经济数学基础讲义-第7章-多元函数微分学(新)

经济数学基础讲义-第7章-多元函数微分学(新)
经济数学基础讲义-第7章-多元函数微分学(新)

第4章 多元函数微分学

4.2.1 二元函数的概念

多元函数与一元函数类似,学习时应注意比较.

一元函数是含有一个自变量的函数:)(x f y =。多元函数是含有多个自变量的函数,例如: 二元函数:),(y x f z =,三元函数:),,(z y x f u =等等. 例1 如果圆锥体底半径为r ,高为h ,则其体积v

它是二元函数.其中,r 和h 是自变量,v 是因变量(函数).定义域:

{}

0,0),(>>=h r h r D . 例2黑白电视:在t 时刻屏幕上坐标为),(y x 处的灰度z 为:),,(t y x z z =,它是三元函数. 例3在一个有火炉的房间里,在t 时刻,点),,(z y x 处的温度u 是t z y x ,,,的函数:

),,,(t z y x u u =,称为温度分布函数,它是四元函数.

例4 求函数222y x a z --=

的定义域.

解:02

22≥--y x a ,定义域为{

}

2

22),(a y x y x D ≤+=

例5 求y

y x z )

ln(+=

的定义域. 解:由所给函数,对数真数为正,又分母根式为正,有

?

?

?>+>00

y x y {}0,0),(>+>=y x y y x D

4.3 ——4.4偏导数

二元函数),(y x f z =在点),(00y x 处关于x 的偏导数

x

y x f y x x f x ?-?+→?)

,(),(lim

00000

(注意到:y 取值不变,恒为0y )

记作:

)

,(00y x x z

??或),(00y x f x '.类似地,关于y 的偏导数:

y

y x f y y x f y ?-?+→?)

,(),(lim

00000

例如:y x z 3sin 2

=

y x y x f y

z

y 3cos 3),(2='=?? 3

3cos 3)0,1()

0,1(2)0,1(=='=??y x f y z

y

求偏导数,包括两个偏导数,一个是对x 求偏导,一个是对y 求偏导.对x 求偏导时,应把y 看作常数.这样z 就变为了一元函数,于是就可以用一元函数的微分法求导数了.对y 求偏导也类似. 注意:

一元函数)(x f y =在0x 处可导,则在0x 处连续.

多元函数),(y x f z =在),(00y x 可导和在),(00y x 连续,二者不能互推. 全微分

),(y x f z =称

y y

z x x z y y

z x x z z d d d ??+??=???+???=

为函数),(y x f z =在点),(y x 处的全微分.

例1: 求y x y x f z 3sin ),(2

==在点)0,1(处关于x 的偏导数.

解: 将y 看作常数,

y x x

z 3sin 2=??,03sin 2)0,1()0,1(==??y x x z 例2: 求x

y

y x z +

=2

在点)1,1(-处的全微分. 解: 112)2()

1,1(2

)1,1(-=+-=-=??--x y xy x z ,2)1()1,1(2

)1,1(=+=??--x x y z 因此,y x z d 2d d +-= 4.5 复合函数与隐函数微分法

复合函数求导法

设),(v u f z =,而),(y x u u =,),(y x v v =,则

x

v

v z x u u z x z ????+????=??, y v v z y u u z y z ????+????=??

例1: )sin(e y x z xy

+=.

解法1:(利用复合求导公式)设xy u =,y x v +=,则v z u sin e =

x

v v z x u u z x z ????+????=??1)cos e ()sin e (?+?=v y v u u )cos(e )sin(e y x y x y xy xy +++= v z u sin e =,xy u =,y x v +=

y

v v z y u u z y z ????+????=??1)cos e ()sin e (?+?=v x v u u )cos(e )sin(e y x y x x xy xy +++= 解法2:(直接求)

x

y x y x x x z xy

xy ?+?++??=??))

(sin(e )sin()e ()cos(e )sin(e y x y x y xy xy +++= 同理,

=??y

z

)cos(e )sin(e y x y x x xy xy +++ 例2:),(y x xy f z +=,求

y

z x z ????,. 解:设y x v xy u +==,,则),(v u f z =,

x

v

v z x u u z x z ????+

????=??1?'+?'=v u f y f v u f f y '+'= y

v v z y u u z y z ????+????=??1?'+?'=v u f x f v u f f x '+'= 例3 ),(2

xy x f z =,求

解: 设2

,xy v x u ==,则),(v u f z =,

x

v

v z x u u z x z ????+

????=??21y f f v u ?'+?'= v u f y f '+'=2v f xy '=2

例4 )sin ,3(2

x x f z =,求

dx

dz . 注意:f 是二元函数:),(v u f , x v x u sin ,32== 而z 是关于v u ,的二元函数,最终是关于x 的一元函数.

x

v

v z x u u z x z d d d d d d ??+

??=x f x f v u cos 6?'+?'= 例5 )(3

2

y x f z =,求

y

z x z ????,.

注意:f 是一元函数,而z 是关于y x ,的二元函数.

32),(y x u u f z ==,

32xy f x

u

f x z ?'=???'=??,223y x f y u f y z ?'=???'=?? 例6 方程)0(0),(222≥=-+=y a y x y x F 其图形为上半圆周,相应的函数为

2

2

)(x a x y y -==。显然,2

222d d x a x x

y --=y x

-= 另一种观点:0222=-+a y x ,0)(2

22≡-+a x y x

022:d d

='+y y x x

,y x y -='

例7 设函数)(x y y =由方程02e ln =-+xy

y y x 所确定,求 )(x y '

解: 无法由已知方程解出)(x y .但此)(x y 应满足

02e

)()(ln )

(≡-+x xy x y x y x xy y y

y x y x e ln :d d '+'

+0)(='++y x y ye xy 由此解出:y 'xy

xy xy

xy y x y y y y e

e e ln 23+++-=', 4.6 二元函数的极值 二元函数的极值

多元函数极值的概念与一元函数极值的概念类似.

若对),(00y x 附近的),(y x 均有),(),(00y x f y x f <,则称),(00y x 是),(y x f 的极小点,),(00y x f 是极小值.若

,则称是的极大点,是极大值.

极大值点、极小值点统称为极值点.极大值、极小值统称为极值. 极值存在的必要条件

若一元函数)(x f y =在0x 处可导,且0x 是极值点,则0)(0='x f 若二元函数),(y x f z =在),(00y x 处可导,且),(00y x 是极值点,则

0),(00='y x f x ,0),(00='y x f y

二元函数最大值、最小值

若),(y x f z =在闭区域D 内连续,则),(y x f z =在D 内必有最大值和最小值.

若),(y x f z =在D 内可导,且在D 内有唯一驻点),(00y x ,则),(y x f z =在该驻点

),(00y x 处的值就是最大值或最小值.

下面我们总结一下求最大值最小值应用问题的步骤: (1)根据题意,建立函数关系; (2)求驻点;

如果驻点合理且惟一,则该驻点就是所求的应用问题的最大点(或最小点).

例2 用铁皮做一个体积为V 的无盖长方体箱子,问其尺寸为多少时,才能用料最省? 解:设长、宽分别为y x ,,则高为

xy

V

,表面积为 xy V

y xy V x

xy S 22++=x

V y V xy 22++= 022

=-='x

V y S x

,022=-='y V x S y 解得3

2V y x ==,此时高为2

23

V

xy V =

答:当长、宽、高分别为32V 、3

2V 、

2

23

V

时,无盖箱子用料最省. 4.6.3 条件极值

在例2中,给定体积V ,求用料最省的无盖长方盒,即求S=xy+2xh+2yh 在条件xyh=V 下的最小值. 拉格朗日乘数法

求函数),,(z y x f 在条件0),,(=z y x φ下的条件极值,可用如下的拉格朗日乘数法: 令拉格朗日函数:),,(),,(z y x z y x f F λφ+= 求),,(),,(z y x z y x f F λφ+=的(无条件)极值:

,0,0,0=??=??=??z

F

y F x F

0),,(==??z y x F

φλ

解此方程组.

用拉格朗日乘数法解例2:

求原题即为求yh xh xy S 22++=在条件V xyh =下的最小值. 令)(22V xyh yh xh xy L -+++=λ

,022,02,02=++=??=++=??=++=??xy y x h

L

xh h x y L

yh h y x L

λλλ V xyh = 由此可得:

λ-=+=+=+xy

y

x xh h x yh h y 2222 解得h y x 2== 由此可得:

λ-=+=+=+xy

y

x xh h x yh h y 2222 解得h y x 2==

再由V xyh =,解得3

22V h y x ===

第七章 多元函数的微分学

第七章多元函数的微分学 一、多元函数微分学网络图 二、内容与要求 1.理解多元函数的概念,理解二元函数的几何意义。 2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。

4.掌握多元复合函数一阶、二阶偏导数的求法。 5.会求多元隐函数的偏导数。 6.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件, 了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值, 会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 重点多元函数偏导数和全微分的概念,多元复合函数一阶、二阶偏导数的求法。用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。 难点多元复合函数二阶偏导数的求法。用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。 三、概念、定理的理解与典型错误分析 1.求多元函数极限的方法 (1)利用初等多元函数的连续性,即若是初等函数,在的定义域中,则 注:所谓的初等多元函数就是用一个数学表达式给出的解析式. (2)利用多元函数极限的四则运算。 (3)转化为一元函数的极限,利用一元函数的极限来计算. (4)对于证明或求时,感觉极限可能时零, 而直接又不容易证明或计算,这时可用夹逼定理,即而 由夹逼定理知从而 2.判断多元函数极限不存在的方法 (1)选取两条特殊的路径,而函数值的极限存在,但不相等,则不存在。

注意: 与的区别,前面两个本质是两次求一元函数的极限, 我们称为求累次极限,而最后一个是求二元函数的极限,我们称为求二重极限。 例1 而知不存在. 例2 在原点的两个累次极限都不存在,但是 由于,因此. 由例1知两个累次极限存在,但二重极限不存在,由例2知两个累次极限不存在, 但二重极限存在,但我们有下面的结论。 定理7。1 若累次极限和二重极限都存在,则三者相等。 (2)推论。若存在且不相等,则不存在。 3.求多元函数的偏导数

第十七章多元函数微分学习题课

第十七章 多元函数微分学习题课 一 疑难问题与注意事项 1.(,)z f x y =在),(000y x P 可微的等价定义: 1)0000(,)(,)()z f x x y y f x y A x B y o ρ?=+?+?-=?+?+,0 () lim 0o ρρρ →=; 2)00000 [(,)(,)] lim 0x y z f x y x f x y y ρρ →?-?+?=; 3), y x y B x A z ?+?+?+?=?βα()() ()() ,0,0,0,0lim lim 0x y x y αβ??→??→= =. 2.求(,)f x y 在00(,)x y 处的偏导数方法小结: 答 1)利用定义求(主要适用于分段函数的分段点处的偏导数): 0000000 (,)(,) (,)lim x x f x x y f x y f x y x ?→+?-=?, 0000000 (,)(,) (,)lim y y f x y y f x y f x y y ?→+?-=?. 2)转化为一元函数的导数: ()0 000,(,)x x x df x y f x y dx ==,() 000,(,)y y y df x y f x y dy == . 例如,2(,)(f x y x y =+-(1,1)x f . 解 () ()211 ,1(1,1)2x x x d x df x f dx dx ==== =. 3)先求偏导函数,在代值,即 ()0 00(,)(,),x x x y f x y f x y =,0 00(,) (,)(,)y y x y f x y f x y =. 3.求(,)z f x y =(初等函数不含分段点)的偏导函数方法小结: 答 1)求 z x ??,把y 当常数,对x 求导,求z y ??,把x 当常数,对y 求导. 2)运用轮换性,若在(,)z f x y =中,把x 换成y , y 换成x ,(,)z f x y =不变,则称(,)z f x y =关于x 和y 具有轮换性.若已经求出 z x ??,只要在z x ??把x 换成y , y 换成x ,

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

第7章 多元函数微分学

§7.1 空间解析几何基本知识 教学内容提要 1. 空间直角坐标系; 2. 空间两点间的距离公式与两点连线的中点坐标公式; 3. 简单的曲面方程。 教学目的与要求 1. 了解空间直角坐标系和空间两点间的距离公式及两点连线的中点公式; 2. 了解常用二次曲面的方程及其图形。 教学重点与难点 常用二次曲面的方程及其图形的简单描绘. 教学时数 4 教学过程: 一、空间直角坐标系 1.空间直角坐标系的建立 过空间定点0,作三条互相垂直的数轴,他们都以0为原点 且一般具有相同的长度单位。这三条轴分别称为x 轴,y 轴, z 轴,统称坐标轴。通常把x 轴和y 轴配置在水平面上,z 轴 z 在铅垂方向,他们的指向符合右手法则. 2、空间两点间的距离公式 空间任意两点),,(1111z y x M 和),,(2222z y x M 21221221221)()()(z z y y x x M M -+-+-= 特殊地,点),,(z y x M 与坐标原点)0,0,0(O 的距离为222z y x OM ++= 。 例1 在z 轴求与两点)7,1,4(-A 和)25,3(-B 等距离的点的坐标。 二、曲面及其方程的概念 1.曲面方程 在空间解析几何中,任何曲面都可以看作满足一定条件的点的几何轨迹 ,如果曲面S 上任一点的坐标都满足方程0),,(=z y x F ,不在曲面S 上的点的坐标都不满足该方程,则称此方程0),,(=z y x F 为曲面的方程,而曲面S 就叫做方程的图形。 例2 动点),,(z y x P 与两定点)1,3,2(),0,2,1(21-P P 的距离相等,求此动点P 的轨迹。 三、几种常见的曲面及其方程 1、平面的一般方程 任一平面都可以用三元一次方程来表示 .任一三元一次方程Ax +By +Cz +D =0的图形总是一个平面. 例3 求通过x 轴和点(4, -3, -1)的平面的方程. 解 平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为

多元函数微分学习题

6 .函数 在点 处具有两个偏导数 是函数存在全 第五部分 多元函数微分学( 1) (x,y) (0,0) 在点 (0,0)处 ( ) (x,y) (0,0) xuv 3.设函数 u u(x, y), v v(x, y) 由方程组 2 2 确定,则当 u y u 2 v 2 4.设 f (x, y)是一二元函数, (x 0,y 0) 是其定义域的一点, 则下列命题中一定正确的是 ( ) (A) 若 f (x,y)在点 (x 0,y 0) 连续,则 f (x,y)在点(x 0,y 0)可导。 (B) 若 f(x,y)在点 (x 0,y 0)的两个偏导数都存在,则 f(x,y)在点 (x 0,y 0)连续。 (C) 若 f(x,y)在点 (x 0,y 0)的两个偏导数都存在,则 f(x,y)在点 (x 0,y 0)可微。 (D) 若 f (x,y)在点 (x 0,y 0) 可微,则 f (x,y)在点(x 0,y 0)连续。 答:D 3 x 2 y 2 z 2 在点 (1, 1,2) 处的梯度是 ( ) 1 1 2 1 1 2 1 1 2 (A) ( , , ) (B) 2( , , ) (C) ( , , ) (D) 3 3 3 3 3 3 9 9 9 答:A [ 选择题 ] x 3y 2z 1 0 1 .设有直线 及平面 2x y 10z 3 0 容易题 1— 36,中等题 37—87,难题 88— 99。 。 (C) 垂直于 4x 2y z 2 0 ,则直线 L ( ) (A) 平行于 。 (B) 在上 答:C (D) 与 斜交。 (A) 连续,偏导数存在 (B) (C) 不连续,偏导数存在 (D) 答:C 连续,偏导数不存在 不连续,偏导数不存在 (A) x (B) v (C) u (D) uv uv uv 答:B y uv 2.二元函数 f (x,y) xy , 2 2 , xy 0, 5.函数 f(x,y,z) x ( )

第五章-多元函数微分学习题参考答案

第五章多元函数微分学习题 练习5.1 1.在空间直角坐标系下,下列方程的图形是什么形状? (1) )(422 2 椭圆抛物面z y x =+ (2) 圆锥面)(4222z y x =+ (3) 椭球面)(19 164222=++z y x (4) 圆柱面)(12 2=+z x 2.求下列函数的定义域: (1)y x z --= 解:?? ?≥-≥0 y x y 即?? ? ??≥≥≥y x x y 200 ∴函数的定义域为{ }y x y x y x ≥≥≥2,0,0|),( (2) z =解:0≥-y x {}0|),(≥-∴y x y x 函数的定义域为 3. ()y x f ,对于函数= y x y x +-,证明不存在),(lim 0y x f x → 分析:由二元函数极限定义,我们只须找到沿不同路径0(0,0)p p →时,所 得极限值不同即可。 证明: ①(,)0,0)(0,0)p x y x x y p ≠=0当沿轴(此时趋于时, (,)(,0)1,lim (,)1x y f x y f x f x y →→=== ②当0(,)(0)00p x y y kx k p =≠沿直线趋于(,)时, 0011(,)lim (,)1(0)11x y x kx k k f x y f x y k x kx k k →→---= ==≠≠+++

综合①②可知函数极限不存在,证毕。 练习5.2 1.求下列函数的偏导数 ①;,,33y z x z xy y x z ????-=求 解: 23323,3xy x y z y y x x z -=??-=?? ②;,,)ln(y z x z xy z ????=求 解:[]1 211ln() 2z xy y x xy -?=??=? []1 211ln() 2z xy x y xy - ?=??=? ③222ln(),,z z z x x y x x y ??=+???求 解: 1ln()z x y x x x y ?=++??+ 2222)(2)(1))(ln()(y x y x y x x y x y x y x x y x x x z x x z ++= +-+++=+++??=????=?? 222 1()(ln())()()z z x x y x y x y y x y x y x y x y x y ????==++=-=?????++++ ④;,3z y x u e u xyz ????=求 解;2 2,()xyz xyz xyz xyz u u yze ze yzxze z xyz e x x y ??==+=+??? 3222()(())(12)()xyz xyz xyz u u z xyz e xyz e z xyz xye x y z z x y z ????==+=+++???????

最新多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用 (A) 1.填空题 (1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ???2,x y z ???2 ,则在D 上, x y z y x z ???=???22。 (2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。 (3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。 2.求下列函数的定义域 (1)y x z -=;(2)2 2 arccos y x z u += 3.求下列各极限 (1)x xy y x sin lim 00→→; (2)11lim 0 0-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ???23及2 3y x z ???。 5.求下列函数的偏导数 (1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。 6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数 dt dz 。 7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dt du 。 8.曲线?? ???=+= 4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程122 2222=++c z b y a x 所确定的函数z 的偏导数。 10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

数学分析教案_(华东师大版)第十七章__多元函数微分学

第十七章多元函数微分学 教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及 偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。 教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。 教学时数:18学时 § 1 可微性 一.可微性与全微分: 1.可微性:由一元函数引入. 亦可写为, 时. 2.全微分: 例1 考查函数在点处的可微性 . P107例1 二.偏导数: 1.偏导数的定义、记法: 2.偏导数的几何意义: P109 图案17—1.

3.求偏导数: 例2 , 3 , 4 . P109—110例2 , 3 , 4 . 例5. 求偏导数. 例6. 求偏导数. 例7. 求偏导数, 并求. 例8. 求和. 解=, =. 例9 证明函数在点连续 , 并求和. 证 . 在点连续 . ,

不存在 . 三.可微条件: 1.必要条件: Th 1 设为函数定义域的内点.在点可微 , 和存在 , 且 . ( 证 ) 由于, 微分记为 . 定理1给出了计算可微函数全微分的方法. 两个偏导数存在是可微的必要条件 , 但不充分. 例10考查函数 在原点的可微性 . [1]P110 例5 . 2.充分条件:

Th 2 若函数的偏导数在的某邻域内存在 , 且和在点处连续 . 则函数在点可微 . ( 证 ) P111 Th 3 若在点处连续, 点存在 , 则函数在点可微 . 证 . 即在点可微 . 要求至少有一个偏导数连续并不是可微的必要条件 . 例11 验证函数在点可微 , 但和在点处不连续 . (简证,留为作业) 证

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

第七章多元函数微分高等数学

第七章 多元函数微分学 一、内容分析与教学建议 (一) 本章主要是把一元函数微分学中一些主要概念、理论和方法推广到多元函数,一方 面充实微分学,另一方面也给工程技术及自然科学提供一些处理问题的方法和工具。 在教学方法上,在一元函数微分学基础上,通过类比方法引入新的问题、概念、理论和方法,并注意比较它们的异同。 (二) 多元函数、极限、连续 先通过介绍平面点集的几个基础概念,引入二元函数由点函数再过渡到多元函数,并引入多元函数极限,讲清它的概念,并指出二元函数与一元函数极限点0P P →方式的异同,可补充一些简单例题给出二元函数求极限的一些常用方法,如换元化为一元函数两边夹准则,运用连续性等。在理解极限概念之基础上,不难得到求一个二元函数极限不存在之方法,最后可介绍累次极限与重极限之关系。 (三) 偏导数与全微分 1、可先介绍偏增量概念,类比一元函数,引入偏导数,通过例题说明,偏导与连续之关系,在偏导数的计算中,注意讲清分段函数分界点处的偏导数。 2、可由测量矩形相邻边长计算面积实例,类比一元函数的微分,引入全微分的定义,并指出用定义判断),(y x f z =可微,即求极限[ ]ρ y y x z x y x z z y x y x ?+?-?→?→?),(),(lim 0 是 否为0。 3、讲清教材中全微分存在的必要条件和充分条件,重点指出可微与偏导之关系,让学生理解关系式dy y z dx x z dz ??+??= 之意义,最后可通过列表给出多元函数连续、偏导存在、可微之相互关系。 (四) 复合函数求偏导 1、可先证明简单情形的全导数公式,画出函数关系图,通过关系图中“分线相加,连线相乘”法则推广至偏导数或全微分的各种情形),(v u f z =,)(x u ?=,)(x v ?=从中让学生理解口诀的含义。

第7讲多元函数微分学及其应用II

四 应用 1 几何应用 例42(大连理工)求曲线3 2 ,,t z t y t x =-==上与平面42=++z y x 平行的切线方程。 解 曲线上任意一点切线的切向量为)3,2,1(2 t t -,平面的法向量为)1,2,1(,由题设得 0)1,2,1()3,2,1(2=?-t t , 解之得1=t ,或3 1 = t 。 当1=t 时,切点为)1,1,1(-,切向量为)3,2,1(-,所以切线方程为 1 1 2111-= -+=-z y x 。 当31=t 时,切点为)271,91,31(-,切向量为)3 1 ,32,1(-,所以切线方程为 3 127132911 31-=-+=-z y x , 即9 127619313-= -+=-z y x 。 例43(北京科技大学2001)求曲线 ?????=++=++, 1, 22 222y xy x ze y x z 在点)0,1,1(-P 处的切线与法平面方程。 解 记1),,(,2),,(2 2 2 2 -++=-++=y xy x z y x G ze y x z y x F z ,则 10 22) ,() ,(=++= ??P z z P y x ze e y z y G F , 同理可得 0) ,(),(, 1) ,(),(=??=??P P y x G F x z G F , 因此,曲线在点)0,1,1(-的切线方程和法平面方程分别为 ??? ??=+=-, 0,11 1 1z y x 和0=+y x 。 思考题12(北京科技大学1999)求曲线 ?? ?=++=++, 0, 6222z y x z y x 在点)1,2,1(-P 处的切线与法平面方程。 思考题13(四川大学2000)求曲面3=+-xy z e z 在点)0,1,2(处的切平面方程。

多元函数微分学复习题及标准答案

多元函数微分学复习题及答案

————————————————————————————————作者:————————————————————————————————日期:

第八章 多元函数微分法及其应用 复习题及解答 一、选择题 1. 极限lim x y x y x y →→+00 242= (提示:令22 y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于 12 (D) 存在且不等于0或1 2 2、设函数f x y x y y x xy xy (,)sin sin =+≠=? ????1100 ,则极限lim (,)x y f x y →→0 = ( C ) (提示:有界函数与无穷小的乘积仍为无穷小) (A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数f x y xy x y x y x y (,)=++≠+=??? ? ?22 2222000 ,则(,)f x y ( A ) (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =, 2222 2 lim lim 0(0,0)1x x y kx kx f x k x k →→→===++ ,故在220x y +=,函数亦连续.所以, (,)f x y 在整个定义域内处处连续.) (A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件 (B)充分而非必要条件 (C)充分必要条件 (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22 + (B) - +y x y 22 (C) y x y 22 + (D) -+x x y 22 6、设f x y y x (,)arcsin =,则f x '(,)21= ( A ) (A )- 14 (B )14 (C )-12 (D )1 2

多元函数微分学习题

第七章 多元函数微分学 【内容提要】 1.空间解析几何基础知识 三条相互垂直的坐标轴Ox 、Oy 、Oz 组成了一个空间直角坐标系。 空间直角坐标系下两点间的距离公式为: 平面方程:0Ax By Cz D +++= 二次曲面方程: 2220Ax By Cz Dxy Eyz Fzx Gx Hy Iz K +++++++++= 球面方程:()()()2 2 02 02 0R z z y y x x =-+-+- 圆柱面方程:2 22R y x =+ 椭球面方程:()222 2221,,0x y z a b c a b c ++=>, 椭圆抛物面方程:22 22,(,0)x y z a b a b +=> 双曲抛物面方程:22 22,(,0)x y z a b a b -=> 单叶双曲面图方程:122 2222=-+c z b y a x (a ,b ,c >0) 双叶双曲面方程:222 2221,(,,0)x y z a b c a b c +-=-> 椭圆锥面方程:222 2220,(,,0)x y z a b c a b c +-=> 2.多元函数与极限 多元函数的定义:在某一过程中,若对变化范围D 的每一对值(,)x y ,在变域M 中存在z 值,按一定对应法则f 进行对应,有唯一确定的值,则称f 为集合D 上的二元函数, 记为 ,x y 称为自变量,D 称为定义域,z 称为因变量。(,)x y 的对应值记为(,)f x y ,称为函数 值,函数值的集合称为值域。 多元函数的极限:设函数(,)f x y 在开区间(或闭区间)D 内有定义,000(,)P x y 是D 的内点或边界点。如果对于任意给定的正数e ,总存在正数d ,使得对于适合不等式 的一切点(,)P x y D ?,都有

多元函数微分学复习题及答案

多元函数微分学复习题 及答案 标准化管理部编码-[99968T-6889628-J68568-1689N]

第八章 多元函数微分法及其应用复习题及解答 一、选择题 1.极限lim x y x y x y →→+00 242 = ( B ) (A)等于0; (B)不存在; (C)等于 12; (D)存在且不等于0或12 (提示:令22y k x =) 2、设函数f x y x y y x xy xy (,)sin sin =+≠=?????110 00,则极限lim (,)x y f x y →→0 = ( C ) (A)不存在; (B)等于1; (C)等于0; (D)等于2 (提示:有界函数与无穷小的乘积仍为无穷小) 3、设函数f x y xy x y x y x y (,)=++≠+=???? ?22 2222000,则(,)f x y ( A ) (A) 处处连续; (B) 处处有极限,但不连续; (C) 仅在(0,0)点连续; (D) 除(0,0)点外处处连续 (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx = , 2000(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续。所以, (,)f x y 在整个定义域内处处连续。) 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件; (B)充分而非必要条件; (C)充分必要条件; (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22+; (B) -+y x y 22; (C) y x y 22+ ; (D) -+x x y 22

多元函数微分学及其应用归纳总结

第八章 多元函数微分法及其应用 一、多元函数的基本概念 1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念 2、多元函数的极限 ? 00(,)(,) lim (,)x y x y f x y A →=(或0 lim (,)P P f x y A →=)的εδ-定义 ? 掌握判定多元函数极限不存在的方法: (1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言 函数极限不存在; (2)找两种不同趋近方式,若 00(,)(,) lim (,)x y x y f x y →存在,但两者不相等, 此时也可断言极限不存在。 ? 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似: 例1.用εδ-定义证明 2222 (,)(0,0) 1 lim ()sin 0x y x y x y →+=+ 例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数22 2 222 ()+++-x y x y x y 的极限是否存在?证明你的结论。 例3 设22 2222,0 (,)0,0xy x y x y f x y x y ?+≠?+=??+=? ,讨论(,)(0,0) lim (,)x y f x y →是否存在? 例4(07年期末考试 一、2,3分)设222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y ,讨论 (,)(0,0) lim (,)→x y f x y 是否存在?

例5.求222 (,)(0,0)sin() lim x y x y x y →+ 3、多元函数的连续性0000(,)(,) lim (,)(,)x y x y f x y f x y →? = ? 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。 ? 在定义区域内的连续点求极限可用“代入法” 例1. 讨论函数3322 22 22,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=? 在(0,0)处的连续性。 例2. (06年期末考试 十一,4分)试证222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y 在 点(0,0)不连续,但存在一阶偏导数。 例3.求 (,)(1,2)lim x y x y xy →+ 例4 .(,)(0,0)lim x y → 4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理 二、多元函数的偏导数 1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义) 如果极限00000 (,)(,) lim x f x x y f x y x ?→+?-?存在,则有 00 000 0000000 (,)(,) (,)lim x x x x x y y x x x x y y y y f x x y f x y z f z f x y x x x =?→=====+?-??= ===??? (相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。)

(完整word版)(整理)数学分析教案(华东师大版)第十七章多元函数微分学

第十七章多元函数微分学 教学目的: 1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系; 2.掌握多元函数特别是二元函数可微性及其应用。 教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。 教学时数:18 学时 § 1 可微性 一.可微性与全微分: 1.可微性:由一元函数引入. 亦可写为, 时. 2 .全微分: 例 1 考查函数在点处的可微性. P107 例 1 二. 偏导数: 1.偏导数的定义、记法: 2.偏导数的几何意义: P109 图案17 —1.

3.求偏导数: 例 2 , 3 , 4 . P109 —110 例 2 , 3 , 4 . 例 5 . 求偏导数. 例 6 . 求偏导数. 例7 . 求偏导数, 并求. 例8 . 求和. =. 例9 证明函数在点连续, 并求和. . 在点连续.

三. 可微条件 : 1. 必要条件 : Th 1 设 为函数 定义域的内点 . 在点 可微 和 存在 , 且 . ( 证 ) 由于 , 微分记为 定理 1 给出了计算可微函数全微分的方法 例 10 考查函数 2. 充分条件 : 不存在 两个偏导数存在是可微的必要条件 , 但不充分 . 在原点的可微性 [1]P110 例 5 .

Th 2 若函数的偏导数在的某邻域内存在, 且和在 点处连续. 则函数在点可微. (证) P111 Th 3 若在点处连续, 点存在 则函数在点可微. . 即在点可微. 要求至少有一个偏导数连续并不是可微的必要条件. 验证函数在点可微, 但和在点处不连续. (简证, 留为作业) 证

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

《数学分析》第十七章 多元函数微分学

第十七章 多元函数微分学 ( 1 6 时 ) §1 可微性 ( 4 时 ) 一. 可微性与全微分: 1. 可微性:由一元函数引入. ))()((22y x ?+?ο亦可写为y x ?+?βα, →??) , (y x ) 0 , 0 (时→) , (βα) 0 , 0 (. 2. 全微分: 例1 考查函数xy y x f =),(在点) , (00y x 处的可微性. [1]P 105 E1 二. 偏导数: 1. 偏导数的定义、记法: 2. 偏导数的几何意义: [1]P 109 图案17—1. 3. 求偏导数: 例2 , 3 , 4 . [1]P 142—143 E2 , 3 , 4 . 例5 设 . 0 , 0, 0 ,),(222222 2 3? ????=+≠+++=y x y x y x y x y x f 证明函数),(y x f 在点) 0 , 0 (连续 , 并求) 0 , 0 (x f 和) 0 , 0 (y f . 证 ρ θθρρρθ ρθρ) sin cos (lim ),(lim 2320sin ,cos ) 0,0(),(+===========→==→y x y x y x f =)0,0(0)sin cos (lim 2 30 f ==+→θθρρρ. ),(y x f 在点) 0 , 0 (连续 . ) 0 , 0 (x f =0||lim )0,0()0,(lim 300==-→→x x x x f x f x x , ) 0 , 0 (y f ||lim )0,0(),0(lim 2 00y y y y f y f y y →→=-= 不存在 . Ex [1]P 116—117 1⑴—⑼,2 — 4 . 三. 可微条件:

相关文档
最新文档