中国石油大学(华东)流体力学实验沿程阻力

中国石油大学(华东)流体力学实验沿程阻力
中国石油大学(华东)流体力学实验沿程阻力

中国石油大学(华东)工程流体力学实验报告

实验日期:成绩:

班级:学号:姓名:教师:

同组者:

实验七、沿程阻力实验

一、实验目的填空

1.掌握测定镀锌铁管管道沿途阻力系数的方法;

2.在双对数坐标纸上绘制λ-Re 的关系曲线;

3.进一步理解沿途阻力系数随雷诺数的变化规律。

二、实验装置

在图1-7-1下方的横线上正确填写实验装置各部分的名称

本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。

另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表

F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计;

C——量水箱;V——阀门;K——局部阻力实验管路

图1-7-1 管流综合实验装置流程图

三、实验原理在横线正确写出以下公式

本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程

水头损失计算公式:

hf= λ L/D*v^2/2g

(1-7-1)

式中:λ——沿程阻力系数;

L——实验管段两端面之间的距离,m;

D——实验管内径,m;

g——重力加速度(g=9.8 m/s2);

v——管内平均流速,m/s;

h f——沿程水头损失,由压差计测定。

由式(1-7-1)可以得到沿程阻力系数λ的表达式:

λ= 2g D* hf /(L*v^2)

(1-7-2)沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。

当实验管路粗糙度保持不变时,可得出该管的λ-Re的关系曲线。

四、实验要求填空

1.有关常数

实验装置编号:No. 7

管路直径:D = 1.58cm;水的温度:T = 19.5 ℃;

水的密度:ρ= 0.99833 g/cm3;动力粘度系数:μ= 1.01745

mPa?s;

运动粘度系数:ν= 0.01019 cm2/s;两测点之间的距离:L= 500 cm

2.实验数据处理见表1-7-2

表1-7-2 沿程阻力实验数据处理表

3、以其中一组数据写出计算实例(包含公式、数据及结果)。

(1)汞柱差:Δ'h=h2’-h1’=92.8-27.5=65.3cm

沿程水头损失:h f=12.6* Δ'h=12.6*65.3=822.78cm

(2)运动粘度系数:ν=μ /ρ= 1.01745/ 0.99833/100=0.01019 cm2/s (3)流量:Q=A*(hu-hd)/t=400*(42.4-11)/32.96= 381.068 ml/s (4)管内平均流速:v =Q/(π/4*D^2)= 381.068/(3.14/4*1.58^2)= 194.455cm/s

(5)雷诺数:Re=v D/ν = 194.455*1.58/ 0.01019=30150.985

(6)沿程阻力系数:λ=2g D* hf /(L*v^2)=2*9.8*822.78/(5*

194.455^2)= 0.135

4.在双对数坐标纸上绘制λ-Re的关系曲线。

五、实验步骤正确排序

(5).逐次关小V11,记录18组不同的压差及流量;

(2).打开阀门V10排气,排气完毕将阀门关闭;

(7).实验完毕后,依次关闭V11、实验管路左右两测点的球形阀,并打开两用式压差计上部的球形阀。

(1)..阀门V1完全打开。一般情况下V1是开着的,检查是否开到最大即可;

(4 )..用打气筒将水-气压差计的液面打到中部,关闭压差计上、下方的三个球形阀,将V11完全打开。待水流稳定后,记录压差计读数,同时用体积法测流量(压差5~7 cm汞柱时,打开压差计下方的两个球形阀,由汞-水压差计换用水-气压差计来读压差);

(6 )用量筒从实验管路中接足量的水,放入温度计5分钟后读出水的温度,查粘温表;

(3 )打开实验管路左、右测点及压差计上方的球形阀,检查压差计左右液面是否水平。若不在,须排气(为防止汞发生外泄,排气时应在老师的指导下进行);

六、注意事项

1.本实验要求从大流量(注意一定要把阀门V11完全打开)开始做,逐渐调小流量,且在实验的过程中阀门V11不能逆转;

2.实验点分配要求尽量合理,在记录压差和流量时,数据要一一对应;

3.使用量筒、温度计等仪器设备时,一定要注意安全;4.做完实验后,将量筒、温度计放回原处,将秒表交回。

七、问题分析

h?

1.如将实验管安装成倾斜的,比压计中的读数差是不是沿程水头损失

f

是的。

伯努利方程中f h =位置水头差和压力水头差。比压计的读数是测压管水头差包括位置水头差和压力水头差,所以比压计中的读数差是沿程水头损失f h

2.随着管路使用年限的增加,λ-Re关系曲线会有什么样的变化?

管路使用时间的增加会使管路的粗糙度增大,从而使得沿程阻力系数λ变大,所以λ-Re关系曲线会向上移动。

3.当流量、实验管段长度相同时,为什么管径愈小,两断面的测压管液面差愈大?其间的变化规律如何?

根据连续性方程Q=Av管径愈小其断面的流速就越大,而测压管液面差体现为hf= λL/D*v^2/2g,hf与速度的平方成正比,所以管径愈小,hf越大,两断面的测压管液面差愈大。

变化规律:和公式hf=2λLQ /(πd^5) 相一致

八、心得体会

这次实验是所有4个试验中用时最长且操作要求很高的的一个。在记下操作注意事项和要求后,便开始着手实验,四个人分管测流量、调节水阀和压差计读数,在团队的合作终于准确且有效率的完成了。在数据处理过程中,大量的计算也让沿途阻力这一流体力学的重要内容的理论知识更加清晰深刻,公式熟练掌握,沿途阻力系数和雷诺数的关系也通过图表直观的建立起来,这对进一步研究流体力学理论问题有很大帮助。

流量计(中国石油大学流体力学实验报告)

中国石油大学(华东)流量计实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的矫正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力试验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A )。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道 流量 的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,就可计算管道的理论流量 Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,可计算管道的理论流量 Q ,再经修正得到实际流量。孔板流量计也属压差式流量计,其特点是结构简单。 图1-3-2 文丘利流量计示意图 图1-3-3 孔板流量计示意图 3.理论流量 水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑 水头损失 ,速度水头的增加等于测压管水头的减小(即比压计液面高差h ?),因此,通过量测到的h ?建立了两断面平均流速v 1和v 2之间的一个关系: 如果假设动能修正系数1210.αα==,则最终得到理论流量为: 式中 2K A g =,2221 1( )()A A A A μ= -,A 为孔板锐孔断面面积。 4.流量系数 (1)流量计流过实际液体时,由于两断面测压管水头差中还包括了因 粘性 造成的水头损失,流量应修正为: 其中 1.0α<,称为流量计的流量系数。

管路沿程水头损失实验

管路沿程水头损失实验 一、实验目的要求 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制 l g V l g f h 曲线; 2.掌握管道沿程阻力系数的量测技术和应用水压差计及电测仪测量压差的方法; 3.将测得的Re-f 关系值与莫迪图对比,分析其合理性,并且与莫迪图比较,进一步提高实验成果分析能力。 二、实验装置 本实验的实验装置,如图1所示。 图1 自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器; 2.实验台; 3.回水管; 4.水压差计; 5.测压计; 6.实验管道 8.滑动测量尺; 9.测压点; 10.实验流量调节阀; 11.供水管与供水阀; 12.旁通管路与旁通阀; 13.稳压筒

实验装置配备如下: 1.测压装置:U形管水压差计和电子量测仪。 低压差用U形管水压差计量测,而高压差需要用电子量测仪来量测。电子量测仪(见图2)由压力传感器和主机两部分组成,经由连通管将其接入测点。压差读数(以厘米水柱为单位)通过主机显示。 图2 电子量测仪 1.压力传感器; 2.排气旋钮; 3.连通管; 4.主机 2.自动水泵与稳压器: 自循环高压恒定全自动供水器由离心泵、自动压力开关、气--水压力罐式稳压器等组成。压力超高时能自动停机,过低能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 3.旁通管与旁通阀: 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动。为避免这种情况出现,供水器设有与蓄水箱直通的旁通管,通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至水箱的阀门,即旁通阀。实验流量随旁通阀开度减小(分流量减小)而增大。设计上旁通阀又是本装置用以调节流量的阀门之一。所以调节流量有两种方法:一是调节实验流量调节阀(见图1);二是调节旁通阀。 4.稳压筒: 为了简化排气,并防止实验中再进气,在传感器前连接稳压筒(2只充水不满顶的密封立筒)。

中国石油大学流体力学实验报告

中国石油大学(流体力学)实验报告 实验日期:2012-2-15 成绩: 班级:学号:姓名:教师: 同组者: 实验一、流体静力学实验 一、实验目的 1.掌握用液式测压计测量流体静压强的技能; 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解; 3. 观察真空度(负压)的产生过程,进一步加深对真空度的理解; 4.测定油的相对密度; 5.通过对诸多流体静力学现象的实验分析,进一步提高解决实际问题的能力。 二、实验装置 1、在图1-1-1下方的横线上正确填写实验装置各部分的名称 本实验的装置如图所示。 1.测压管; 2.带标尺的测压管; 3.连通管; 4.通气阀; 5.加压打气球; 6.真空测压管; 7 截止阀.;8. U形测压管;9.油柱;

10.水柱;11.减压放气阀 图1-1-1流体静力学实验装置图 2、说明 1.所有测管液面标高均以测压管2标尺零读数为基准; 2.仪器铭牌所注B ?、C ?、D ?系测点B 、C 、D 标高;若同时取标尺零点作为静力学基本方程的基准,则B ?、C ?、D ?亦为B z 、C z 、D z ; 3.本仪器中所有阀门旋柄均以顺管轴线为开。 三、实验原理在横线上正确写出以下公式 1.在重力作用下不可压缩流体静力学基本方程 形式之一: const p =+ γ z (1-1-1a ) 形式之二: h p p γ+=0(1-1b ) 式中z ——被测点在基准面以上的位置高度; p ——被测点的静水压强,用相对压强表示,以下同; 0p ——水箱中液面的表面压强; γ——液体重度; h ——被测点的液体深度。 2. 油密度测量原理 当U 型管中水面与油水界面齐平(图1-1-2),取其顶面为等压面,有 01w 1o p h H γγ==(1-1-2) 另当U 型管中水面和油面齐平(图1-1-3),取其油水界面为等压面,则有 02w o p H H γγ+= 即 02w 2o w p h H H γγγ=-=-(1-1-3)

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

2020油气储运工程专业大学排名一览表

2020油气储运工程专业大学排名一 览表 油气储运工程专业是研究油气和城市燃气储存、运输及管理的一门交叉性高新技术学科。油气储运工程是连接油气生产、加工、分配、销售诸环节的纽带,它主要包括油气田集输、长距离输送管道、储存与装卸及城市输配系统等。一起来看一下油气储运工程专业大学排名吧! 油气储运工程专业 排名 高校名称 开此专业学校数 1中国石油大学(北京)352西南石油大学353中国石油大学(华东)354辽宁石油化工大学355长江大学356东北石油大学357西安石油大学358常州大学359中国民航大学3510华东理工大学3511浙江海洋大学3512重庆科技学院3513北京石油化工学院3514沈阳工业大学3515武汉理工大学3516太原科技大学3517福州大学3518青岛科技大学35 设置背景 油气储运工程专业培养具备工程流体力学、物理化学、油气储运工程等方面知识,能在国家与省、市的发展计划部门、交通

运输规划与设计部门、油气储运管理部门等从事油气储运工程的规划、勘查设计、施工项目管理和研究、开发等工作的高级工程技术人才。 学生主要学习油气储运工艺、设备设施方面的基本理论和基本知识,受到识图制图、上机操作、工程测量、工程概预算的基本训练,具有进行油气储运系统的规划、设计与运行管理的基本能力。创造与创新的新世纪人才。 知识技能 1.具有良好的数理基础; 2.掌握原油、成品油、天然气经营销售的基本知识; 3.较系统地掌握矿场油气集输、长距离油气管道输送、油气储存与装卸、城市燃气输配等方面的专业知识; 4.具有从事矿场油气集输系统、长距离油气管道、油气储存与装卸系统、城市燃气输配系统的规划、设计、施工管理与运行管理的初步能力; 5.具有在油气储运工程领域进行科学研究与技术开发的初步能力; 6.能较熟练地阅读本专业及相关领域的外语文献,并具有外语听、说、写的基本能力;

中国石油大学(华东)实验报告

2014—2015学年第3学期传感器课程设计实习报告 专业班级 姓名 学号 报告日期 2015年7月20日

传感器课程设计暑期实习报告 第一部分变送器电路实验 一:实验仪器和设备 DT9208万用表一只、+5/24V直流电源一台、万能电路板一块、镊子一只、导线若干、XTR106等芯片、常用电子元器件若干。 二:实验步骤 2、了解电阻式传感器原理、测量转换线路。 把压力、温度、流量、液位等物理信号转换成电阻值变化的传感器,电阻式传感器具有结构简单、输出精度高、线性和稳定性好的特点。主要包括电阻应变式传感器、压阻式传感器等。 测量转换线路:桥路电阻(以应变片式压力传感器为例) 图1全桥式应变片测量电路 当作用在应变片上的压力发生变化时,其阻值也随之发生变化,从而引起输出电压的变化,其中R1和R3、R2和R4的阻值变化方向一致(变化方向如上图所示)。 3、阅读XTR106芯片厂家英文资料,掌握其工作基本原理。 XTR106 是高精度、低漂移、自带两路激励电压源、可驱动电桥的4 ~ 20 mA 两线制集成单片变送器,,它的最大特点是可以对不平衡电桥的固有非线性进行二次项补偿,。它可以使桥路传感器的非线性大大改善,,改善前后非线性比最大可达20:1。

4、分析图3电路的工作原理。 图2 XTR外部电路连接示意图 原理:通过改变电阻的阻值,使桥路产生相应的mV级压差,桥路的输出分别连到运放的两个正输入端,经运放以后产生V级电压差。运放的输出再进入到XTR106芯片进行线性化调整(阻值和输出电流值之间)之后产生4~20mA电流输出。其中桥路需要的5V和运放需要的5.1V供电电压由XTR106芯片提供,而XTR106芯片需要的24V供电电压由实验台提供。 5、利用万能电路板搭建上述电路,要求分部分搭建,分成电阻桥路部分、差动放大部分、XTR本体部分,要求对前两部分电路线进行测试,确认符合相关要求时方可接入第三部分电路。 在本案例中,我们完成桥路和差动放大部分的搭建后,对桥路和差动放大部分进行了测试。 当电桥平衡时: 桥路部分:,桥路的两端分别都有电压,但桥路输出为零。 差动放大部分:输入分别对应桥路两端的电压值且相等,输出为零。 电桥不平衡时: 桥路部分:桥路的输出不为零,最大时压差为0.6mV。 差动放大部分:对压差进行放大后产生V级压差,本案例中,我们的放大倍

流体静力学中国石油大学流体力学实验报告

实验一、流体静力学实验 、实验目的:填空 1?掌握用液式测压计测量流体静压强的技能; 2?验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解; 3.观察真空度(负压)的产生过程,进一步加深对真空度的理解; 4 ?测定油的相对密度; 5?通过对诸多流体静力学现象的实验分析,进一步提高解决静力学实际问题的能力。 二、实验装置 1、在图1-1-1下方的横线上正确填写实验装置各部分的名称本实验的装置如图所示。 1. 测压管: 2.带标尺的测压管; 3. 连通管: 4. 通气阀: 5. 加压打气球: 6. 真空测压管 7. 截止阀:8. U型测压管:9. 油柱: 10. 水柱:11._ 减压放水阀 图1-1-1 流体静力学实验装置图

2、说明 1?所有测管液面标高均以标尺(测压管2)零读数为基准; 2?仪器铭牌所注\、B、、'- D系测点B、C、D标高;若同时取标尺零点作为静力学基本方程的基准,贝U v B、'- c、'- D亦为Z B、z c、Z D; 3?本仪器中所有阀门旋柄均以顺管轴线为开。 三、实验原理在横线上正确写出以下公式 1 ?在重力作用下不可压缩流体静力学基本方程 形式之一: (1-1-1a) 形式之二: p 二P o h (1-1b) 式中z――被测点在基准面以上的位置高度; P ――被测点的静水压强,用相对压强表示,以下同; P o——水箱中液面的表面压强; ——液体重度; h ——被测点的液体深度。 2.油密度测量原理 当U型管中水面与油水界面齐平(图1-1-2),取其顶面为等压面,有 P oi =(1-1-2)另当U型管中水面和油面齐平(图1-1-3),取其油水界面为等压面,则有 P o2+?H =Y°H 即

沿程水头损失实验报告

竭诚为您提供优质文档/双击可除沿程水头损失实验报告 篇一:沿程水头损失实验 沿程水头损失实验 一、实验目的要求 1、加深了解圆管层流和紊流的沿程水头损失随平均流速变化的规律,绘制 lghf~lgv曲线; 2、掌握管道沿程阻力系数的量测技术和应用气—水压差计及电测仪测量压差的方法; 3、将测得的Re~?关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。二、实验装置 本实验的装置如图7.1所示 图7.1自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器;2.实验台;3.回水管;4.水压差计;6.实验管道;7.水银压差计;8.滑支测量尺;9.测压点;10.实验流量调节阀;11.供水管与供水阀;12.旁通管与旁通阀;13.稳压筒。

根据压差测法不同,有两种方式测压差:1、低压差时 用水压差计量测; 2、高压差时用电子量测仪(简称电测仪)量测(但本仪器暂时不能测定高压)。 本实验装置配备有:1、自动水泵与稳压器 自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳压器等组成。压力超高时能自动停机,过低时能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 2 4 图7.2 1.压力传感器; 2.排气旋钮; 3.连接管; 4.主机 2、旁通管与旁通阀 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动,为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出)。通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。实际上旁通阀又是本装置用以调节流量的重要阀门之一。

西南石油大学历年硕士研究生入学考试《工程流体力学》试题

西南石油大学历年硕士研究生入学考试《工程流体力学》试题西南石油大学硕士研究生2006年入学考试《工程流体力学》试题 一、填空(每小题2分,共计30分) 1、相对密度0.89的石油,温度200C时的运动粘度为40cSt,则动力粘度为Pa·S。 2、牛顿内摩擦定理中速度梯度的物理意义是。 3、作用在流体上的力,如按力的表现形式分,可分为和。 4、某密闭盛水容器液面上的真空压力为4900Pa,当该容器以a=4.9m/s2的加速度垂直向上做加速运动时,则液面下1米深处的相对压力为Pa。 5、管道内流体速度分布规律为u=8y-y2,m/s,式中u为距管壁y处的速度,若流体的动力粘度为μ=0.05Pa·S,则距管壁0.1m处的切应力为Pa。 6、动能修正系数的物理意义是。 7、雷诺数的物理意义是。 8、雷诺应力的数学表达式为。 9、如果液流的当地加速度和迁移加速度均为零,则该流动为。 10、流体经一直管段流入大容器,若管流速度为3.13 m/s,则入口的局部水头损失为米液柱。 11、发生水击现象的物理原因主要是由于液体具有。 12、液体和刚体的运动不同,区别在于。 13、声速的大小反映了介质。 14、总压p0 表示气流所具有的,在流动中,气流总压沿程不变。 15、在渐缩管中,亚声速气流速度沿程的变化趋势是;超声速气流速度沿程的变化趋势是。 二、判断下列说法是否正确,正确的请打“√”错误的请打“×”(每小题1分,共10分) 1、流体只能承受压力,不能承受拉力和切力。() 2、流体的粘度随温度的增加而降低。() 3、对均匀连通静止的流体,其等压面一定是水平面。() 4、对于稳定流动,则流场中流体质点流经空间点时的速度都不随时间和空间发生变化。() 5、流体的运动一定是从压力大的地方流向压力小的地方。() 6、应用伯努利方程时,所选的两断面必须是缓变流断面,但两过流断面之间可以有急变流。()

中国石油大学华东历年考研专业课真题和答案

中国石油大学(华东)历年考研专业课真题目录: 中国石油大学(华东)历年考研 代码 真题年代 专业课真题科目 211 翻译硕士英语2011 212 翻译硕士俄语2011 242 俄语2008---2011 243 日语2008---2011 244 德语2011 245 法语2008---2011 357 英语翻译基础2011 358 俄语翻译基础2011 448 汉语写作与百科知识2011 703 公共行政学2011 704 数学分析2011 705 普通物理2011 706 有机化学2000,2005---2009,2011 707 无机及分析化学2007---2009,2011 708 生物化学2011 法学基础(法理学、民法学、刑 2011 710 法学)

711 中国古代文学2011 715 中国化马克思主义原理2008,2011 体育学专业基础综合(体育教育 2011 716 学、运动生理学、运动训练学) 801 沉积岩石学2005---2008 802 构造地质学2003---2010 803 地震勘探2003---2009,2011 805 电子技术基础2011 806 软件技术基础2011 808 地理信息系统2011 809 石油地质学2001---2011 810 测井方法与原理2005---2011 811 工程流体力学2001---2009,2011 812 理论力学2008---2011 813 材料力学2006---2011 814 物理化学1999---2009,2011 815 渗流物理2001---2009,2011 816 油田化学基础2011 817 工程热力学2008---2011 818 化工原理1999---2009,2011 819 生物工程2011

中国石油大学流体力学流量计实验

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三流量计实验 一、实验目的 1.掌握孔板、文丘利节流式流量计的工作原理及用途。 2.测定孔板流量计的流量系数 ,绘制流量计的校正曲线。 3.了解两用式压差计的结构及工作原理,掌握两用式压差计的使用方法。 二、实验装置 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图3-1示。 F1——文丘利流量计; F2——孔板流量计;F3——电磁流量计; C——量水箱; V——阀门;K——局部阻力实验管路 图3-1 管流综合实验装置流程图 说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A)。

三、实验原理 1.文丘利流量计。 文丘利管是一种常用的量测有压管道流量的装置,见图3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,就可计算管道的理论流量Q ,再经修正得到实际流量。 2.孔板流量计。 如图3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,可计算管道的理论流量Q ,再经修正得到实际流量。孔板流量计也属压差式流量计,其特点是结构简单。 图3-2 文丘利流量计示意图 图3-3 孔板流量计示意图 3.理论流量。 水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑水头损失,速度水头的增加等于测压管水头的减小(即比压计液面高差h ?),因此,通过量测到的h ?建立了两断面平均流速1v 和2v 之间的一个关系: g v g v p z p z h h h 22211222221121ααγγ-= ??? ??+-??? ? ? +=-=? 如果假设动能修正系数0.121 ==αα,则最终得到理论流量为: h K h g A A A A A Q ?=???? ? ??-???? ??= μ22 12 2 其中: g A K 2=

西南石油大学 流体力学实验报告

工程流体力学实验报告 实验一流体静力学实验 实验原理 在重力作用下不可压缩流体静力学基本方程 或 (1.1) 式中:z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 据此可用仪器(不用另外尺)直接测得S0。 实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。

中国石油大学工程流体力学试题集

中国石油大学工程流体力学试题集 简答题 1. 水击现象及产生的原因 2. 雷诺数、富劳得数、欧拉数的物理意义 3. 什么是流线、迹线,其主要区别 4. 压力管路的主要特点 5. 什么是压力体 6. 流体静压力的两个重要特性 7. 串联、并联管路的主要特点 8. 系统、控制体(系统和控制体的异同点) 9. 气体和液体粘度随温度变化有何不同 10. 欧拉平衡关系式及其适用条件 11. 质量力、表面力的作用面及大小 12. 研究流体运动的两种方法及其它们的主要区别 解答题 13. 矩形闸门AB 可绕其顶端的A 轴旋转,由固定在闸门上的一个重物来保持闸门的关闭。 已知闸门宽120cm ,长90cm ,整个闸门和重物共重1000kg ,重心在G 点处,G 点与A 点的水平距离为30cm ,闸 门与水平面的夹角ο θ60=,求水深为多少时闸门刚好打开? 14. 设流场的速度分布为 2 222y x 2x v ,y x 2y -4t u +=+= 试确定(1)流场的当地加速度;(2)0t =时,在1y 1,x == 点上流体质点的加速度。 15. 高速水流在浅水明渠中流动,当遇到障碍物时会发生水跃现象,其水位将急剧上升(如 图中(a)所示),其简化模型如图(b)所示。设水跃前后流速在截面上分布为均匀的,压

力沿水深的变化与静水相同。如果流动是定常的,壁面上的摩阻可以不考虑。 求证: (1)??? ? ??++-=1211281121gh V h h ; (2)水跃只有在11gh V ≥时才有可能发生; (3)水跃过程中单位质量流体的机械能损失为()g h h h h 2 13124-。 (a) (b) 16. 有一粘度为μ、密度为ρ的流体在两块平板作充分发展的层流流动,平板宽度为h ,两 块平板之间的距离为δ,在L 长度上的压降为P ?,上下两块平板均静止。 求:(1)流体的速度分布; (2)流速等于平均流速的位置。 17. 已知0w y x x v ,y x y u 2222=+=+=,-,检查此流动是否是势流?并求该流动的势函数,流函数,迹线方程。 18. 有一串并联管路,连接两个水池,两水池的水面差为6m ,管路直径d 1=100cm ,d 2=d 3=50cm,, 每段管长均为200m ,沿程阻力系数为:λ1=0.016,λ2=0.01,λ3=0.02。忽略局部 阻力,如图所示,求l 1管段的流量Q 。 19. 如图所示,一圆柱体放在不同液体中,已知其长度L=10m ,D =2m ,油的相对密度为0.8,

(行业报告)沿程水头损失实验报告(报告范文)

沿程水头损失实验 一、实验目的要求 1、加深了解圆管层流和紊流的沿程水头损失随平均流速变化的规律,绘制v h f lg ~lg 曲线; 2、掌握管道沿程阻力系数的量测技术和应用气—水压差计及电测仪测量压差的方法; 3、将测得的 ~e R 关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。 二、实验装置 本实验的装置如图7.1所示 图7.1 自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器; 2.实验台; 3.回水管; 4.水压差计; 6.实验管道; 7.水银压差计;8.滑支测量尺; 9.测压点; 10.实验流量调节阀; 11.供水管与供水阀; 12.旁通管与旁通阀; 13.稳压筒。 根据压差测法不同,有两种方式测压差: 1、低压差时用水压差计量测;

2、高压差时用电子量测仪(简称电测仪)量测(但本仪器暂时不能测定高压)。 本实验装置配备有: 1、自动水泵与稳压器 自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳压器等组成。压力超高时能自动停机,过低时能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 4 2 1.压力传感器; 2.排气旋钮; 3.连接管; 4.主机 2、旁通管与旁通阀 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动,为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出)。通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。实际上旁通阀又是本装置用以调节流量的重要阀门之一。 3、稳压筒为了简化排气,并防止实验中再进气,在传感器前连接由2只充水(不满顶)之密封立筒构成。 4、电测仪由压力传感器和主机两部分组成,经由连通管将其接入测点(图7.2),压差读数(以厘米水柱为单位)通过主机显示。 三、实验原理

沿程阻力系数测定-实验报告

沿程水头损失实验 实验人 XXX 合作者 XXX XX 年XX 月XX 日 一、实验目的 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制lgh f ~-lg v 曲线; 2.掌握管道沿程阻力系数的量测技术和应用压差计的方法; 3.将测得的R e -λ关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。 二、实验设备 本装置有下水箱、自循环水泵、[供水阀、稳压筒、实验管道、流量调节阀]三组,计量水箱、回水管、压差计等组成。实验时接通电源水泵启动,全开供水阀,逐次开大流量调节阀,每次调节流量时,均需稳定2-3分钟,流量越小,稳定时间越长;测流量时间不小于8-10秒;测流量的同时,需测记压差计、温度计[自备,应挂在水箱中]读数。三根实验管道管径不同,应分别作实验。 三、实验原理 由达西公式g v d L h r 22 ??=λ 得2 22422?? ? ??==d Q L gdh Lv gdh f f πλ=K ×h f /Q 2 另有能量方程对水平等直径圆管可得γ 2 1P P h f -= 对于多管式水银压差有下列关系 h f =(P 1-P 2)/γw =(γm /γw -1)(h 2-h 1+h 4-h 3)=12.6△h m Δh m = h 2-h 1+h 4-h 3 h f —mmH 2O 四、实验结果与分析 实验中,我们测量了三根管的沿程阻力系数,三根管的直径分别为10mm ,14mm ,20mm 。对每根管进行测量时,我们通过改变水的流速,在相距80cm 的两点处分别测量对应的压强。

得到表1至表3中的实验结果。 相关数据说明: 水温29.4℃,对应的动力学粘度系数为2 0.01/cm s ν= 流量通过水从管中流入盛水箱的体积和时间确定。水箱底面积为2 202 0S cm =?,记录水箱液面升高12h cm =(从5cm 到17cm 或者从6cm 到18cm )的时间t ,从而计算出流量 34800(/)() Sh Q cm s t t s = =; 若管道直径为D ,则水流速度为2 4Q v D π= ; 对三根管进行测量时,测量的两点之间距离均为80L cm =; 雷诺数Re vD ν = ;计算沿程阻力系数:层流164Re λ= ;紊流0.25 20.316R e λ-= 测量沿程阻力系数:2/f Kh Q λ=,其中25K /8gD L π=,29.8/g m s = 第一根管 表-1(52 1110,15.113/D mm K cm s ==)

流体力学中国石油大学

硕士学位研究生入学考试试题 考试科目:油气井工程综合(I ) 一、填空题(共14小题,40分) 1.流体与固体宏观特性不同,流体运动具有 ① 等运动形式。(2分) 2.水银与玻璃是不湿润的,二者接触角是_ ① _,玻璃管内水银液面呈_ ② _。(2分) 3.应变力张量中S )(21i j j i ij u u u u ??+??=对角线上元素表示流体微团的_ ① _。(2分) 4.两平行平板的间距mm h 1=,其中充满油,当两板间的相对运动速度s m v /2.1=时,作用于板上的切应力为2/3500m N ,求油的粘性系数μ为 ① 。(2分) 5.流体在静止与相对静止条件下满足流体静力学平衡方程为 ① 。(2分) 6.已知二维速度场22),2(x y y v x xy v y x -+=+-=,求速度场旋度 ① 。(2分) 7.已知速度场2 222,y x cy v y x cx v y x +=+=,其中c 为常数,求流线方程 ① 。(2分) 8.某输油管道内径mm d 50=,质量流量s kg q m /45.1=,密度为3/910m kg o =ρ, 运动粘度为s m v /1042 4-?=,求管中流动雷诺数大小 ① 。(2分) 9.在流体力学管道流动阻力计算中,长管是指_ ① _的管道。(2分) 10.在非牛顿流体的流变方程中不含有屈服应力的模型是_ ① 。(2分) 11.图示铸铁圆轴受扭时,在_ ①_ 面上发生断裂,其破坏是由__②_应力引起。(5分) 12.已知各杆均铰接,B 端插入地内,P=1000N ,AE=BE=CE=DE=1m ,杆重不计。 求AC 杆内力__①__。(5分)

西南石油大学901_工程流体力学考试大纲

附件2: 工程流体力学科目考试大纲 一、考试性质 工程流体力学是硕士研究生入学考试科目之一,是硕士研究生招生院校自行命题的选拔性考试。本考试大纲的制定力求反映招生类型的特点,科学、公平、准确、规范地测评考生的相关基础知识掌握水平,考生分析问题和解决问题及综合知识运用能力。应考人员应根据本大纲的内容和要求自行组织学习内容和掌握有关知识。 本大纲主要包括流体及其主要物理性质、流体静力学、流体运动学、流体动力学、量纲分析与相似原理、流动阻力与水头损失、管路的水力计算、一元非恒定流、理想不可压缩流体平面势流、气体的一元恒定流动和非牛顿流体的流动等内容。考生应系统的掌握流体力学的基本概念、基本理论、基本计算方法。 二、评价目标 (1)要求考生具有较全面的关于流体力学的基础知识。 (2)要求考生具有较高的分析问题和解决问题的能力。 (3)要求考生具有较强的综合知识运用能力。 三、考试内容 (一)流体及其主要物理性质 1、基本要求 了解流体的概念及特性;正确理解流体连续介质模型;掌握流体的主要物理性质,特别是粘性和牛顿内摩擦定律;正确理解理想流体和实际流体、不可压缩流体和可压缩流体的概念;会分析作用在流体上的力。 2、考试范围 1)流体的概念与连续介质模 2)流体主要物理性质 3)作用在流体上的力 3、考核知识点 1)流体的定义及特性; 2)流体的主要物理性质:流体的密度和相对密度、流体的压缩性和膨胀性、流体的粘性及表面张力; 3)分析作用在流体上的力。 4、考核要求 1)识记 (1) 流体的特性; (2) 流体的密度和相对密度、流体的压缩性和膨胀性、流体的粘性及表面张力的定义及这些物理量的单位。

中国石油大学(华东)本科毕业设计(论文)模板(2014)

本科毕业设计(论文)题目:春风油田沙一段储层夹层研究 学生姓名: 学号: 专业班级:资源勘查1005 指导教师: 2014年 6月20日

摘要 钙质砂岩是一种致密性的岩石,一般存在于干层中,是现在油田开发中尽可能避开的开发位置,因此能够正确的预测钙质砂岩的分布能够增加打到油气层的几率,减少经济损失。主要以P609区块为研究主体,首先分析钙质砂岩的成因,统计区块内钙质砂岩的物性,然后分析其影响因素,正确预测钙质砂岩的分布。研究区内浅滨湖提供了良好的钙质砂岩来源,水下分流河道将钙质砂岩输送到目的区内,然后在沉积环境作用下形成了钙质砂岩。 论文降低重复率、论文排版、答辩幻灯片制作请联系Q2861423674 诚信服务,通过后付款https://www.360docs.net/doc/ab1329720.html, 关键词:钙质砂岩;分布;沉积条件;P609区块

Study on Reservoir and Mezzanine of N1s in Chunfeng Oilfield Abstract Calcareous is a kind of sandstone rocks,which generally present in the dry layer is now possible to avoid the development of oilfield development position, and therefore able to correctly predict the distribution of calcareous sandstone reservoirs can increase the chance of hitting, reduce economic losses. This paper mainly P609 blocks for the study subjects, the first analysis of the causes of calcareous sandstone, calcareous sandstone within the statistical properties of the block, and then analyze the influencing factors, correctly predict the distribution of calcareous sandstone. Shallow Lake study area provides a good source of calcareous sandstone, calcareous sandstone underwater distributary channel will be transported to the target area, then at ambient role in the formation of calcareous sandstone. 论文降低重复率、论文排版、答辩幻灯片制作请联系Q2861423674 诚信服务,通过后付款https://www.360docs.net/doc/ab1329720.html, Keywords:distribution of calcareous sandstone; blocks P609; deposition conditions

实验报告:管路沿程水头损失实验

实验报告:管路沿程水头损失实验 一、实验目的 1、掌握管道沿程阻力系数的测量技术及电测仪测量压差的方法。 2、掌握沿程阻力系数 λ 与雷诺数Re 等的影响关系。 二、实验原理 由达西公式 g d L h 22 f υλ= 2f 2 2f 2f /4212Q h K Q d L gdh L gdh =?? ? ??= =πυλ (1) L gd K 8/5 2π= 式中:h f 为管流沿程水头损失;d 为实验管段内径;L 为管段长度;υ为断面平 均流速;g 为重力加速度;Q 为过流流量;λ 为沿程阻力系数。 另由能量方程应用于水平等直径圆管可得 2121f /h h P P h -=-=γ)( (2) 式中:P 1、P 2为实验管段起点、终点处压强;h 1、h 2为研究管段起点、终点处测 压管水头高度。压差可用压差计或电测。由上述(1)、(2)两式可求得管流在不同流量状态下的水头损失系数 λ 值。 雷诺数: υ vd R e = 其中 24d Q v π= 式中:Re 为雷诺数;v 为断面平均流速;d 为实验管道内径;υ 为流体运动 粘度; Q 为过流流量。 三、实验装置 实验装置为自循环水流系统,水泵2将蓄水箱1中的水抽出,沿上水管3流入实1—蓄水箱; 2—水泵; 3—上水管; 4—实验管道; 5—回水管; 6—回水通道; 7—差压计; 8—量水箱; 9—秒表; 10—活动接头; 11—水位计; 12—底阀; 13—分流管; 14—分流及流量调节阀; 15—实验管道阀门。

验管段4,经回水管5通过回水通道6又流回蓄水箱1。差压计7用作测量沿程水头损失,量水箱8和秒表9用作测量流量。 四、实验步骤 1、记录有关实验常数。测定并记录水的温度。 2、将所选实验管路的阀15开到最大,同时关闭其它实验管路的阀门,然后接通电源,启动水泵。 3、流量调节通过阀14(注意实验过程中不再旋动其它阀门),顺时针旋动阀14流量增大,逆时针旋阀流量减小。当流量调至一定时,开始测定流量Q 及沿程水头损失h f 。 Q 的测定为体积法(t V Q =),它的测量由量水箱8及秒表9实现,先通过量水 箱的水位计记录量水箱内的起始水位,然后将活动接头10拨至量水箱,同时用秒表记录下接水的时间,读取接水的终了水位,就可计算流量Q 。 同时读取差压计7的读数1h 、2h ,以计算沿程水头损失f h 。 4、改变流量重复步骤3,需测定10组以上数据。 5、测定结束再测记水的温度,两次水温的平均值用作计算运动粘度。 6、关闭仪器及电源。 五、实验原始记录 1、记录有关常数 管径d = 1.0 cm 测量段长度L = 160 cm 水温1t = 22.9 ?C 2t = 23.4 ?C 运动粘度2 000221.00337.0101775.0t t ++= υ= 9.349×10-3 cm 2/s , 式中221t t t +== 23.15 ?C 常数K=π2gd 5/8L = 7.54876 cm 5/s 2 2、记录测量值 测 次 水箱水位高度 时间 / s 水银柱高度 h 1 / ㎝ h 2 / ㎝ 水位高度差/ Δh/cm h 3 / ㎝ h 4 / ㎝ 水银柱高度差/ Δh '/cm 1 7.3 13.5 6. 2 4.9 16.9 63.9 47 2 13.5 21.0 7.5 6. 3 19 61.7 42.7 3 3.7 8.5 4.8 4.3 21. 4 59.1 37.7 4 8. 5 13. 6 5.1 4.8 23.3 57.2 33.9 5 13.6 18.3 4. 7 4. 8 24. 9 55.5 30.6 6 18.3 22.9 4.6 4.7 26.1 54.1 28 7 22.9 27.1 4.2 5 30.1 50.2 20.1 8 7.8 12.6 4.8 5.8 29.4 50.9 21.5 9 12.6 16.1 3.5 4.6 31 49.4 18.4 10 16.1 21.2 5.1 7.1 31.7 48.4 16.7

相关文档
最新文档