实验二用焦利氏秤测定液体的表面张力

实验二用焦利氏秤测定液体的表面张力
实验二用焦利氏秤测定液体的表面张力

实验二用焦利氏秤测定液体的表面张力

【实验目的】

1.学习使用焦利氏秤测定水的表面张力系数

2.研究溶质对液体表面张力系数的影响

【实验仪器】

焦利氏秤(含配件)一台、物理天平一台、镊子、酒精灯、火柴、烧杯、游标卡尺

【仪器描述】(见图2-1)

焦利氏秤实际上就是弹簧秤。但一般的弹簧秤,弹簧的上端固定不动,在弹簧下端挂重物时,弹簧则伸长,物体重量可由指针所指示的标尺直接标出。而焦利氏秤上的弹簧是挂在可以上下移动的有刻度的管子(6)上的,管外面套有外管(4),外管(4)上有游标(5),旋转旋钮(3)即可使管(6)上下移动。在外管上,有夹子,夹子中央有带标线的短玻璃管(10),弹簧下端挂一细金属杆(9),金属杆中部有一长形小镜,镜中央有一刻痕,金属杆从玻璃管中通过,在金属杆的下端可挂砝码托盘(12)与钢丝码(14)。

当上下移动管(6),使细金属杆上镜子的标线和玻璃管(10)上的标线在镜中的像三者重合(以后简称三线重合)时,相当于弹簧秤对准零点,零点的读数可由管(6)的刻度和外管(4)上的游标(5)读出。

如果我们在砝码托盘上加X克砝码,弹簧(8)伸长了某一长度,细金属杆上镜中的标线即向下移动,此时三线不再重合。转动旋钮(3)使管(6)向上移动,因而细金属杆也随之向上移动。当三线又重合时,在管(6)及管(4)的游标上可读出第二个读数,该读数与第一个读数这差就是弹簧在增加X克重量时所伸长的长度。

图2-1 焦利氏秤实验装置

练习一测定弹簧的弹性系数

【实验原理】

弹簧的弹性系数就是弹性限度内弹簧所受的力F(牛顿)和弹簧伸长的长度S(米)之比,即伸长单位长度弹簧所受的力,如以K表示,则:

【实验步骤】

1.安装仪器如图(1),但此时不要放上烧杯及钢丝码而是在小金属杆(9)下只挂小砝码盘(12),调节三脚架上的螺旋,使管(4)竖直(即金属杆(9)恰在玻璃管(10)的正中),转动旋钮(3),使三线重合,记下此时游标的读数。

2.置1克砝码于盘中,转动旋钮(3),使仍保持三线重合,记下游标读数,此读数与步骤

1所得读数之差即为弹簧下加1克重量时弹簧的伸长量。

3. 按上步骤分别置2克和3克砝码于盘中,测出弹簧的伸长量。 4. 算出弹簧的平均的弹性系数K 。(各数据填入报告中)

练习二 测定蒸馏水的表面张长系数 【实验原理】

在液体表面存在着使液体具有收缩倾向的张力。如果在液面上设想有一条分界线MN ,表面张力的方向是液面相切并垂直于选取的分界线的,表面张力F 的大小与液面设想的分界线的长度L 成正比,即F=αL 。

式中α称为该液体的表面张力系数,

对钢丝码来说,拉出液面时由于液膜前后两个表面,所以它受到的总张力为:

【实验步骤】

1. 先用游标卡尺测量金属钢丝码的长度L ,用镊子夹住钢丝码在酒精灯上烧红后,挂于小砝码下(注意:金属钢丝烧净后不要用手直接接触);

2. 用蒸馏水洗净烧杯,在烧杯内注入120ml 的蒸馏水,置于平台(15)上,将金属钢丝码慢慢兼容入烧杯中的水内使其水平部分的上边缘恰处于水面,同时调节旋钮(3),使三线重合,记下此时游标尺的读数S 0 ;

3.慢慢移动平台(15)下的螺旋(17),缓慢降低烧杯,同时慢慢调节旋钮(3)上升管(6),将金属钢丝缓慢地向上拉至断裂(注意:整个过程都要保持三线重合),再记下游标尺读数S ,

。该读数与前一读数之差,即为弹簧伸长量0'

S S S -=,由S 和弹簧的弹性系数K 即可

算出水的表面张力系数α的值。 4.依上法重做两,计算平均值。

练习三 研究溶质对液体表面张力的影响

【实验原理】

在一定温度下,液体表面张力系数是一定的,如果在纯液体溶解了溶质,液体的表面张力系数就要改变,有的溶质可使液体表面张力系数降低,有的溶质可使液体表面张力系数增大,能降低液体的表面张力系数的物质称为表面活性物质,能增大液体的表面张力系数的物质称为表面非活性物质。本实验是通过对葡萄糖溶液和肥皂的表面张力系数测定,了解葡萄糖溶液和肥皂的表面张力系数的影响。

【实验步骤】

1.在一烧杯中倒入葡萄糖溶液,重复练习二的步骤,求葡萄糖溶液的表面张力系数。

2.在另一烧杯中倒入肥皂液,重复练习二的步骤,求肥皂的表面张力系数。

在不同温度下与空气接触的水的表面张力系数

焦利氏称的使用(实验七)

南昌理工学院实验报告 二OO 年月日 课程名称大学物理实验名称焦利氏称的使用班级姓名同组人指导教师评定签名 【一、实验名称】 焦利氏称的使用 【二、实验目的】 1、掌握焦利氏秤的工作原理,学习焦利氏秤的使用方法。 2、学会用焦利氏秤测量弹簧的弹性系数。 3、学会用焦利氏秤测量微小物体的质量。 【三、实验原理】 1、焦利氏秤 图1

焦利氏秤实际上就是弹簧秤。但一般的弹簧秤,弹簧的上端固定不动,在弹簧下端挂重物时,弹簧则伸长,物体重量可由指针所指示的标尺直接标出。而焦利氏秤上的弹簧是挂在可以上下移动的有刻度的管子上的,管外面套有外管,外管上有游标,旋转旋钮即可使管上下移动。 利用焦利氏秤可测定负荷与弹簧伸长的关系,可以测量液体的的表面张力系数、物体的比重以及进行微小物体的重量的秤衡。其结构如图1所示: 在装有水平调节螺丝②的三足座①上,竖直装一套筒④,套筒顶端安装刻度的游标⑤,筒内插入刻有毫米度尺的钢管⑥,利用旋扭③通过里面的滑轮,链条可调节刻度铜管在套筒 11用夹子○ 16供夹持平台中升降,螺钉⑦供固定弹簧⑧之用,带小缺口的夹子⑩供夹持指示管○ 12和指标镜⑨。 13、铝盘○ 15的升降。本仪器另附有玻皿盘○ 套筒,旋扭○17调节平台○ 当上下移动管,使细金属杆上镜子的标线和玻璃管上的标线在镜中的像三者重合(以后简称三线重合)时,相当于弹簧秤对准零点,零点的读数可由管的刻度和外管上的游标读出。 实验所用的合金丝绕制的弹簧共两种规格列表如下: 弹簧形状合金丝直径(毫米)最大负荷(克) 柱形 30 锥形 30 2. 焦利氏秤的“三线对齐”使用方法 在使用焦利氏秤时,应是反光镜D上的水平刻线、玻璃管E的水平刻线各玻璃管水平刻线在反光镜D中的像重合,即“三线对齐”。 用“三线对齐”方法可保证弹簧下端的位置始终是固定的,而弹簧伸长量△X使可以用米尺和游标卡尺测量出来(也即将弹簧伸长前、后两次的读数之差测量出来)。 读数方法和游标卡尺的读书方法完全一样。焦利氏秤的游标是十分游标,分度值是。 3、弹性系数的测量原理。 根据胡克定律,在弹性限度内,弹簧伸长量△X与所加外力F成正比,即F=K△X。式中K是弹簧弹性系数(也叫倔强系数)。对于一个特定的弹簧,K值是一定的。如果将已知重量的砝码加到砝码盘中,测出弹簧的伸长量,由上面的式子即可计算出该弹簧的K值。这一步称作是焦利氏秤的校准。焦利氏秤校准后只要测出弹簧的伸长量,就可以算出作用于弹簧上的外力F。 【四、实验条件】 焦利氏秤一台,玻皿盘一个,铝盘一个,指标镜一个,法码若干,三种不同规格弹簧各一个,待测金属一个。 【五、实验内容及步骤】 1、测定弹簧的弹性系数 1)将合金丝直径(毫米)、最大负荷(30克)规格的柱形弹簧的上端用螺钉固定住,指标管用夹子夹牢,穿过指标管在弹簧下端挂上指标镜,再在指标镜下面挂上铝盘,若指标镜与指标管接触,可用三足座上的水平螺丝及弹簧上端的夹头进行调节。使刻度尺的起始线对准游标的起始线,指标管和指标镜上的刻线对准,将标尺的读数记录在表1中。 2)在铅盒中加—1克重的砝码,转动旋扭使指标镜与指标管上的刻线始终对准,将标尺的读数记录在表1中。 3)在步骤2)的基础上继续加法码,每次加—1克,转动旋扭使指标镜与指标管上的刻

液体表面张力

液体表面张力系数的测定实验报告模板 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】液体表面层内分子相互作用的结果使得液体表面自然收缩,犹如紧张的弹性薄膜。由于液面收缩而产生的沿着切线方向的力称为表面张力。设想在液面上作长为L 的线段,线段两侧液面便有张力作用,其方向与L 垂直,大小与线段L 成正比。即有:=γL 比例系数γ称为液体表面张力,其单位为N/m. 将一表面洁净的长为L 、宽为d 的圆形金属环(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属环将要脱离液面,即拉起的水膜刚好要破裂时,则有:F=mg+,式中F 为把金属环拉出液面时所用的力;mg 为金属环和带起的水膜的总质量;f 为张力。此时,与接触面的周围边界π(),则 有γ= ,式中D1,D2分别为圆环的内外直径。 实验表明,γ与液体种类、纯度、温度和液面上方的气体成分有关,液体温度越高,γ值越小,液体含杂质越多,γ值越小,只要上述条件保持一定,则γ是一个常量,所以测量γ时要记下当时的温度和所用液体的种类及纯度。 【实验步骤】1.安装好仪器,挂好弹簧,调节底板的三个水平调节螺丝,使焦利称立柱竖直。在主尺顶部挂入吊钩再安装弹簧和配重圆柱体,使小指针被夹在两个配重圆柱之间,配重圆柱体下端通过吊钩钩住砝码托盘。调整小游标的高度使小游标左侧的基准线大致对准指针,锁紧固定小游标的锁紧螺钉,然后调节微调螺丝使指针与镜子框边的刻线重合,当镜子边框上刻线、指针和指针的像重合时(即称为“三线对齐”),读出游标0线对应刻度的数值。 2.测量弹簧的劲度系数k.依次增加 1.0g 砝码,即将质量为1.0g,2.0g,3.0g,…,9.0g,10.0g 的砝码加在下盘内。调整小游标的高度,每次都 F f F f F f F f D D 2 1 +) mg -F 21D D +∏(

乙醇表面张力系数的测定实验报告

竭诚为您提供优质文档/双击可除乙醇表面张力系数的测定实验报告 篇一:溶液表面张力测定实验报告 学号:20XX14120222 基础物理化学实验报告 实验名称:溶液表面张力的测定应用化学二班班级03 组号实验人姓名:xx同组人姓名:xxxx 指导老师:杨余芳老师实验日期:20XX-11-12 湘南学院化学与生命科学系 一、实验目的 1、测定不同浓度正丁醇(乙醇)水溶液的表面张力; 2、了解表面张力的性质,表面自由能的意义及表面张力和吸附的关系; 3、由表面张力—浓度曲线(σ—c曲线)求界面上吸附量和正丁醇分子的横截面积s; 4、掌握最大气泡法测定表面张力的原理和技术。 二、实验原理 测定液体表面张力的方法很多,如毛细管升高法、滴重法、环法、滴外形法等等。本实验采用最大泡压法,实验装

置如图一所示。 图一中A为充满水的抽气瓶;b为直径为0.2~0.3mm的毛细管;c为样品管;D为u型压力计,内装水以测压差;e 为放空管;F为恒温槽。 图一最大泡压法测液体表面张力仪器装置图 将毛细管竖直放置,使滴口瓶面与液面相切,液体即沿毛细管上升,打开抽气瓶的活栓,让水缓缓滴下,使样品管中液面上的压力渐小于毛细管内液体上的压力(即室压), 毛细管内外液面形成一压差,此时毛细管内气体将液体压出,在管口形成气泡并逐渐胀大,当压力差在毛细管口所产生的作用力稍大于毛细管口液体的表面张力时,气泡破裂,压差的最大值可由u型压力计上读出。 若毛细管的半径为r,气泡从毛细管出来时受到向下的 压力为: pmax?p大气?p系统??h?g 式中,△h为u型压力计所示最大液柱高度差,g为重 力加速度,ρ为压力计所贮液体的密度。 气泡在毛细管口所受到的由表面张力引起的作用力为2 πr?γ,气泡刚脱离管口时,上述二力相等: ?rr2pmax??r2?h?g?2?r 2 r??r2?h?g?2?r??rp???h?g

液体表面张力系数测定的实验报告

xx 大学实验报告 一【实验目的】 (1) 掌握力敏传感器的原理和方法 (2) 了解液体表面的性质,测定液体表面张力系数。 二【实验内容】 用力敏传感器测量液体表面的张力系数 三【实验原理】 液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的橡皮膜一样。 这种沿着表面的、收缩液面的力称之为表面张力。 测量表面张力系数的常用方法:拉脱法、毛细管升高法和液滴测重法等。此试验中采用了拉脱法。拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度力的大小。液体表面层内的分子所处的环境跟液体内部的分子不同。液体内部的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向下的引力小,合力不为零。这个力垂直于液面并指向液体内部。所以分子有从液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。 假如在液体中浸入一块薄钢片,则钢片表面附近的液面将高于其它处的,如图1所示。 由于液面收缩而产生的沿切线方向的力Ft 称之为表面张力,角φ称之为接触角。当缓缓拉出钢片时,接触角φ逐

渐的减小而趋于零,因此Ft方向垂直向下。在钢片脱离液体前诸力平衡的条件为 F = mg + F t (1)其中F是将薄钢片拉出液面的时所施加的外力,mg为薄钢片和它所沾附的液体的总重量。表面张力Ft与接触面的周长2(l+d)成正比,故有Ft = 2σ(l+d),式中比例系数σ称之为表面张力系数,数值上等于作用在液体表面单位长度上的力。将Ft代入式(1)中得 (2) 当用环形丝代替薄钢片做此实验时,设环的内外直径为D1、D2,当它从液面拉脱瞬间传感器受到的拉力差 f = F–m g =π(D1+D2)σ,此时 (3)只要测出力f和环的内外直径,将它们代入式(3),即可算出液体的表面张力系数σ。式中各量的单位统一为国际单位。 四【实验仪器】 (1)FD—NST—B 液体表面张力系数测定仪。 (2)砝码六个,每个质量 五【实验步骤】 (1)开机预热。 (2)清洗玻璃器皿和吊环。 (3)在玻璃器皿内放入被测液体并安放在升降台上。 (4)将砝码盘挂在力敏传感器上,对力敏传感器定标。 (5)挂上吊环,测定液体表面张力系数。当环下沿全部浸入液体内时,转动升降台的螺帽,使液面往下降。 记下吊环拉断液面瞬间时的电压表的读数U1,拉断后瞬间电压表的读数U2。则f=(U1-U2)/B 六【实验注意事项】 (1)轻轻挂上吊环,必须调节好水平。 (2)在旋转升降台时,尽量是液体的波动要小。

实验5用焦利氏秤测定液体的表面张力系数

实验五 用焦利氏秤测定液体的表面张力系数 【实验目的】 1.学习使用焦利秤,测量纯水和其它液体的表面张力系数; 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 【实验仪器】 焦利秤,金属框及钢丝,砝码,游标卡尺,温度计,蒸发皿,酒精灯,蒸馏水等。 【实验原理】 液体表面层内的分子,由于受到不对称分子力的作用,力图进入液体内部,使液体自由表面犹如一张拉紧的弹性薄膜,都有收缩的趋势,因此液体表面内存在张力,称为表面张力。假设在液面上任画一条长为l 的线段,则张力f 就表现为线段两侧液膜之间相互作用的拉力,力的方向与所画的线段垂直,其大小与线段长l 成正比,即: l f ?=α (11-1) 式(11-1)中,α称为液体的表面张力系数,表示单位长度直线两侧液面之间的拉力,其单位在SI 制中为1N m -?,在CGS 制中为1dyn cm -?。表面张力系数与温度有关,温度升高,α减小。实验证明α与温度的关系近似地为线性关系,即 βθααθ-=0 (11-2) 式(11-2)中,0α和θα分别为0℃和θ℃时的表面张力系数,β为表面张力系数的温度系数。 如果在金属框中间拉一条细金属丝ab ,如图11-1 所示,将框和细丝浸入待测液体中,然后再慢慢拉出液 面,则金属细丝带出—层液膜。设液膜将被拉断时向上 的拉力为F ,膜宽(即金属丝的长度)为l ,膜高为h , 膜厚(即金属丝直径)为d 。被拉起的液膜有两个表面, 再考虑到这部分液体的重量之后,有 g ldh l W F ρα++=2 (11-3) 式(11-3)中,W 是金属框和金属丝所受的重力和浮力 差,ρ为液体密度,g 为重力加速度。不难看出,l α2为表面张力,g ldh ρ为液膜的重量。由式(11-3)可得 图11-1 ()l g ldh W F 2ρα--= (11-4) 【仪器介绍】 焦利秤如图11-2所示,是弹簧秤的一种。它的主要部分包括圆筒立柱A 和套在A 中的毫米刻度圆柱B 。在圆柱A 上端固定游标V ,B 上挂弹簧D ,转动旋钮E 可以升降B 和D ,在D 的下端挂有中间有刻度线的小镜G ,小镜穿过中间也有刻度线的玻璃管M 。小镜G 的下端可悬挂砝码盘或金属框。调节底座旋钮F 可使A 垂直于水平面。P 为载物平台,旋转螺旋H ,可使平台P 升降而不产生转动。普通弹簧秤的弹簧是上端固定,加

实验四溶液的吸附作用和液体表面张力的测定

实验四溶液的吸附作用和液体表面张力的测定 一、实验目的 1.用最大泡压法测定不同浓度的表面活性物质(正丁醇)溶液在一定温度下的表面张力; 2.应用Gibbs和Langmuir吸附方程式进行精确作图和图解微分,计算不同浓度正丁醇溶液的表面吸附量和正丁醇分子截面积,以加深对溶液吸附理论的理解; 3.掌握作图法的要点,提高作图水平。 二、基本原理 T一定,溶液表面吸附量Γ γ测定,毛细管半径r,其抛压出时受到向下压力∏r2P,最大时离开管口:P max =P 外 -P 系 。测 Pmax 气泡在管口受到的表面张力:2∏r*γ γ=rPmax 用同C溶液γ 1/γ 2 =P max1 /P max2 所以:γ1=(γ 2/P max2 )P max1 =KP max1 求常数K。 对于单分子吸附,其吸附量Γ与浓度c之间的关系可用等温吸附方程表示,即: 式中Гm为饱和吸附量,a为吸附平衡常数。将此式两边取倒数可整理成线性方程: 在饱和吸附时,每个被吸附分子在表面上所占的面积,即分子的截面积S为: 三、仪器与试剂 表面张力仪1套;恒温槽1台;1ml移液管1个;烧杯(250ml) 1个;100ml容量瓶1个;50ml容量瓶5个; 正丁醇(二级.);去离子水. 四、实验步骤 样品编号123456789容量瓶体积/cm31005050505050505050 V醇/cm3 3.仪器系数的测定。先用少量丙酮清洗毛细管3,再用蒸馏水仔细清洗样品管2和毛细管3,然后加入适量蒸馏水。在减压管1中装满水,压力计5中注入适量的水,在活塞8打开的情况下,调节活塞6使毛细管端面与液面相切。关闭活塞8,打开活塞7使体系减压,当毛细管口逸出气泡时,调节活塞7使液滴缓慢滴下,读出数字式微压差测量仪最大数值。 再更换样品重复测定两次,取平均值。已知25o C水的表面张力=,计算仪器系数K。 4.乙醇溶液表面张力的测定。取3%的乙醇溶液(一号样品)洗净样品管和毛细管,然后加入适量溶液,待恒温后,按上述操作步骤测定Δh。

液体表面张力实验报告

液体表面张力系数的测定 [实验目的] 1、了解液体表面张力性质以及表面张力系数的含义和影响因素. 2、理解拉脱法测量液体表面张力系数的基本原理,了解测量方法。 3、了解用液体界面张力仪定标测量微小力的思想和方法。 4、了解液体界面张力仪的调节使用方法和校准方法。 5、熟悉实验的具体内容. 6、拟定出合理的实验数据记录表格. [实验原理] 表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。作用于液面单位长度上的表面张力称为液体的表面张力系数,用来度量表面张力的大小。表面张力系数不仅与液体的种类有关,而且还与温度、纯度、表面上方的气体成分等有关.物质液体状态的许多性质都与液体的表面张力相关,如毛细现象、浸润现象等。因此,测量液体表面张力系数对于科学研究和实际应用都具有重要意义。测定液体表面张力系数的常用方法有:拉脱法,液滴测重法和毛细管升高法等。拉脱法是一种直接测定法,通过物体的弹性形变(拉伸或扭转)来度量力的大小,如扭力天平法、焦力称法等。 实验中采用拉脱法测量水与空气界面的表面张力系数。通过实验可以重点学习如下内容:(1)实验方法:测量液体表面张力系数的拉脱法。(2)测量方法:用液体界面张力仪定标测量微小力的方法。(3)数据处理方法:质量标准曲线的绘制方法.(4)仪器调整使用方法:液体界面张力仪的调整使用方法。 [实验内容] 1、整液体界面张力仪水平和零点,达到待测状态. 2、准液体界面张力仪。 (1)金属环上放一块小纸片,仪器调零。包括两个方面的调节:第一,调节刻度盘蜗轮,使零刻度线与游标零线重合,即读数为零;第二,调节调零微调蜗轮,使吊杆臂上的指针与平面反射镜的红线重合。 (2)在小纸片上放质量0.0005kg的砝码,测量金属环单位长度的受力F,即调节刻度盘蜗轮使指针与红线重合时刻度盘的读数. (3)计算理论值F0=mg/π(d1+d2)。 (4)比较测量值F与理论值F0,如果二者相等,说明校准准确;若不相等,调节两个吊杆臂,保证两臂的长度等值缩短或伸长,使刻度盘上的读数F与理论值F0相等.重复测量几次,直至二者一致为止. 3、测量绘制质量标准曲线。 (1)仪器校准后,放置不同质量m的砝码,记录刻度盘的读数f。 (2)以m为横坐标f为纵坐标绘制质量标准曲线。

液体表面张力实验报告

液体表面张力实验报告 实验原理: 实验一、一元硬币上能承载几滴水? 水是由水分子组成,它们之间不是独来独往的,而是互相吸引,甚至三三两两地结合。处在中间的水分子受到来自四面八方的其他水分子的包围,受力均匀。可是处在水面的水分子情况不同,它的一面与空气接触,没有来自其他水分子的吸引力,使得它受力不均匀,水的表面好像一块张紧的弹性薄膜。 由于液体的表面有这种奇特的存在,就使得液体的表面总是处在被绷紧的状态,并尽量收缩到最小。由于在体积相同的条件下,球的面积最小,所以在表面张力的作用下,肥皂泡、小露珠、水银滴等也

就都收缩成球形了。一元硬币上能承载的水滴也相应增加了。 实验二、订书针、一分硬币能浮在水面上吗? 小木块入水后,撤掉压力还能上浮是因浮力作用,而订书针、硬币入水后,由于表面张力被破坏下沉,原来浮在水面是因水的表面张力。 其实科学就在我们的身边,就在我们的生活中,你也可以和爸爸妈妈一起动手做一做,亲自去感受去体验,做个科学小达人吧! 处于表面的液体分子(球状模型,液体分子排列紧密),以分子B为中心的球面中的一部分在液体当中,另一部分在液面之外,由于对称性可知,CC'和DD'之间部分的受到的合力等于零;对B有效的作用力是由球面内DD'以下的部分受到的向下合力。由于处在边界内的每—个分子都受到指向液体内部的合力,所以这些分子都有向液体内部下降的趋势,同时分子与分子之间还有侧面的吸引力,即有尽量收缩表面的趋势。

以最简单的气液相界面为例,液相内分子周围所受的力是对称的,彼此相互抵消,但表面层分子由于受力不均衡,其结果受到垂直指向液体内部的拉力,所以液体表面都有自动缩小的趋势。如果要扩大表面就要把内层分子移到表面上来,这至少需要克服表面分子的拉力而做功。实际上液体分子内部所受的力是分子间作用力当然也包括氢键。因此,简单地说表面张力是范德华力和氢键微观作用在宏观上的表现。

用焦利氏称测量液体表面张力系数

4+ 总的来说,报告做得很整齐,在内容上应该更加用心改进。 实验报告 实验题目:焦利氏秤法测量液体的表面张力 实验目的:学习并掌握用焦利氏秤法测量液体的表面张力的方法,加深对液 体表面张力的理解。 实验原理: 液体表层内分子力的宏观表现,使液面具有收缩的趋势。想象在液面上划一条线,表面张力就表现为直线两侧的液体以一定的拉力相互作用。这种张力垂直于该直线且与线的长度成正比,比例系数称为表面张力系数。 把金属丝AB 弯成如图 (a)所示的形状,将其悬挂在灵敏的测力计上,浸到液体中,缓缓提起测力计时,金属丝就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一最大值F (超过此值,膜即破裂)。。由于液膜有两个表面,若每个表面的力为F ',则由 '2F mg F += 得 2 'mg F F -= (1) 表面张力F ’的大小与分界线的长度成正比。即 l F σ=' (2) σ称为表面张力系数,单位是N/m 。表面张力系数与液体的性质,杂质和温度有关。测定表面张力系数的关键是测量表面张力F ',应用焦利氏秤液膜即

将破裂可以方便地测量表面张力F '。 实验器材:焦利氏秤,自来水,肥皂水,金属丝,金属圈,钢板尺。 实验内容: 1、确定焦利氏秤上锥形弹簧的劲度系数k ; 2、测量自来水的表面张力系数; 3、测量肥皂水的表面张力系数。 数据记录处理: 1、确定焦利氏秤上锥形弹簧的劲度系数k m/g 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 x/cm 2.87 3.38 3.86 4.36 4.88 5.42 5.93 6.48 7.00 7.53 8.06 (1)作图法: 1 2 3 4 5 m/g x/cm 我仔细看了一下图,有个疑问,在m=0g ,应该x=2.87cm ,但是从图例反应出的是m=0g ,x=0cm ,是不是x 坐标轴没有设置对?? (2)由作图法,计算斜率得k1=0.957g/cm=0.937N/m 逐差法:( 2.5m g ?=) x i+5-x i x 6-x 1 x 7-x 2 x 8-x 3 x 9-x 4 x 10-x 5 x

用拉脱法测定液体表面张力系数物理实验报告

用拉脱法测定液体表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被周 围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密 度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行 定标的方法,计算该传感器的灵敏度。 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一 层液膜。使液面收缩的表面张力f 沿液面的切线方向,角?称为湿润角(或接触角)。当继续提起圆筒形吊环时,?角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破 裂时的拉力为F ,则有 f g m m F 2)(0++= (1) 式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ?+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。α在数值上等于单位长度上的表面张力。式中l 为圆筒形吊环内、外圆环的周长之和。 ) ()(0外内D D g m m F ++-= πα (3) 由于金属膜很薄,被拉起的液膜也很薄,m 很小可以忽略,于是公式简化为:

表面张力实验报告

表面张力实验报告 励耘化学 黄承宏 2 量具名称 量程 分辨力 误差限 测量 游标卡尺(mm) 150.00 0.05 0.05 D1,D2 1 2 3 平均值 内径 D1(mm) 33.15 33.15 33.05 33.12 外径 D2(mm) 34.80 34.75 34.85 34.80 D1+D2(mm) 67.95 67.90 66.90 67.92 编号 1 2 3 4 5 6 7 质量/g 0.5 1.0 1.5 2.0 2.5 3.0 3.5 砝码重力/N 0.0049 0.0098 0.0147 0.0196 0.0245 0.0294 0.0343 示数/mV 2.0 3.1 5.2 6.8 8.3 10.2 11.9 灵敏度B 为0.3426N/V 1 2 3 4 5 6 平均值 U1/mV 7.8 8.6 8.7 9.1 9.2 9.4 8.8 U2/mV 1.7 3.1 3.2 3.1 3.5 3.0 2.9 U1-U2 6.1 5.5 5.5 6.0 5.7 6.4 5.9 由公式水的表面张力α=Bπ(D1+D2)= 0.3426?3.14159?0.6792 N/m=8.07×10-3 N/m 误差 71.96?8.070 71.96 ×100%=88.79% 肥皂水表面张力系数测试 y = 0.3426x + 7E-05R2 = 0.9973 00.002 0.0040.0060.0080.010.012 0.0140 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 示数/V 重力/N

FD-GLB-II型新型焦利秤实验仪使用说明(080530修订)

仪器使用说明 TEACHER'S GUIDEBOOK FD-GLB-II 简谐振动与弹簧劲度系数实验仪 (新型焦利秤实验仪) 中国.上海复旦天欣科教仪器有限公司Shanghai Fudan Tianxin Scientific_Education Instruments Co.,Ltd.

FD-GLB-II 型新型焦利秤实验仪使用说明 一、概述 90年代以来,集成霍耳传感器技术得到了迅猛发展,各种性能的集成霍耳传感器层出不穷,在工业、交通、无线电等领域的自动控制中,此类传感器得到了广泛的应用。如:磁感应强度测量、微小位移、周期和转速的测量,以及液位控制、流量控制、车辆行程计量、车辆气缸自动点火和自动门窗等。为使原有传统的力学实验增加新科技内容,并使实验装置更牢靠,复旦大学物理实验教学中心与本公司协作,对原焦利秤拉线杆升降装置易断及易打滑等弊病进行了改进,采用指针加反射镜与游标尺相结合的弹簧位置读数装置,提高了测量的准确度。在计时方法上采用了集成开关型霍耳传感器测量弹簧振动周期。此项改进,既保留了经典的测量手段和操作技能,同时又引入了用霍耳传感器来测量周期的新方法,让学生对集成霍耳开关传感器的特性及其在自动测量和自动控制中的应用有进一步的认识。通过本实验装置可掌握弹簧振子作简谐运动的规律,又可熟悉胡克定律,并可学习振动周期的测量新方法。本仪器可用于高校及中专基础物理实验,也可用于传感器技术实验及物理演示实验。 二、实验原理 1.弹簧在外力作用下将产生形变(伸长或缩短)。在弹性限度内由胡克定律知:外力F 和它的变形量y ?成正比,即 y K F ??= (1) (1)式中,K 为弹簧的劲度系数,它取决于弹簧的形状、材料的性质。通过测量F 和y ?的对应关系,就可由(1)式推算出弹簧的劲度系数K 。 2.将质量为M 的物体挂在垂直悬挂于固定支架上的弹簧的下端,构成一个弹簧振子,若物体在外力作用下(如用手下拉,或向上托)离开平衡位置少许,然后释放,则物体就在平衡点附近做简谐振动,其周期为 K PM M T 0 2+=π (2) 式中P 是待定系数,它的值近似为1/3,可由实验测得,0M 是弹簧本身的质量,而0PM 被称为

有关表面张力的几个小实验

有关表面张力的几个小实验 作者:admin 转贴自:本站原创点击数:123 更新时间:2006-6-17 资讯录入:admin (1)水面浮针或浮硬币:由于它们经常和手接触,所以针和硬币表面有一层油脂,使水对它们不浸润。如果再用油脂涂一下更易成功。漂浮硬币时可以不用纸去托,轻轻地向水面上平放即可。 课本上的“缝衣针浮在水面上”的小实验,比较难做,可以让学生先做浮硬币的实验(用5分硬币比较容易成功). 做浮针实验时可以用一小块餐巾纸托住钢针放入水面,餐巾纸吸水后下沉,钢针就能浮于水面。 (2)肥皂水膜的表面收缩到最小:用金属丝制成图③所示的框架,浸入肥皂水中,提出后可看到图中的活动细金属丝AB 被肥皂水膜的表面张力拉着而向上运动,需加一定拉力,AB才能静止平衡。 (3)水超过杯口不溢:向饮水用的玻璃杯中小心地注满水,使水面恰好与杯口相平,注意杯口原来应当是干燥的。然后把大头针或小钉逐个地放入水杯中,要从水面的中间投放,尽量减轻水面的扰动。可以看到水面逐渐凸起高于杯口但不溢出,以此说明水的表面张力的作用。 (4)表面活性剂能改变水的表面张力:在水盆中央漂浮几根火柴棍,排成图④所示的形状。然后向它们中间A处的水面上滴一些肥皂水或洗衣粉溶液或洗净剂等这类表面活性剂,就会看到火柴棍迅速向四周散开。这说明表面活性剂使A处水面的张力变小了,外面四周的水面收缩而使火柴棍移动。 (5)失重的油滴 水银滴在失重状态下,由于表面张力的作用呈球形,这个现象可以用悬浮状态下的油滴来模拟说明。往小酒杯内倒入约半杯酒精(或高度白酒),再加少量水并搅匀。滴管吸入半管食用油,伸入酒精溶液中,将油一次挤出。如果油滴成偏球形且沉于杯底,可向杯中加少量水使溶液密度变大,并用火柴梗轻轻搅动偏球形油滴的四周(不要使油滴分裂成许多小滴),与此同时可以看到偏球形油滴上浮,最后呈球形悬浮在溶液中。这说明在消除重力对油滴的影响后,仅在表面张力的作用下,油滴呈球形,如图5所示。

焦利氏秤测量弹簧的有效质量实验报告

实验5 《用焦利氏秤测量弹簧的有效质量》实验提要 实验课题及任务 《用焦利氏秤测量弹簧的有效质量》实验课题任务是:自然界存在着多种振动现象,其中最简单的振动是简谐振动。一切复杂的振动都可以看成是由多个简谐振动合成的。本实验是研究焦利氏秤下面的弹簧的简谐振动,测量弹簧的有效质量,验证振动周期与质量的关系。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用焦利氏秤测量弹簧的有效质量》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,写出完整的实验报告,也可按书写科学论文的格式书写实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上设计出测定简谐振动周期与弹簧的倔强系数,弹簧振子的有效质量数值关系的方法,写出实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶拟出实验步骤,列出数据表格,建议多次测量减小误差。 ⑷用最小二乘法处理实验数据。 ⑸分析讨论实验结果。 实验仪器 焦利氏秤及附件、天平、秒表或数字毫秒计。 实验提示 在一上端固定的弹簧下悬一重量为m的物体,弹簧的倔强系数为K。在弹簧的弹性回复力的作用下,如果略去阻力,则物体作简谐振动。不考虑弹簧自身的质量时,列出振动周期T与质量m,倔强系数K的关系式。 m与弹簧下所加的物由于焦利氏秤的弹簧K值很小,弹簧自身的有效质量 体系(包括小镜子、砝码托盘和砝码)的质量相比不能略去,在研究弹簧作用简 m等谐振动时,需考虑其有效质量。若考虑弹簧的有效质量时,T、K、m、 关系又如何? 学时分配 教师指导(开放实验室)和开题报告1学时;实验验收,在4学时内完成实验; 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求用纸质版(电子版用电子邮件发送到指导教师的电子邮箱里)供教师修改。

表面张力的测定实验报告分析

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:溶液表面张力的测定 (1)实验目的 1、掌握最大气泡法测定表面张力的原理和技术 2、通过对不同浓度正丁醇溶液表面张力的测定,加深对表面张力、表面自由能和表面吸附量关系的理解 3、学习使用Matlab 处理实验数据 (2) 实验原理 1、 表面自由能:从热力学观点看,液体表面缩小是一个自发过程,这是使体系总的自由能减小的过程。如欲使液体产生新的表面A ?,则需要对其做功。功的大小应与A ?成正比:-W=σA ? 2、 溶液的表面吸附:根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比 溶液内部大,反之,溶质使溶液的表面张力升高时,它在表面层中的浓度比在内部的浓度低。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。Gibbs 用热力学的方法推导出它们间的关系式 T c RT c )(??- =Γσ (1)当00,溶质能减少溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附,此类物质叫表面活性物质。(2)当0>??? ????T c σ时,Γ<0,溶质能增加溶剂的表面张力,溶 液表面层的浓度小于内部的浓度,称为负吸附,此类物质叫非表面活性物质。由 T c RT c )(??- =Γσ 可知:通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。 3、 饱和吸附与溶质分子的横截面积:吸附量Γ浓度c 之间的关系,有Langmuir 等温方程 式表示:c K c K ·1·+Γ=Γ ∞

新型焦利秤实验仪使用说明书

新型焦利秤实验仪使用说明书 一、概述 20世纪90年代以来,集成霍耳传感器技术得到了迅猛发展,各种性能的集成霍耳传感器层出不穷,在工业、交通、无线电等领域的自动控制中,此类传感器得到了广泛的应用。如:磁感应强度测量、微小位移、周期和转速的测量,以及液位控制、流量控制、车辆行程计量、车辆气缸自动点火和自动门窗等。为使原有传统的力学实验增加新科技内容,并使实验装置更牢靠,本公司对原焦利秤拉线杆升降装置易断及易打滑等弊病进行了改进,采用指针加反射镜与游标尺相结合的弹簧位置读数装置,提高了实验装置的可靠性和测量的准确度。在计时方法上采用了集成开关型霍耳传感器测量弹簧振动周期。此项改进,既保留了经典的测量手段和操作技能,同时又引入了用霍耳传感器来测量周期的新方法,让学生对集成霍耳开关传感器的特性及其在自动测量和自动控制中的应用有进了一步的认识。通过本实验装置可掌握弹簧振子作简谐运动的规律,又可加深对胡克定律的认识,同时掌握一种用新方法测量振动周期的实验手段。本仪器除新功能外,含盖普通焦利氏秤的全部功能,可用于高校及中专基础物理实验,也可用于传感器技术实验及物理演示实验。 二、用途 1.验证胡克定律,测量弹簧的劲度系数。 2.研究弹簧振子作简谐振动的特性,测量简谐振动的周期,用理论公式计算弹簧劲度系数,对两种方法的测量结果进行比较。 3.学习集成霍耳开关的特性及使用方法,用集成霍耳开关准确测量弹簧振子的振动周期。 4.用新型焦利秤测量微小拉力-液体的表面张力。 5.测量本地区的重力加速度。 6.观测弹簧的线径与直径对弹簧劲度系数的影响。 三、仪器组成及技术指标 1.仪器结构: 实验仪器主要由二部分组成,如图1所示:

用拉脱法测定液体的表面张力系数实验

实验二、用拉脱法测定液体的表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被 周围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解737FB 新型焦利氏秤实验仪的基本结构,掌握用标准砝码对测量仪进行定标的方法; 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 1.测量公式推导: 当逐渐拉提冂形铝片框时,?角逐渐变小而接近为零,这时所拉出的液膜前后两个表面的表面张力f 均垂直向下。设拉起液膜将破裂时的拉力为F ,则有 f 2 g )m m (F 0+?+= (1) 式中:m 为粘附在框上的液膜质量,0m 为线框质量。因表面张力的大小与接触面周界长度成正比,则有: )d L (2f 2+?α= (2) 比例系数α称表面张力系数,单位为m /N 。 由(1),(2)式得: ) d L (2g )m m (F 0+?+-= α (3) 由于冂形铝片框很薄,被拉起的水膜很薄,m 较小,可以将其忽略,且一般有d L >>,那么L d L ≈+,于是(3)式可以简化为 : L 2g m F 0?-= α (4)

焦利称实验

第 1 页 共 13 页 简谐振动特性研究与液体表面张力系数测定 (FB737新型焦利氏秤实验仪) 实验一、简谐振动特性研究与弹簧劲度系数测量 【实验目的】 1. 胡克定律的验证与弹簧劲度系数的测量; 2. 测量弹簧的简谐振动周期,求得弹簧的劲度系数; 3. 测量两个不同弹簧的劲度系数,加深对弹簧的劲度系数与它的线径、外径关系的了解。 4. 了解并掌握集成霍耳开关传感器的基本工作原理和应用方法。 【实验原理】 1. 弹簧在外力作用下将产生形变(伸长或缩短)。在弹性限度内由胡克定律知:外力F 和它的变形量Y Δ成正比,即: Y K F Δ?= (1) (1)式中,K 为弹簧的劲度系数,它取决于弹簧的形状、材料的性质。通过测量F 和Y Δ的对应关系,就可由(1)式推算出弹簧的劲度系数K 。 2. 将质量为M 的物体挂在垂直悬挂于固定支架上的弹簧的下端,构成一个弹簧振子,若物体在外力作用下(如用手下拉,或向上托)离开平衡位置少许,然后释放,则物体就在平衡点附近做简谐振动,其周期为: K PM M 2T 0 +π = (2) 式中P 是待定系数,它的值近似为3/1,可由实验测得,0M 是弹簧本身的质量,而0PM 被称为弹簧的有效质量。通过测量弹簧振子的振动周期T ,就可由(2)式计算出弹簧的劲度系数K 。 3. 磁开关(磁场控制开关): nemo xatu 2011.11.21

第 2 页 共 13 页 如图1所示,集成霍耳传感器是一种磁敏开关。在“1脚”和“2脚”间加V 5直流电压,“1脚”接电源正极、“2脚”接电源负极。当垂直于该传感器的磁感应强度大于某值Bm 时,该传感器处于“导通”状态,这时处于“3”脚和“2”脚之间输出电压极小,近似为零,当磁感强度小于某值)Bm Bn (Bn <时,输出电压等于“1脚” 、“2脚”端所加的电源电压,利用集成霍耳开关这个特性,可以将传感器输出信号输入周期测定仪, 测量物体转动的周期或物体移动所经时间。 【实验仪器】 FB737新型焦利氏秤实验仪1台,FB213A 型数显计时计数毫秒仪 【实验步骤】 1. 用拉伸法测定弹簧劲度系数K :(不使用毫秒仪) (1)按图2,调节底板的三个水平调节螺丝,使重锤尖端对准重锤基准的尖端。 (2)在主尺顶部安装#1弹簧,再依次挂入带配重的指针吊钩、砝码托盘,松开顶端挂钩锁紧螺钉,旋转顶端弹簧挂钩,使小指针正好轻轻靠在平面镜上(注意:力度要适当,若靠得太紧,可能会因摩擦太大带来附加的系统误差),以便准确读数。这时因初始砝码等已使弹簧被拉伸了一段距离。(可参考说明书中的装置图) (3)调整小游标的高度使小游标平面镜的基准刻线大致对准指针,锁紧固定小游标的锁

最大气泡法测表面张力实验报告

最大气泡法测定溶液的表面张力 【实验目的】 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 【实验原理】 1、表面张力的产生 纯液体和其蒸气组成的体系体相分子:自由移动不消耗功。表面分子:液体有自动收缩表面而呈球形的趋势。要使液体表面积增大就必须要反抗分子的内向力而作功以增加分子位能。所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。 W=A σ-?g 如果ΔA 为1m 2,则-W ′=σ是在恒温恒压下形成1m 2新表面所需的可逆功,所以σ称 为比表面吉布斯自由能,其单位为J·m -2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m -1。液体单位表面的表面能和它的表面张力在数值上是相等的。 2、弯曲液面下的附加压力 (1)在任何两相界面处都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。 (2)液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。 (3)液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 (4)由于表面张力的存在,产生很多特殊界面现象。 3、毛细现象 (1)由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。

用焦利氏称测量液体表面张力系数

系 级 姓名 日期 No. 评分: 实验题目:焦利氏秤法测量液体的表面张力 实验目的:学习并掌握用焦利氏秤法测量液体的表面张力的方法,加深对液体表 面张力的理解。 实验原理: 液体表层内分子力的宏观表现,使液面具有收缩的趋势。想象在液面上划一条线,表面张力就表现为直线两侧的液体以一定的拉力相互作用。这种张力垂直于该直线且与线的长度成正比,比例系数称为表面张力系数。 把金属丝AB 弯成如图 (a)所示的形状,将其悬挂在灵敏的测力计上,浸到液体中,缓缓提起测力计时,金属丝就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一最大值F (超过此值,膜即破裂)。。由于液膜有两个表面,若每个表面的力为F ',则由 '2F mg F += 得 2 'mg F F -= (1) 表面张力F ’的大小与分界线的长度成正比。即 l F σ=' (2)

系级姓名日期No. 评分: σ称为表面张力系数,单位是N/m。表面张力系数与液体的性质,杂质和温度有关。测定表面张力系数的关键是测量表面张力F',应用焦利氏秤液膜即将破裂可以方便地测量表面张力F'。 实验器材:焦利氏秤,自来水,肥皂水,金属丝,金属圈,钢板尺。 实验内容: 1、确定焦利氏秤上锥形弹簧的劲度系数k; 2、测量自来水的表面张力系数; 3、测量肥皂水的表面张力系数。 数据记录处理: 1、确定焦利氏秤上锥形弹簧的劲度系数k m/g 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 x/cm 2.87 3.38 3.86 4.36 4.88 5.42 5.93 6.48 7.00 7.53 8.06 (1)作图法:

相关文档
最新文档