新能源材料-超级电容器-5

新能源材料-超级电容器-5
新能源材料-超级电容器-5

超级电容器电极材料的研究进展

2011年第3期 新疆化工 11 超级电容器电极材料的研究进展 摆玉龙 (新疆化工设计研究院,乌鲁木齐830006) 摘要:超级电容器既具有超大容量,又具有很高的功率密度,因此它在后备电源、替代电源、大功率输出等方面都有极为广泛的应用前景。超级电容器的性能主要取决于电极材料,近年来各国学者对于超级电容器的电极材料进行了大量的研究。 关键词:超级电容器;电极材料 1 前言 超级电容器的种类按其工作原理可以分为双电层电容器、法拉第准电容器(也称为赝电容电容器)以及二者兼有的混合电容器。双电层电容器基于双电层理论,利用电极和电解质之间形成的界面双电层电容来储存能量。法拉第准电容器则基于法拉第过程,即在法拉第电荷转移的电化学变化过程中产生,不仅发生在电极表面,而且可以深入电极内部。根据这两种原理,目前作为超级电容器的电极材料的主要分为三类[1]:碳材料、金属氧化物及水合物材料、导电聚合物材料。 2 碳材料类电极材料 在所有的电化学超级电容器电极材料中,研究最早和技术最成熟的是碳材料。其研究是从1957年Beck发表的相关专利开始的。碳电极的研究主要集中在制备具有大的比表面积和较小内阻的多孔电极材料上,可用做超级电容器电极的碳材料主要有:活性炭、纳米碳纤维、玻璃碳、碳气凝胶、纳米碳管等。 活性炭(AC)是超级电容器最早采用的碳电极材料[2]。它是碳为主,与氢、氧、氮等相结合,具有良好的吸附作用。其特点是它的比表面积特别大,比容量比铂黑和钯黑高五倍以上[3]。J.Gamby[4]等对几种不同比表面积的活性炭超级电容器进行测试,其中比表面积最大为2315m2·g的样品得到的比容量最高,达到125F/g,同时发现比表面积和孔结构对活性炭电极的比容量和内阻有很大影响。 活性炭纤维(ACF)是性能优于活性炭的高效活性吸附材料和环保工程材料。ACF的制备一般是将有机前驱体纤维在低温(200℃~400) ℃下进行稳定化处理,随后进行炭化、活化(700℃~1000) ℃。日本松下电器公司早期使用活性炭粉为原料制备双电层电容器的电极,后来发展的型号则是用导电性优良、平均细孔孔径2~5nm、细孔容积0.7~1.5m3/g、比表面积达1500~3000m2/g的酚醛活性炭纤维[5],活性炭纤维的优点是质量比容量高,导电性好,但表观密度低。H. Nakagawa采用热压的方法研制了高密度活性炭纤维(HD-ACF)[6],其密度为0.2~0.8g/m3,且不用任何粘接剂。这种材料的电子导电性远高于活性炭粉末电极,且电容值随活性炭纤维密度的提高而增大,是一种很有前途的电极材料。用这种HD-ACF 制作超级电容器电极[7],结果表明,对于尺寸相同的单元电容器,采用HD-ACF为电极的电容器的电容明显提高。 炭气凝胶是一种新型轻质纳米级多孔性非晶炭素材料,其孔隙率高达80%~98%,典型孔隙尺寸<50nm,网络胶体颗粒尺寸3~20nm,比表面积高达60~1000m2/g,密度为0.05~0.80g/m3,是一种具有许多优异性能(如导电性、光导性和机械性能等)和广阔的应用前景的新型材料[8]。孟庆函,

超级电容器的工作原理

超级电容器的工作原理 根据存储电能的机理不同,超级电容器可分为双电层电容器(Electric double layer capacitor, EDLC)和赝电容器(Pesudocapacitor)。 2.1 双电层电容器原理 双电层电容器是通过电极与电解质之间形成的界面双层来存储能量的新型元器件,当电极与电解液接触时,由于库仑力、分子间力、原子间力的作用,使固液界面出现稳定的、符号相反的双层电荷,称为界面双层。 双电层电容器使用的电极材料多为多孔碳材料,有活性炭(活性炭粉末、活性炭纤维)、碳气凝胶、碳纳米管。双电层电容器的容量大小与电极材料的孔隙率有关。通常,孔隙率越高,电极材料的比表面积越大,双电层电容也越大。但不是孔隙率越高,电容器的容量越大。保持电极材料孔径大小在2,50 nm 之间提高孔隙率才能提高材料的有效比表面积,从而提高双电层电容。 2.2 赝电容器原理 赝电容,也叫法拉第准电容,是在电极材料表面或体相的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附/脱附或氧化/还原反应,产生与电极充电电位有关的电容。由于反应在整个体相中进行,因而这种体系可实现的最大电容值比较大,如吸附型准电容为2 000×10–6 F/cm2。对氧化还原型电容器而言,可实现的最大容量值则非常大[9],而碳材料的比容通常被认为是20×10–6 F/cm2,因而在相同的体积或重量的情况下,赝电容器的容量是双电层电容器容量的10,100 倍。目前赝电容电极材料主要为一些金属氧化物和导电聚合物。

金属氧化物超级电容器所用的电极材料主要是一些过渡金属氧化物, 如:MnO2、V2O5、 2、NiO、H3PMo12O40、WO 3、PbO2和Co3O4等[10]。金属氧化物作为超级电容器电RuO2、IrO 极材料研究最为成功的是RuO2,在H2SO4电解液中其比容能达到700,760 F/g。但RuO2稀有的资源及高昂的价格限制了它的应用。研究人员希望能从MnO2及NiO等贱金属氧化物中找到电化学性能优越的电极材料以代替RuO2。用导电聚合物作为超级电容器的电极材料是近年来发展起来的。聚合物产品具有良好的电子电导率,其典型的数值为1,100 S/cm。一般将共轭聚合物的电导性与掺杂半导体进行比较,采用术语“p掺杂”和“n掺杂”分别用于描述电化学氧化和还原的结果。导电聚合物借助于电化学氧化和还原反应在电子共轭聚合物链上引入正电荷和负电荷中心,正、负电荷中心的充电程度取决于电极电势[9]。导电聚合物也是通过法拉第过程大量存储能量。目前仅有有限的导电聚合物可以在较高的还原电位下稳定地进行电化学n型掺杂,如聚乙炔、聚吡咯、聚苯胺、聚噻吩等。现阶段的研究工作主要集中在寻找具有优良的掺杂性能的导电聚合物,提高聚合物电极的充放电性能、循环寿命和热稳定性等方面。 超级电容器作为一种新型的储能元件,具有如下优点: (1)超高的容量。超级电容器的容量范围为0.1,6 000 F,比同体积的电解电容器容量大2 000,6 000倍。 (2)功率密度高。超级电容器能提供瞬时的大电流,在短时间内电流可以达到几百到几千安培,其功率密度是电池的10,100倍,可达到10×103 W/kg左右。 (3)充放电效率高,超长寿命。超级电容器的充放电过程通常不会对电极材料的结构产生影响,材料的使用寿命不受循环次数的影响,充放电循环次数在105以

超级电容器综述

题目超级电容器技术综述 学号 班级_____________ 学生 _______________ 扌旨导教师_______ 杨莺_________________ ______ 2014 _______ 年

超级电容器技术综述 摘要:近年来,随着经济的迅猛发展,人们在实际应用中对储能装置各项技术指标的需求不断提高,而当前电池的标准设计能力已经逐渐无法满足人们的要求,超级电容器应运而生。超级电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。作为一种新的储能元件,它填补了传统电容器和电池之间的空白, 能提供比普通电容器更高的能量和比二次电池更高的功率以及更长的循环寿命, 同时还具有比二次电池耐温和免维护的 优点。本文主要针对超级电容器的储能机理、超级电容器电极材料、超级电容器的发展动态以及未来应用的展望进行了简单的论述。 关键词:超级电容器;储能机理;活性炭;发展现状;应用展望。 A Review of the technology of super capacitor Abstract :In recent years,With the rapid development of economy,People advance the need that can equip each technique index sign to continuously raise at practical application 。But the standard design ability of the current battery have already canned not satisfy people's request gradually ,The super capacitor emerges with the tide of the times 。The super capacitor is a kind of new energy storing device, it has many characteristics such as short refresh time, long service life, good temperature characteristic, energy conservation,Environment protecting.As a new kind energy storage element, it filled up traditional capacitor and the blank of battery.It can provide energy than the common capacitor higher and the power than secondary battery higher and the longer circulating life.Meanwhile it has the advantage of rating of temperature and no maintenance than secondary battery.The text mainly aims at the keeping of super capacitor development dynamic state of ability mechanism, super capacitor electrode material, super capacitor and in the future apply of the outlook carried on simple treatise. Key Words :super capacitor; The energy storage mechanism; active carbon; development trend; Application trend . 引言近几年出现的超级电容器,它兼有物理电容和电池的特性,是人们未来探索的确定方向。超级电容器是比物理电容器更好的储能元件。目前,用于超级电容器的电极材料主要是炭材料,由于一些炭材料比如氧化锰低价高能,所以受到很多科学家的青睐。超级电容器自面市以来,全球需求量快速扩大,已成为化学电源领域内新的产业亮点。超级电容器在电动汽车、混合燃料汽车、特殊载重汽车、电力、消费性电子产品等众多领域有着巨大的应用价值和市场潜力,被世界各国所广泛关注。就目前的国际形势来看,超级电容器有着很大的应用前景。 1 超级电容器概述 1.1超级电容器的定义及特点

超级电容器电极材料研究现状及存在问题

功能材料课程报告 指导老师: 学院:材料科学与工程学院专业:材料加工工程 姓名: 学号: 日期: 2012 年7 月13 日

超级电容器电极材料研究现状及存在问题 摘要:电极材料是决定电容器性能的重要因素,高性能电极材料的开发是超级电容器研发的重点。本文主要讨论了超级电容器阳极材料的研究现状及存在问题,这些材料包括:碳材料、贵金属氧化物、导电聚合物和一些其他材料。复合或混合型电极材料可以显著提高超级电容器的综合性能,已经成为超级电容器电极材料发展的主要趋势。 关键词:超级电容器;电极材料;研究现状;存在问题

1电极材料的研究现状 1.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 1.1.1碳材料碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存。而制备的碳材料往往存在微孔(小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响[1]。 碳电极电容器其电容的大小和电极的极化电位及电极比表面积大小有关,故可以通过极化电位的升高和增大电极比表面积达到提高电容大小的目的。电极/电解质双电层上可贮存的电量其典型值约为15~40μF·cm-2。选用具有高表面积的高分散电极材料可以获得较高的电容。对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极比表面积来增加电容值。电容C可由下式给出 C=ε·ε0Ad 式中:ε ε为电导体和内部赫姆霍兹面间区域的相对0为自由空间的绝对介电常数, 介电常数,A为电极表面积,d为导体与内赫姆霍兹面之间的距离。 近年来研究主要集中在提高碳材料的比表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 多孔碳材料、活性碳材料、活性碳纤维、碳气溶胶以及最近才开发的碳纳米管等[2]。 多孔碳材料、活性碳材料和活性碳纤维:这个排列基本代表了碳材料为提高有效比表面积的发展方向。之所以发展为活性碳,主要是在于通过活化处理(如水蒸汽)后,可以增加微孔的数量,增大比表面积,提高活性碳的利用率。这些材料随制作电极工艺的不同先后出现过:活性碳粉与电解液混合制成的糊状电

超级电容器综述解析

电子技术查新训练文献综述报告 题目超级电容器技术综述 学号3130434055 班级微电132 学生赵思哲 指导教师杨莺 2014 年

超级电容器技术综述 摘要:近年来,随着经济的迅猛发展,人们在实际应用中对储能装置各项技术指标的需求不断提高,而当前电池的标准设计能力已经逐渐无法满足人们的要求,超级电容器应运而生。超级电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。作为一种新的储能元件,它填补了传统电容器和电池之间的空白,能提供比普通电容器更高的能量和比二次电池更高的功率以及更长的循环寿命,同时还具有比二次电池耐温和免维护的优点。本文主要针对超级电容器的储能机理、超级电容器电极材料、超级电容器的发展动态以及未来应用的展望进行了简单的论述。 关键词:超级电容器;储能机理;活性炭;发展现状;应用展望。 A Review of the technology of super capacitor Abstract:In recent years,With the rapid development of economy,People advance the need that can equip each technique index sign to continuously raise at practical application。But the standard design ability of the current battery have already canned not satisfy people's request gradually,The super capacitor emerges with the tide of the times。The super capacitor is a kind of new energy storing device, it has many characteristics such as short refresh time, long service life, good temperature characteristic, energy conservation,Environment protecting.As a new kind energy storage element, it filled up traditional capacitor and the blank of battery.It can provide energy than the common capacitor higher and the power than secondary battery higher and the longer circulating life.Meanwhile it has the advantage of rating of temperature and no maintenance than secondary battery.The text mainly aims at the keeping of super capacitor development dynamic state of ability mechanism, super capacitor electrode material, super capacitor and in the future apply of the outlook carried on simple treatise. Key Words:super capacitor; The energy storage mechanism; active carbon; development trend; Application trend .

超级电容器材料综述

超级电容器是一种新型的储能装置,具备充放电快、效率高、稳定性好等优点,是一种清洁的绿色能源,是21 世纪的新型绿色能源。超级电容器有很大的市场潜力。通过对超级电容器电极材料进行研究,发现多孔碳材料作为超级电容器电极材料的电化学性能的影响。 目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植

物硬壳、石油焦、橡胶等各种原材料中得来。是一种已经商品化的超级电容器电极材料。活性炭材料的活化方法多种多样,可以分为物理活化和化学活化两种。 2、炭气凝胶电极材料 炭气凝胶是一种交联结构的网状的碳材料有多孔性,导电性好,表面积大,孔隙率高,孔径分布广,是唯一可以导电的气凝胶,电导率高。密度跨度大,孔隙率好,而且质量较轻,属于非晶态的纳米碳材料,同时,在制备的时候,可以通过调节工艺参数控制其孔径分布和微粒尺度。 3、碳纳米管 碳纳米管这是一种有类似石墨的六边形组成的碳材料,微观上看两端封闭的多层的管子,直径有几十纳米,层间距要比石墨层间距稍大。从超级电容器对电极材料的要求上看,碳纳米管材料是非常适合用来做电极材料的,因为碳纳米管的结构是空管的形状,表面积大,尤其是壁很薄的碳纳米管,比表面积更大,非常有利于双电层电容的储备。碳纳米管要是制成电极时,还会具备特殊的孔,这些孔是由微观状态下,碳纳米管互相缠绕,好似网状结构,管与管之间就形成了孔洞的结构,孔与孔之间都是互相连通的,没有堵死的情况,这在用作电极的时候,对于电解液的流通的很重要的。而且这种由管径互相缠绕得到的孔不会太小,一般都是属中孔,这会使电极的内阻很低,这些都是超级电容器电极所需要具备的。目前对碳纳米管作为超级电容器电极材料的研究主要集中在将它直接用于超级电容器上,或者将

超级电容器部分知识和部分应用

超级电容器部分知识和部分应用超级电容器部分知识和部分应用 又叫双电层电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。超级电容器用途广泛。又叫双电层电容器(Electrical Doule-Layer Capacitor) 、电化学电容器(Electrochemcial Capacitor, EC), 黄金电容、法拉电容,通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。

超级电容超级电容的容量比通常的电容器大得多。由于其容量很大,对外表现和电池相同,因此也有称作“电容电池”。 应用领域 1、税控机、税控加油机、真空开关、智能表、远程抄表系统、仪器仪表、数码相机、掌上电脑、电子门锁、程控交换机、无绳电话等的时钟芯片、静态随机存贮器、数据传输系统等微小电流供电的后备电源。 2、智能表(智能电表、智能水表、智能煤气表、智能热量表)作电磁阀的启动电源 3、太阳能警示灯,航标灯等太阳能产品中代替充电电池。 4、手摇发电手电筒等小型充电产品中代替充电电池。 5、电动玩具电动机、语音IC 、LED 发光器等小功率电器的驱动电源。 超级电容器是介于传统电容器和蓄电池之间的一种新型储能装置,它具有功率密度大、容量大、使用寿命长、免维护、经济环保等优点。充放电时间:超级电容器可以快速充放电,峰值电流仅受其内阻限

超级电容器电极材料综述

超级电容器电极材料 超级电容器,作为当下储能研究的一大热点,普遍具有以下优势: 1、快速的充放电特性 2、很高的功率密度 3、优良的循环特性 然而,它的不足完全制约了它的实际应用——能量密度很低。目前,商用的超级电容器可以提供10WhKg-1,而相比之下,锂离子电池的能力密度高达18010WhKg-1。因此,如何能提高超级电容器的能量密度,称为眼下超级电容器研究领域亟待解决的首要问题。学术圈致力于通过开发新的电极材料、电解质、独创的器件设计方案等方法,来实现这一问题的突破。 想要通过更好的电极材料(同时需要价格低廉,环境友好)来实现在超级电容器性能上的重大的进展,需要对电荷储存机理,离子电子的传输路径,电化学活性位点有全面、深远的认识。由此,纳米材料因为其可控的离子扩散距离、电化学活性位点数量的扩大等特点成为研究热门。 根据储能机理的不同,超级电容器可以分为:双电层电容器EDLC,赝电容。EDLC通过物理方法储存电荷——在电解质、电极材料界面上发生可逆的离子吸附。而赝电容通过化学方法储存电荷——在电极表面(几纳米深)发生氧化还原反应。通常,EDLC的电极材料为碳材料,包括活性炭,碳纳米管,石墨烯等。然而赝电容的电极材料包括:金属氧化物(RuO2, MnO2, CoOx, NiO,Fe2O3),导电高分子(PPy,

PANI,Pedot)。 设计一款高性能的超级电容的标准是: 1、很高的比容量 (单位质量的比容量,单位体积的比容量,或者是活性物质的面积) 2、很高的倍率性能 在高的扫速下200mV/s或电流密度下,容量的保持率。 3、很长的循环寿命 另外,活性材料的价格与毒性也需要计入考量。 为了制备高容量的电极材料,上述因素需要进一步讨论。 1、表面积:因为电荷是储存在电容器电极的表面,具有更高表面积的电极可以提高比容量。纳米结构的电极可以很好的提高电极的表面积。 2、电子和离子的导电性:因为比容量、倍率性能是由电子、离子的导电性共同决定,高的离子、电子电导将会很好的维持CV曲线中的矩形图线,以及GCD中充放电曲线的对称性。 同时,这也将减少充电电流增大后的比容量损失。 典型的增加电子电导的方法有: (1)Binder-free electrode design 不实用粘结剂 (2)纳米结构集流体设计——这可以为电子传输的提供高效途径 增加离子电导的方法:

超级电容器电极材料综述

超级电容器电极材料综述 原创:jqzhu 本文对超级电容器的背景,电极材料的储能原理、性能评价和电容器的制备方法,以及国内外报道的超级电容器电极材料做了详细的归纳和总结。可作为超级电容器研究的入门资料。原创作品,学术不端检索比例小于3%,可以作为本科,硕士,博士论文中第一章文献综述的重要参考资料。(全文5万余字,参考文献齐全)。值得拥有。 目 录 超级电容器综述 (2) 1.1 引言 (2) 1.2 电化学电容器的理论基础与应用 (4) 1.2.1 电双电层电容器和法拉第赝电容器 (4) 1.2.2比电容,电压,功率和能量密度 (7) 1.2.3电解液 (10) 1.2.4电化学电容器的制备 (13) 1.2.5 电极材料的评价方法 (15) 1.2. 6 电化学电容器的优点、挑战以及应用 (18) 1.3电极材料 (25) 1.3.1 碳材料 (27) 1.3.2 导电聚合物(CPs) (30)

1.3.3 非贵金属氧化物/氢氧化物 (36) 1.3.4 贵金属氧化钌电极材料 (52) 1.4 多元活性氧化物材料的结构特点及制备技术 (65) 1.4.1 多元氧化物的结构和性能特点 (65) 1.4.2 多元氧化物的制备技术 (67) 参考文献 (71)

超级电容器综述 1.1 引言 随着经济和科学技术的发展,人类对能源的需求逐年递增,导致不可再生的石化能源储量逐年减少,而排放的有害气体,温室气体却与日俱增,环境污染日趋严重。因此,当前世界各国都在致力于开发清洁、高效的可再生能源,以及能源储存和转换的新技术和新设备。 在大多数应用领域,最为有效的和实用的能量储存与转换的技术包括蓄电池、燃料电池、以及电化学超级电容器(ES)。最近的十几年里,由于具有高功率密度、长循环寿命等性能优点,超级电容器越来越受到广泛的重视。超级电容器的性能介于传统介电容器(超高功率/低能量密度)和蓄电池/燃料电池(高能量密度/低功率密度)之间,刚好填补它们的性能间隙[1, 2],因此有着广泛的应用的前景。 最早的电化学电容专利申请于1957年。然而,直到20世纪90年代,电化学电容器才真正进入人们的视野,逐渐受到少数行业的重视,例如混合电动交通工具开发领域[3, 4]。此时电化学电容器的作用是提升电池/燃料电池的性能,在汽车启动、加速或刹车瞬间提供充足的动力[5, 6]。在随后发展过程中,人们才逐渐意识到,电化学电容器还有一个非常重要的作用,即作为电池和燃料电池的能量补充,在电池或燃料电池出现瞬间断电时提供备用电能[7]。鉴于此,美国能源总署认定在未来能源储存系统中电化学电容器和电池/燃料

超级电容器串联应用中的均压问题及解决方案

超级电容器串联应用中的均压问题及解决方案 摘要:本文详尽的分析了超级电容器串联应用中影响各单体电容器上电压的一致性的原因,对不同的电压均衡的方法及存在的问题,提出使用的电压均衡电路单元,最后给出了实验结果。 关键词:超级电容器电压均衡温度系数 Abstract: In this papper the reason has been analysed that si the ultra capacitor in series infkuence the consistency of the voltage of each unit capacitor in detailed .For different methods of the voltage balance and the questions existing,the voltage balance citcuit unit and the test result has been provided . Keywords: Ultra Capacitor Voltage Balance Temperature Coeffcient 1. 问题的提出 超级电容器的额定电压很低(不到3V),在应用中需要大量的串联。由于应用中常需要大电流充放电,因此串联中的各个单体电容器上电压是否一致是至关重要的。如果不采取必要的均压措施,会引起各个单体电容器上电压较大,采取更多的串联数来解决问题是不可取的。影响均压的因素主要有: 1.1 容量的偏差对电容器组的影响 通常超级电容器容量偏差为-10%--+30%,上下偏差1.44。当电容器组中出现容量偏差较大时,在充电时容量最小的电容器首先到达额定电压而电容量偏差最大的仅充到69%的额定电压,其储能为最小容量电容器的0.69%。如式(1) (1) 其中C min为最大负偏差电容量。电容器组的平均储能为: (2)

超级电容器的关键材料

超级电容器的关键材料 超级电容器的关键材料包括电极材料?电解质?隔膜和集电材料等? (一)电极材料 电极材料是决定电容器电容量大小的主要因素,对电极材料的要求是电导率较高且不与电解质发生化学反应,表面积尽可能大,价格便宜,制备过程中易于成形? 目前,超级电容器电极材料的代表是RuO2·nH2O,比电容已达到720F/g,但Ru资源稀缺且价格昂贵?而成本较低的?比表面积较高的多孔碳电极材料,其比电容只能达到200F/g左右? (二)电解质 在电化学超级电容器中,电解质也是关键的组成部分,它不仅在电容器的性能上起着许多决定性的作用,还在相当大程度上决定着电容器实用的可靠性?现在应用和研究的电解质大致可分为固态和液态两种,液态电解质又包含水溶液和有机溶液两类? 1.水系电解质 在使用活性炭作为电极的EDLC中,H2SO4由于具有较低的凝固点,而且不存在KOH所具有的沉积结晶现象而被广泛应用?考虑到电

导率等因素,研究者们认为30%是最佳浓度?相对于H2SO4溶液而言,KOH水溶液导电性稍差,但腐蚀性弱于H2SO4,集电极可采用高导电的金属材料,因而被人们采用?其他水溶液电解质,如HCl?H3PO4?HNO3及HClO4等,也被尝试作为EDLC的电解质,但效果不佳? 2.有机电解质 有机电解质的一个重要研究内容是支持有机溶剂的电解质盐的开发和选用?应用于EDLC的支持电解质种类不多,目前使用的阳离子主要是季铵盐(R4N+)和锂盐(Li+),此外季磷盐(R4P+)和芳香咪唑盐(EMI)也有报道;阴离子主要有ClO4-?BF4-?PF6-?AsF6-和(CF3SO2)2N-等?在各种电解质盐中,Et4NBF由于具有良好的综合性能,因而在EDLC中得到了广泛的应用? 3.固体电解质 固体电解质由于良好的可靠性?无电解质泄漏?可薄型化和可延长寿命等优点而备受青睐,也实现了全固态EDLC?运用于EDLC的固体电解质分为无机固体电解质和有机固体电解质? 1)无机固体电解质 无机固体电解质本身具有良好的导电性,人们对其用做EDLC的可能性进行了大量研究,尝试使用Rb2Cu8I3C17?β-Al2O3?HUO2PO4·H2O 和RbAg4I4等固态电解质作为EDLC的电解质,其中RbAg4I4最受人

超级电容器材料综述

目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达 1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植物硬壳、石油焦、橡胶等各种原材料中得来。是一种已经商品化的超级电容器电极材料。活性炭材料的活化方法多种多样,可以分为物理活化和化学活化两种。 2、炭气凝胶电极材料

炭气凝胶是一种交联结构的网状的碳材料有多孔性,导电性好,表面积大,孔隙率高,孔径分布广,是唯一可以导电的气凝胶,电导率高。密度跨度大,孔隙率好,而且质量较轻,属于非晶态的纳米碳材料,同时,在制备的时候,可以通过调节工艺参数控制其孔径分布和微粒尺度。 3、碳纳米管 碳纳米管这是一种有类似石墨的六边形组成的碳材料,微观上看两端封闭的多层的管子,直径有几十纳米,层间距要比石墨层间距稍大。从超级电容器对电极材料的要求上看,碳纳米管材料是非常适合用来做电极材料的,因为碳纳米管的结构是空管的形状,表面积大,尤其是壁很薄的碳纳米管,比表面积更大,非常有利于双电层电容的储备。碳纳米管要是制成电极时,还会具备特殊的孔,这些孔是由微观状态下,碳纳米管互相缠绕,好似网状结构,管与管之间就形成了孔洞的结构,孔与孔之间都是互相连通的,没有堵死的情况,这在用作电极的时候,对于电解液的流通的很重要的。而且这种由管径互相缠绕得到的孔不会太小,一般都是属中孔,这会使电极的内阻很低,这些都是超级电容器电极所需要具备的。目前对碳纳米管作为超级电容器电极材料的研究主要集中在将它直接用于超级电容器上,或者将碳纳米管和别的材料复合用作超级电容器。 4、活性炭纤维 活性炭纤维是一种环保材料,具有比活性炭更加优越的吸附性能,由它得到的高表面积的活性炭纤维布已经成功用于商业化的电极

超级电容器研究进展

超级电容器研究进展 XXX 摘要:超级电容器是一种介于化学电池与普通电容器之间的新型储能装置。本文主要介绍了超级电容器的原理、电极材料和电解质研究进展。 关键词:超级电容器电极材料电解质 Research Progress of Super Capacitor Abstract:Super capacitor is a new energy storage device between battery and conventional capacitor. In this paper, super capacitor’s principle,research progress on electrode materials and electrolytes were introduced. Key Word: super capacitor electrode materials electrolytes 1 引言 超级电容器是最近几十年来,国内外发展起来的一种新型储能装置,又被称为电化学电容器。超级电容器兼具有静电电容器和蓄电池二者优点。它既具有普通静电电容器那样出色的放电功率,又具备蓄电池那样优良的储备电荷能力。与普通静电电容器相比较,超级电容器具有法拉级别的超大电容、非常高的能量密度和较宽的工作温度区间[1-3]。此外由于超级电容器材料无毒[4]、无需维护,有极长的循环充放电寿命,可作为一种绿色环保、性能优异的的储能装备在便携式仪器设备、数据记忆存储系统、电动汽车电源等[5]方面有着广泛的应用前景。超级电容器从出现到成熟,经历漫长的发展过程。当今世界,越来越多的科研机构和商业公司致力于超级电容器的研制与开发工作。美国、日本、俄罗斯超级电容器界的三大巨头,其产品几乎占据了超级电容器市场的绝大部分。与这些超级电容强国相比,我国超级电容器研发工作起步晚,发展快,如今已初具规模,并渐趋成熟,但仍存在一定差距。 2 超级电容器工作原理 当前得到大家广泛认可的超级电容器的工作原理主要是双电层电容理论和

金属氧化物超级电容器简介

金属氧化物超级电容器简介 超级电容器,是一种介于普通静电电容器与二次电池之间的新型储能元件。由于它具有比功率高、比容量大、成本低、循环寿命长、无记忆、充放电效率高,不需要维护和保养等优点,因此在移动通讯、信息技术、电动汽车、航空航天和国防科技等方面具有广阔的应用前景。世界各国都给予了高度重视,并将其作为重点开发项目和战略研究进行研发。 超级电容器储能机理 超级电容器按原理可分为双电层电容器和赝电容电容器。作为第一类导体的电极与第二类导体的电解质溶液接触时,充电时则在电极/溶液界面发生电子和离子或偶极子的定向排列,形成双电层电容。双电层电容器的电极通常为具有高比表面积的多孔炭材料,目前常用的炭材料有:活性炭粉末、活性炭纤维、炭黑、碳气凝胶、碳纳米管、玻璃碳、网络结构炭以及某些有机物的炭化产物。 赝电容,也称法拉第准电容,是在电极表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附,脱附或氧化,还原反应,产生和电极充电电位有关的电容。赝电容不仅在电极表面,而且可在整个电极内部产生,因而可获得比双电层电容更高的电容量和能量密度。在相同电极面积的情况下,赝电容可以是双电层电容量的10~100倍。

金属氧化物超电容电极材料最新进展 对电极材料研究主要集中在各种活性炭材料、金属氧化物材料、导电聚合物材料等。其中活性炭电极材料以产生的双电层为主,金属氧化物材料与导电聚合物材料以产生的赝电容为主,下面就介绍赝电容电极材料的研究进展情况。由于RuO2等活性物质在电极/溶液界面法拉第反应所产生的"准电容"要远大于活性炭材料表面的双层电容,有着广阔的研究前景,已经引起了不少研究者的重视。 1、超细微RuO2电极活性物质的制备与研究 超细微RuO2电极活性物质以其优异的催化活性已经在卤碱工业中得到了广泛的应用,但利用其不同寻常的比容量作为电化学电容的活性物质仅仅是近几年的事情。T.R.JOW对这一活性物质进行了系统的研究,他们使用溶胶凝胶方法制备了超细微RuO2颗粒,在175℃加热若干时间,然后制备成为电极进行测试,此种RuO2电极活性物质具有优异的大电流充放电性能,其单电极比容量高达760F/g。JOW认为制备含水的无定型的RuO2氧化物是加大材料电容量的关键,反应仅仅发生在氧化物电极表层。活性材料中加入大面积导电性碳黑后使材料的大电流放电性能有所改善,功率密度达到100KW/Kg。JOW制备的活性电极可在-52℃~73℃的范围之内连续充放电60,000次以上。JOW 等人给出的解释是RuO2?xH2O由于是无定型态,电解液容易进入电极材料,由它作电极时,是材料整体参加反应,即材料的利

超级电容器的发展与应用

常州信息职业技术学院 学生毕业设计(论文)报告 系别:电子与电气工程学院 专业:微电子技术 班号:微电071 学生姓名:徐天云 学生学号:0706033131 设计(论文)题目:超级电容器的发展与应用指导教师:刘民建 设计地点:常州信息职业技术学院起迄日期:2009.7.1—2009.8.20

毕业设计(论文)任务书 专业微电子信技术班级微电071姓名徐天云 一、课题名称:超级电容器的发展与应用 二、主要技术指标:额定容量、额定电压、额定电流、最大存储能量、能量密度、功率密度、使用寿命、循环寿命、等效串联电阻、漏电流等技术指标 三、工作内容和要求:本文先从普通电容器入手,进而引出超级电容器的产生。从而以此为基础,阐释了超级电容器的构造、定义、以及工作原理。接着从超级电容器的性能技术介绍其使用特点和注意事项,然后又介绍了超级电容器的发展与现状以及其在生产生活中的应用。最后还进行其以后发展的广阔前景。 四、主要参考文献:[1]夏熙、刘洪涛,一种正在发展的储能装置—超电容器(2)[J]电池工业,2004,9(4):181-188; [2]钟海云,李荐,戴艳阳,等,新型能源器件—超级电容器研究发展最新动态[J]电源技术,2004,25(5):367-370; [3]薛洪发,超大容器器在铁路运输生产中的应用[J]中国铁路2000(5):52.。 学生(签名)2009年6 月26 日 指导教师(签名)2009年6 月26 日 教研室主任(签名)2009年6 月27 日 系主任(签名)2009年6 月28 日

毕业设计(论文)开题报告 设计(论文)题目 一、选题的背景和意义: 超级电容器发展始于20世纪60年代,起先被认为是一种低功率、低能量、长使用寿命的器件。但到了20世纪90年代,由于混合电动汽车的兴起,超级电容器才受到广泛的关注并迅速发展起来。现今,大功率的超级电容器被视为一种大功率物理二次电源,各发达国家都把对超级电容器的研究列为国家重点战略研究项目。目前,超级电容器在电力系统中的应用越来越受到关注。此外,超级电容器还活跃在电动汽车、消费类电子电源、军事、工业等高峰值功率场合。 二、课题研究的主要内容: 主要介绍了超级电容器的构造、定义以及其工作原理,还阐释了超级电容器的特点和使用注意事项,以及超级电容器的发展与现状。最后介绍了超级电容器在生产生活中的应用。 三、主要研究(设计)方法论述: 通过查阅书籍了解超级电容器的基本概念等信息,结合以前所学的电子专业知识认真研究课题。借助强大的网络功能,借鉴前人的研究成果更好的帮助自己更好地理解所需掌握的内容。通过与老师与同学的讨论研究,及时地发现问题反复地检查修改最终完成

超级电容器材料综述

超级电容器材料综述 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

超级电容器是一种新型的储能装置,具备充放电快、效率高、稳定性好等优点,是一种清洁的绿色能源,是21 世纪的新型绿色能源。超级电容器有很大的市场潜力。通过对超级电容器电极材料进行研究,发现多孔碳材料作为超级电容器电极材料的电化学性能的影响。 目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植物硬壳、石油

相关文档
最新文档