媒体计算机,matlab软件。

三、实验内容:

1.例题4-8 求下示函数的逆变换

F(s)=10(s+2)(s+5)/s(s+1)(s+3)

该题中,所编程序为:

clear all, close all, clc; %清除所有变量并清除屏幕内容

syms s; %定义系统s

f = ilaplace(10*(s+2)*(s+5)/s/(s+1)/(s+3)) %进行拉式变换

实验结果:

f =

100/3 - (10*exp(-3*t))/3 - 20*exp(-t)

2.例题4-9 求下示函数的逆变换

F(s)=(s^3+5s^2+9s+7)/(s+1)(s+2)

该题中,所编程序为:

clear all, close all, clc; %清除所有变量并清除屏幕内容

b = [1,5,9,7]; %函数分子的系数

a1 = [1,1]; %函数分母第一个因式的系数

a2 = [1,2]; %函数分母第二个因式的系数

a = conv(a1,a2); %令a的值使a1,a2收敛

[r,p,k] = residue(b,a) %是函数部分分式展开

运行结果为:

r =

-1

2

p =

-2

-1

k =

1 2

3.例题4-10 求下示函数的逆变换

F(s)=(s^2+3)/(s^2+2s+5)(s+2)

该题中,所编程序为:

clear all, close all, clc; %清除所有变量并清除屏幕内容

b = [1,0,3]; %函数分子的系数

a1 = [1,2,5]; %函数分母第一个因式的系数

a2 = [1,2]; %函数分母第二个因式的系数

a = conv(a1,a2); %令a的值使a1,a2收敛

[r,p,k] = residue(b,a) %是函数部分分式展开

运行结果为:

r =

-0.2000 + 0.4000i

-0.2000 - 0.4000i

1.4000

p =

-1.0000 + 2.0000i

-1.0000 - 2.0000i

-2.0000

k =

[]

4.例题4-12 求下示函数的逆变换

F(s)=(s-2)/s(s+1) ^3

该题中,所编程序为:

clear all, close all, clc; %清除所有变量并清除屏幕内容

b = [1,-2]; %函数分子的系数

a1 = [1,0]; %函数分母第一个因式的系数

a2 = [1,1] %函数分母第二个因式的系数

a = conv(conv(a1,a2),conv(a2,a2)); %令a的值使a1,a2收敛的收敛

[r,p,k] = residue(b,a) %是函数部分分式展开

运行结果为:

r =

2.0000

2.0000

3.0000

-2.0000

p =

-1.0000

-1.0000

-1.0000

k =

[]

5.例题4-17

图4-17所示电路在t=0时开关S闭合,接入信号源e(t)=VmSIN(wt),电感起始电流等于零,求电流i(t)。

根据电路模型可列式:i(t)=1/L((e^-Rt/L)*VmSIN(wt))

该题中,所编程序为:

clear all, close all, clc; %清除所有,关闭所有,中图类分号;sys = tf(10,[1 1]); %建立传递函数;

t = [0:0.01:10]'; %定义时域范围;

e = sin(3*t); %定义输出函数;

i = lsim(sys, e, t); %计算系统函数为sys/e的系统对输入向量t的时间响应; figure, box on, hold on;

plot(t,e,'k-.',t,i,'k-');

set(gca,'FontSize',16);

legend('e(t)','i(t)');

xlabel('Time(sec)');

运行结果为:

6.例题4-22

由s平面几何研究图4-22所示二阶RC系统的频响特性H(jw)=V2(jw)/V1(jw)。注意,图中kv3是受控电压源。且R1C1《R2C2。

根据电路模型可列式:

H(s)=V2(s)/V1(s)=(k/R1C1)(s/(s+1/R1C1)(s+1/R2C2))

该题中,所编程序为:

clear all, close all, clc; %清除所有变量并清除屏幕内容

t = [0:.1:40]'; %0到40间隔为0.1

figure, id = 1;

for omega = .5:-.25:0

for sigma = -.06:.03:.06

p = sigma + j*omega;

if omega ~= 0

p = [p;p'];

end

[b a] = zp2tf([],p,1);

subplot(3,5,id);

impulse(b,a,t);

set(gca,'YLim',[-20,20]);

id = id + 1;

运行结果为:

7.例题4-39

若H(s)零、极点分布如题图4-39所示,试讨论它们分别是哪种滤波网络(低通、高通、带通、带阻)。

该题中,所编程序为:

clear all, close all, clc;

data = struct('title',{'(a)','(b)','(c)','(d)',... %定义五个二维坐标 '(e)','(f)','(g)','(h)'},'zeros',{[],[0],[0;0],...

[-0.5],[0],[1.2j;-1.2j],[0;0],[1.2j;-1.2j]},... %依次在五个二维坐标上计算相应的零点

'poles',{[-2;-1],[-2;-1],[-2;-1],[-2;-1],...

[-1+j;-1-j],[-1+j;-1-j],[-1+j;-1-j],[j;-j]}); %依次在五个二维坐标上计算相应的极点

omega = [0.01:0.01:6]'; %定义变量omega figure; %生成图

for id = 1:8 %定义循环语句

[b,a] = zp2tf(data(id).zeros,data(id).poles,1); %分别计算以上二维

图坐标图的传递函数

H = freqs(b,a,omega); %计算频率响应函数 subplot(4,2,id); %定义一个四行两列的平面一次排放图

plot(omega,abs(H)); %以omega为X轴,以频率响应函数的绝对值为Y轴 set(gca,'YScale','log','FontSize',16);

title(data(id).title); %将逐渐增加变量id的值显示在title上面

xlabel('\omega'); %在图上的X轴位置形成'omega'标签

ylabel('H(\omega'); %在图上的Y轴位置形成H(omega)标签

end

运行结果为:

四、实验注意事项

编写matlab程序时,注意各种函数的使用,注意输入语句时不要输错。

五、实验步骤

打开Matlab软件,编写程序语句,然后运行程序得出结果。

六、实验心得

本次试验主要用MATLAB软件对一些函数进行了拉普拉斯变换及对电路模型进行拉普拉斯求解。实验后我了解了一些拉式变换或逆变换的函数符号,了解了由系统函数零、极点分布决定时域特性和频域特性,并能用MATLAB绘制出其图形。实验时觉得编写程序方面十分吃力,也许是没有学好MATLAB的缘故,相信只要在时间允许和经过自己努力自学,总有那么一天我也会精通MATLAB软件的使用。

拉氏变换常用公式

常用拉普拉斯变换总结 1、指数函数 000)(≥

拉普拉斯变换实验报告答案

评分:《信号与系统》 实验报告 实验题目:拉普拉斯变换 实验班级: 姓名: 学号: 指导教师: 实验日期:

拉普拉斯变换实验 一、实验目的: 1、了解拉普拉斯变换及其逆变换的符号方法; 2、了解由系统函数零、极点分布决定时域特性,并绘制出图形; 3、了解由系统函数零、极点分布决定时域特性,并绘制出图形。 二、实验设备:多媒体计算机,matlab软件。 三、实验内容: 1.例题4-8 求下示函数的逆变换 F(s)=10(s+2)(s+5)/s(s+1)(s+3) 该题中,所编程序为: clear all, close all, clc; %清除所有变量并清除屏幕内容 syms s; %定义系统s f = ilaplace(10*(s+2)*(s+5)/s/(s+1)/(s+3)) %进行拉式变换 实验结果: f = 100/3 - (10*exp(-3*t))/3 - 20*exp(-t) 2.例题4-9 求下示函数的逆变换 F(s)=(s^3+5s^2+9s+7)/(s+1)(s+2) 该题中,所编程序为: clear all, close all, clc; %清除所有变量并清除屏幕内容 b = [1,5,9,7]; %函数分子的系数 a1 = [1,1]; %函数分母第一个因式的系数 a2 = [1,2]; %函数分母第二个因式的系数 a = conv(a1,a2); %令a的值使a1,a2收敛 [r,p,k] = residue(b,a) %是函数部分分式展开 运行结果为: r = -1 2

p = -2 -1 k = 1 2 3.例题4-10 求下示函数的逆变换 F(s)=(s^2+3)/(s^2+2s+5)(s+2) 该题中,所编程序为: clear all, close all, clc; %清除所有变量并清除屏幕内容 b = [1,0,3]; %函数分子的系数 a1 = [1,2,5]; %函数分母第一个因式的系数 a2 = [1,2]; %函数分母第二个因式的系数 a = conv(a1,a2); %令a的值使a1,a2收敛 [r,p,k] = residue(b,a) %是函数部分分式展开 运行结果为: r = -0.2000 + 0.4000i -0.2000 - 0.4000i 1.4000 p = -1.0000 + 2.0000i -1.0000 - 2.0000i -2.0000 k = [] 4.例题4-12 求下示函数的逆变换 F(s)=(s-2)/s(s+1) ^3 该题中,所编程序为: clear all, close all, clc; %清除所有变量并清除屏幕内容

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ -- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域

若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存 在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() [ ]()(0)df t sF s f dt ζ-=- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]t f F s f t dt s s ζ---∞ =+? 式中0(1) (0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移

信号与系统-实验报告-实验五

实验五 连续信号与系统的S 域分析 学院 班级 姓名 学号 一、实验目的 1. 熟悉拉普拉斯变换的原理及性质 2. 熟悉常见信号的拉氏变换 3. 了解正/反拉氏变换的MATLAB 实现方法和利用MATLAB 绘制三维曲面图的方法 4. 了解信号的零极点分布对信号拉氏变换曲面图的影响及续信号的拉氏变换与傅氏变换的关系 二、 实验原理 拉普拉斯变换是分析连续时间信号的重要手段。对于当t ∞时信号的幅值不衰减的时间信号,即在f(t)不满足绝对可积的条件时,其傅里叶变换可能不存在,但此时可以用拉氏变换法来分析它们。连续时间信号f(t)的单边拉普拉斯变换F(s)的定义为: 拉氏反变换的定义为: 显然,上式中F(s)是复变量s 的复变函数,为了便于理解和分析F(s)随s 的变化规律,我们将F(s)写成模及相位的形式:()()()j s F s F s e ?=。其中,|F(s)|为复信号F(s)的模,而()s ?为F(s)的相位。由于复变量s=σ+jω,如果以σ为横坐标(实轴),jω为纵坐标(虚轴),这样,复变量s 就成为一个复平面,我们称之为s 平面。从三维几何空间的角度来看,|()|F s 和()s ?分别对应着复平面上的两个曲面,如果绘出它们的三维曲面图,就可以直观地分析连续信号的拉氏变换F(s)随复变量s 的变化情况,在MATLAB 语言中有专门对信号进行正反拉氏变换的函数,并且利用 MATLAB 的三维绘图功能很容易画出漂亮的三维曲面图。 ①在MATLAB 中实现拉氏变换的函数为: F=laplace( f ) 对f(t)进行拉氏变换,其结果为F(s) F=laplace (f,v) 对f(t)进行拉氏变换,其结果为F(v) F=laplace ( f,u,v) 对f(u)进行拉氏变换,其结果为F(v) ②拉氏反变换 f=ilaplace ( F ) 对F(s)进行拉氏反变换,其结果为f(t) f=ilaplace(F,u) 对F(w)进行拉氏反变换,其结果为f(u) f=ilaplace(F,v,u ) 对F(v)进行拉氏反变换,其结果为f(u) 注意: 在调用函数laplace( )及ilaplace( )之前,要用syms 命令对所有需要用到的变量(如t,u,v,w )等进行说明,即要将这些变量说明成符号变量。对laplace( )中的f 及ilaplace( )中的F 也要用符号定义符sym 将其说明为符号表达式。具体方法参见第一部分第四章第三节。 例①:求出连续时间信号 ()sin()()f t t t ε=的拉氏变换式,并画出图形 求函数拉氏变换程序如下: syms t s %定义符号变量 ft=sym('sin(t)*Heaviside(t)'); %定义时间函数f(t)的表达式

通信原理实验教程(MATLAB)

实验教程

目录 实验一:连续时间信号与系统的时域分析-------------------------------------------------6 一、实验目的及要求---------------------------------------------------------------------------6 二、实验原理-----------------------------------------------------------------------------------6 1、信号的时域表示方法------------------------------------------------------------------6 2、用MATLAB仿真连续时间信号和离散时间信号----------------------------------7 3、LTI系统的时域描述-----------------------------------------------------------------11 三、实验步骤及内容--------------------------------------------------------------------------15 四、实验报告要求-----------------------------------------------------------------------------26 实验二:连续时间信号的频域分析---------------------------------------------------------27 一、实验目的及要求--------------------------------------------------------------------------27 二、实验原理----------------------------------------------------------------------------------27 1、连续时间周期信号的傅里叶级数CTFS---------------------------------------------27 2、连续时间信号的傅里叶变换CTFT--------------------------------------------------28 3、离散时间信号的傅里叶变换DTFT -------------------------------------------------28 4、连续时间周期信号的傅里叶级数CTFS的MATLAB实现------------------------29 5、用MATLAB实现CTFT及其逆变换的计算---------------------------------------33 三、实验步骤及内容----------------------------------------------------------------------34 四、实验报告要求-------------------------------------------------------------------------48 实验三:连续时间LTI系统的频域分析---------------------------------------------------49 一、实验目的及要求--------------------------------------------------------------------------49 二、实验原理----------------------------------------------------------------------------------49 1、连续时间LTI系统的频率响应-------------------------------------------------------49 2、LTI系统的群延时---------------------------------------------------------------------50 3、用MATLAB计算系统的频率响应--------------------------------------------------50 三、实验步骤及内容----------------------------------------------------------------------51 四、实验报告要求-------------------------------------------------------------------------58 实验四:调制与解调以及抽样与重建------------------------------------------------------59 一、实验目的及要求--------------------------------------------------------------------------59 二、实验原理----------------------------------------------------------------------------------59

拉普拉斯变换公式总结

拉普拉斯变换公式总结Newly compiled on November 23, 2020

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ --==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ ==? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞--∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域 若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质

(1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则 11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() []()(0)df t sF s f dt ζ-=- 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0) ()[()]t f F s f t dt s s ζ---∞ =+?式中0(1)(0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移 若[()]()f t F s ζ=,则[()]()at f t e F s a ζ-=+ (6) 尺度变换 若[()]()f t F s ζ=,则1[()]()s f at F a a ζ= (a >0) (7) 初值定理lim ()(0)lim ()t o s f t f sF s + +→→∞ == (8) 终值定理lim ()lim ()t s f t sF s →+∞ →∞ = (9) 卷积定理 若11[()]()f t F s ζ=,22[()]()f t F s ζ=,则有1212[()()]()()f t f t F s F s ζ*= 12121[()()][()()]2f t f t F s F s j ζπ= *= 121 ()()2j j F p F s p dp j σσπ+∞ -∞ -? 3. 拉普拉斯逆变换 (1) 部分分式展开法

武汉工程大学实验报告

武汉工程大学实验报告 专业 自动化 班号 组别 指导教师 姓名 同组者 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; 比例环节1)(1=s G 因为1)(1=s G ,所以由拉普拉斯变换得到y (t )=x (t ),故得到的图像为单位阶跃曲线。 2)(1=s G

因为2)(1=s G ,由拉普拉斯变换得到y (t )=2x (t ),所以曲线为单位阶跃曲线的2倍。 ② 惯性环节1 1)(1+= s s G 和1 5.01)(2+= s s G 1 1)(1+= s s G 1 5.01)(2+= s s G ③ 积分环节s s G 1)(1=

④ 微分环节s s G =)(1 由s s G =)(1,所以==)()()(s X s G s Y 1,,由反拉普拉斯变换得到一个单位冲击函数,所以图像为一条直线。 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G (PD )2)(1+=s s G

1)(2+=s s G 由==)()()(s X s G s Y s 11+,进行反拉氏变换后得=)(t y 1,为常数函数,一条直线,比上图 变化小了一点。 ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 21 1)(2+= (PI )s s G 11)(1+= s s G 21 1)(2+=

信号与线性系统实验报告5

连续信号与系统的复频域分析及MATLAB实现 一、实验目的 1、掌握MATLAB 实现连续时间信号拉普拉斯变换及逆变换的方法。 2、掌握MATLAB 绘制拉普拉斯变换的三维曲面图,并分析复频域特性和时 移特性。 二、实验原理及知识要点 1、连续时间非周期信号的拉普拉斯变换及逆变换(laplace( )及ilaplace( )函数); 2、拉普拉斯变换的数值算法; 3、绘制拉普拉斯变换的三维曲面图(meshgrid()及mesh()函数) 三、实验软件: MATLAB软件 四、实验内容及实验记录 12.1 利用MATLAB的laplace函数,求下列信号的拉普拉斯变换。 (1) syms t; F=(1-exp(-0.5*t))*Heaviside(t); L=laplace(F) 运行的结果为: L = 1/s-1/(s+1/2) 12.2 利用MATLAB的ilaplace函数,求下列像函数F(s)的拉普拉斯逆变换。 (1)syms s; L=(s+1)/(s*(s+2)*(s+3)); F=ilaplace(L) 运行的结果: F = 1/6+1/2*exp(-2*t)-2/3*exp(-3*t) 12.3 利用MATLAB的residue函数求12.2题中(1)小题的拉普拉斯逆变换,并与ilaplace 函数的计算结果进行比较。 (1)a=[1 1]; b=[1 5 6 0]; [k,p,c]=residue(a,b) 运行的结果为: k = -0.6667 0.5000 0.1667 p =

-3.0000 -2.0000 0 c = [] 由上述程序的运行结果知,F(s)有三个单实极点, 部分分式展开结果: F(s)=(-2/3)/(s+3)+0.5/(s+2)+(1/6)/s 则拉普拉斯逆变换: f(t)=(-2/3e^(-3t)+0.5e^(-2t)+1/6)u(t) 用residue 函数求出的结果与用ilaplace 函数求出的结果是一样的。只是后者简单点。 12.4 试用MATLAB 绘出下列信号拉普拉斯变换的三维曲面图,并通过三维曲面图观察分析信号的幅频特性。 (4) f(t)=exp(-t)*cos(pi*t/2)*u(t) 其对应的拉氏变换为: (1) syms t; F=exp(-t)*cos(pi/2*t); L=laplace(F) L = (s + 1)/((s + 1)^2 + pi^2/4) 曲面图及代码为: x=-1:0.08:0.2; y=-2:0.08:2; [x,y]=meshgrid(x,y); s=x+i*y; F=abs(4./pi.^2.*(s+1)./(4.*(s+1).^2./pi.^2+1)); mesh(x,y,F); surf(x,y,F) colormap(hsv); title('单边指数信号拉普拉斯变换幅度曲面图'); xlabel('实轴') ylabel('虚轴') -1 -0.50 0.5 -2 -1 1 2 51015 20实轴 单边指数信号拉普拉斯变换幅度曲面图虚轴

MATLAB实验报告 (2)

仲恺农业工程学院实验报告纸 _自动化学院_(院、系)_工业自动化_专业_144_班_Matlab仿真控制实践课程 实验一MATLAB绘图基础 一、实验目的 了解MATLAB常用命令和常见的内建函数使用。 熟悉矩阵基本运算以及点运算。 掌握MATLAB绘图的基本操作:向量初始化、向量基本运算、绘图命令plot,plot3,mesh,surf 使用、绘制多个图形的方法。 二、实验内容 建立并执行M文件multi_plot.m,使之画出如图的曲线。

三、实验方法 四、实验要求 1.分析给出的MA TLAB参考程序,理解MA TLAB程序设计的思维方法及其结构。 2.添加或更改程序中的指令和参数,预想其效果并验证,并对各语句做出详细注释。对不 熟悉的指令可通过HELP查看帮助文件了解其使用方法。达到熟悉MA TLAB画图操作的目的。 3.总结MATLAB中常用指令的作用及其调用格式。 五、实验思考 1、实现同时画出多图还有其它方法,请思考怎样实现,并给出一种实现方法。 (参考程序如下)

2、思考三维曲线(plot3)与曲面(mesh, surf)的用法,(1)绘制参数方程 233,)3cos(,)3sin()(t z e t t y e t t t x t t ===--的三维曲线;(2)绘制二元函数 xy y x e x x y x f z ----==22)2(),(2 ,在XOY 平面内选择一个区域(-3:0.1:3,-2:0.1:2),然后绘 制出其三维表面图形。(以下给出PLOT3和SURF 的示例)

绘制题目要求曲面: %绘制二元函数,在XOY平面内选择一个区域(-3:0.1:3,-2:0.1:2)

拉普拉斯变换公式总结..

拉普拉斯变换公式总结..

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞-- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ =? (2) 定义域

若0 σσ>时,lim ()0 t t f t e σ-→∞ =则()t f t e σ-在0 σσ>的全部范围内 收敛,积分0()st f t dt e +∞ -- ? 存在,即()f t 的拉普拉斯变换 存在。0 σσ>就是()f t 的单边拉普拉斯变换的收敛域。0 σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若 11[()]() f t F S ζ=, 22[()]() f t F S ζ=, 1 κ, 2 κ为常数时,则 11221122[()()]()() f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() []()(0)df t sF s f dt ζ- =- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0) r f -是r 阶导数() r r d f t dt 在0- 时刻的取值。 (3) 原函数积分 若 [()]() f t F s ζ=,则 (1)(0) ()[()]t f F s f t dt s s ζ---∞ =+ ? 式中 (1)(0)()f f t dt ---∞ =? (4) 延时性 若[()]()f t F s ζ=,则0 [()()]() st f t t u t t e F s ζ---= (5) s 域平移 若[()]()f t F s ζ=,则[()]() at f t e F s a ζ-=+ (6) 尺度变换

(完整word版)常用函数的拉氏变换

附录A 拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)(ΛΛ (F-1) 式中,n s s s ,,,21Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可 按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= +Λ = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

信号与系统 实验报告 实验六 离散信号与系统的Z变换分析

实验六 离散信号与系统的Z 变换分析 学院 班级 姓名 学号 一、 实验目的 1、熟悉离散信号Z 变换的原理及性质 2、熟悉常见信号的Z 变换 3、了解正/反Z 变换的MATLAB 实现方法 4、了解离散信号的Z 变换与其对应的理想抽样信号的傅氏变换与拉氏变换之间的关系 5、了解利用MATLAB 实现离散系统的频率特性分析的方法 二、 实验原理 1、 正/反Z 变换 Z 变换分析法就是分析离散时间信号与系统的重要手段。如果以时间间隔s T 对连续时间信号f (t)进行理想抽样,那么,所得的理想抽样信号()f t δ为: ()()*()()*()Ts s k f t f t t f t t kT δδδ∞ =-∞==-∑ 理想抽样信号()f t δ的双边拉普拉斯变换F (s)为: ()()*()()s ksT st s s k k F s f t t kT e dt f kT e δδ∞∞∞ ---∞=-∞=-∞??=-=????∑∑? 若令()()s f kT f k = ,sTs z e =,那么()f t δ的双边拉普拉斯变换F (s)为: ()()()sTs k z e k F s f k z F z δ∞ -==-∞= =∑ 则离散信号f (k )的Z 变换定义为: ()()k k F z f k z ∞-=-∞= ∑ 从上面关于Z 变换的推导过程中可知,离散信号f (k )的Z 变换F(z)与其对应的理想抽样信号()f t δ的拉氏变换F (s)之间存在以下关系: ()()sTs z e F s F z δ==

同理,可以推出离散信号f (k )的Z 变换F(z)与它对应的理想抽样信号()f t δ的傅里叶变换之间的关系为 ()()j Ts z e F j F z ωδω== 如果已知信号的Z 变换F(z),要求出所对应的原离散序列f (k ),就需要进行反Z 变换,反Z 变换 的定义为: 11 ()()2k f k F z z dz j π-=? ? 其中,C 为包围1()k F z z -的所有极点的闭合积分路线。 在MATLAB 语言中有专门对信号进行正反Z 变换的函数ztrans( ) 与itrans( )。其调用格式分别如下: F=ztrans( f ) 对f(n)进行Z 变换,其结果为F(z) F=ztrans(f,v) 对f(n)进行Z 变换,其结果为F(v) F=ztrans(f,u,v) 对f(u)进行Z 变换,其结果为F(v) f=itrans ( F ) 对F(z)进行Z 反变换,其结果为f(n) f=itrans(F,u) 对F(z)进行Z 反变换,其结果为f(u) f=itrans(F,v,u ) 对F(v)进行Z 反变换,其结果为f(u) 注意: 在调用函数ztran( )及iztran( )之前,要用syms 命令对所有需要用到的变量(如t,u,v,w)等进行说明,即要将这些变量说明成符号变量。 例① 用MATLAB 求出离散序列()(0.5)()k f k k ε= 的Z 变换。 MATLAB 程序如下: syms k z f=0、5^k; %定义离散信号 Fz=ztrans(f) %对离散信号进行Z 变换 运行结果如下: Fz = 2*z/(2*z-1) 例② 已知一离散信号的Z 变换式为2()21 z F z z =- ,求出它所对应的离散信号f (k)。 MATLAB 程序如下: syms k z Fz=2* z/(2*z-1); %定义Z 变换表达式 fk=iztrans(Fz,k) %求反Z 变换 运行结果如下: fk = (1/2)^k 2、离散系统的频率特性 同连续系统的系统函数H (s)类似,离散系统的系统函数H (z )也反映了系统本身固有的特性。对于离散系统来说,如果把其系统函数H (z )中的复变量z 换成j T e ω,那么所得的函数()j T H e ω就就是此离散系统的频率响应特性,即离散时间系统的频率响应为:

拉普拉斯变换公式

拉普拉斯变换公式-CAL-FENGHAI.-(YICAI)-Company One1

附录A 拉普拉斯变换及反变换 419

3.用查表法进行拉氏反变换 420

421 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1)()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉普拉斯变换

拉普拉斯变换 Prepared on 22 November 2020

§13拉普拉斯变换 重点:1.拉普拉斯反变换部分分式展开 2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路 3.应用拉普拉斯变换分析线性电路的方法和步骤 难点: 1.拉普拉斯反变换的部分分式展开法 2.电路分析方法及定理在拉普拉斯变换中的应用 本章与其它章节的联系: 是后续各章的基础,是前几章基于变换思想的延续。 预习知识: 积分变换 §13-1拉普拉斯变换的定义 1.拉普拉斯变换法 拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。 2.拉普拉斯变换的定义 一个定义在[0,+∞)区间的函数f(t),它的拉普拉斯变换式F(s)定义为 式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。 由F(s)到f(t)的变换称为拉普拉斯反变换,它定义为 式中c为正的有限常数。 注意: 1)定义中拉氏变换的积分从t=0-开始,即: 它计及t=0-至0+,f(t)包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。 2)象函数F(s)一般用大写字母表示,如I(s),U(s),原函数f(t)用小写字母表示,如 i(t),u(t)。 3)象函数F(s)存在的条件: 3.典型函数的拉氏变换 1)单位阶跃函数的象函数

中科大信号与系统 实验报告5

信号与系统实验报告5 学号: 姓名: 信息科学技术学院 电子科学与技术系

一、实验目的 1. 熟悉拉普拉斯变换的原理及性质 2. 熟悉常见信号的拉氏变换 3. 了解正/反拉氏变换的MATLAB 实现方法和利用MATLAB 绘制三维曲面图的方法 4. 了解信号的零极点分布对信号拉氏变换曲面图的影响及续信号的拉氏变换与傅氏变换的关系 二、实验原理 拉普拉斯变换是分析连续时间信号的重要手段。对于当t ∞时信号的幅值 不衰减的时间信号,即在f(t)不满足绝对可积的条件时,其傅里叶变换可能不存在,但此时可以用拉氏变换法来分析它们。连续时间信号f(t)的单边拉普拉斯变换F(s)的定义为: 0()()st F s f t e dt ∞ -=? 拉氏反变换的定义为: 1 ()()2j st j f t F s e ds j σω σωπ+-= ? 显然,上式中F(s)是复变量s 的复变函数,为了便于理解和分析F(s)随s 的变化规律,我们将F(s)写成模及相位的形式:()()()j s F s F s e ?=。其中,|F(s)|为复信号F(s)的模,而()s ?为F(s)的相位。由于复变量s=σ+jω,如果以σ为横坐标(实轴),jω为纵坐标(虚轴),这样,复变量s 就成为一个复平面,我们称之为s 平面。从三维几何空间的角度来看,|()|F s 和()s ?分别对应着复平面上的两个曲面,如果绘出它们的三维曲面图,就可以直观地分析连续信号的拉氏变换F(s)随复变量s 的变化情况,在MATLAB 语言中有专门对信号进行正反拉氏变换的函数,并且利用 MATLAB 的三维绘图功能很容易画出漂亮的三维曲面图。 MATLAB 中实现拉氏变换的函数 F=laplace( f ) 对f(t)进行拉氏变换,其结果为F(s) F=laplace (f,v) 对f(t)进行拉氏变换,其结果为F(v) F=laplace ( f,u,v) 对f(u)进行拉氏变换,其结果为F(v)

传感器实验分析

固态传感器及其集成化 实验报告 实验一叉指电容式开环加速度计原理 1. 实验目的 (1)通过实验熟悉微加速度计的工作原理及其应用,进一步加深对固态传感器概念与特性的理解。

(2)学习加速度计整体电路模块的设计和仿真。 2. 开环电容式加速度计原理简介 叉指式微加速度计是一种典型的微机电系统产品,由于它的高灵敏度、好的直流响应、低噪声、低漂移、对温度的敏感性低、低能耗、结构简单的优点,使其有着广泛的应用前景,也是目前国内外攻关的热点之一.微加速度计涉及到多学科领域的相互作用,如何用模型来较为准确地反映各个领域间的相互作用关系以及如何实现机电混合系统的接口,是设计的关键,一直是比较难于解决的问题.论文采用了一种新的建模仿真法,即原理级描述仿真法,建立了叉指式微加速度计的参数化机电混合系统模型,对其进行分析研究.该文研究了弹性梁参数对加速度计结构谐振频率、灵敏度、交叉耦合误差的影响趋势,在此基础上给出了一组优化了的弹性梁参数;分别研究了开环和闭环系统检测方式下静电力作用对加速度计性能的影响、吸附现象及弹簧的静电软化现象,在此基础上给出了偏置电压、检测激励信号的取值规则;研究了叉指式微加速度计的动态响应特性,在此基础上优化了电路结构及参数.论文的主要研究结论与实验结果一致. 2.1. 微结构的工作原理 加速度传感器是一种惯性传感器,其基本结构是由弹性梁和惯性质量组成的转换系统,可以等效成由质量、弹簧组成的单自由度二阶阻尼振动系统,利用系统的在低频区的线性频率响应实现对被测参量——加速度的测量。加速度传感器的机械部分可以表征为如图2-1所示的系统结构。 图2-1 加速度传感器的机械系统原理 其中m为振动块质量,R为阻尼系数,k为弹性系数,a为加速度,根据牛顿第二定律可建立振动微分方程: (2-1) 将仿真(2-1)进行拉普拉斯变换: (2-2) (2-3) 其中为固有谐振频率,为品质因数。为了方便使用,我们把单位加速度作用下的质量块位移定义为加速度传感器结构的灵敏度。则} (2-4) 时,灵敏度是个常数,当与梁的谐振频率的平方成反比在接近时,灵敏度要增大Q倍,在时,灵敏度是频率平方的倒数。一般希望灵敏度在整个工作范围内为常数,因而应使梁的谐振频率远远大于工作频率。从式(2-3)中可以看出高的灵敏度

最全拉氏变换计算公式

1 最全拉氏变换计算公式 1. 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑1 1 )1() 1(1 22 2) ()() 0()()(0)0()(])([)0()(]) ([ k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时 )(])([s F s dt t f d L n n n = 3 积分定理 一般形式 ∑???????????==+-===+=+ +=+= n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 10 102 2022 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L ) (]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

相关文档
最新文档