气体放电管的选择方法

气体放电管的选择方法
气体放电管的选择方法

气体放电管的选择方法

凡是有过电压发生的地方,就有气体放电管的用武之地,但要用好气体放电管则需要根据实际工作线路参考气体放电管的各项指标选用适当的气体放电管,否则会适得其反。以下是在设计及使用时必须注意的几点:

1.气体放电管的加入不能影响线路的正常工作,这就要保证气体放电管的直流击穿电压的下限值必须高于线路的最大正常工作电压。据此确定所需气体放电管的标称直流击穿电压值。例如:在电话线的过电压防护中,常态时,电话线两线间的电压为48V,但当振铃信号来时,两线间的峰值电压可达175V左右,因此,此时选用的气体气体放电管的直流击穿电压的下限值必须高于175V,考虑到留点余量,所以一般选用直流击穿电压值下限为190V(标称直流击穿电压值为230V)的气体气体放电管。

2.确定线路所能承受的最高瞬时电压值,要确保气体放电管的冲击击穿电压值必须低于此值。以确保当瞬间过压来临时,气体放电管的反映速度快于线路的反映速度,抢先一步将过电压限制在安全值。这是气体放电管的一个最重要的指标。例如:上例所述的电话线上,如果只用于保护一般的电话机,则只需选用冲击击穿电压小于800V(实测典型值为650V左右)的气体放电管,但若被保护对象为更精密的设备(如传真机等),则可选用更低电压的气体放电管(典型值不到400V)。

3.根据线路中可能窜入的冲击电流强度,确定所选用气体放电管必须达到的耐冲击电流能力(如:在室外一般选用10kA以上等级;在入室端一般选用5kA等级;在设备终端处一般选用1kA 左右等级)。

4.当过电压消失后,要确保气体放电管及时熄灭,以免影响线路的正常工作。这就要求气体放电管的过保持电压尽可能高,以保证正常线路工作电压不会引起气体放电管的持续导通(即续流问题)。由于气体放电管有一个特点是:维持气体放电管持续放电的电压值要远小于气体放电管的击穿电压值。一般用户没有测试条件,无法判定此项指标好坏,在此提供一种简单判定办法,以标称直流击穿电压为230V的气体放电管为例:找一可调直流稳压电源,在其输出串联一51K左右限流电阻再接到气体放电管的二电极,将输出电压由小逐渐调高直至气体放电管放电,然后再慢慢调低电源输出电压,观察气体放电管熄灭时的电压值,一般的气体放电管此值均为60V左右,而国际上一流公司的气体放电管此值可以做到200V左右。

5.若过电压持续的时间很长,气体气体放电管的长时间动作将产生很高的热量。为了防止该热量所造成的保护设备或者终端设备的损坏同时也为了防止发生任何可能的火灾,气体气体放电管此

时必须配上适当的短路装置,我们称之为FS装置(Fail-safe 即“失效保护装置”)。

本文由深圳市瑞隆源电子有限公司提供,专业制造各种防雷器,避雷器,放电管,陶瓷气体放电管等。TEL=+86-755-82908296。

气体放电管

放电管特性及选用 吴清海 放电管的分类 放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。 气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。气体放电管同流量大,但动作电压较难控制。 半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。半导体放电管的保护机理和应用方式和气体放电管相同。半导体放电管动作电压控制精确,通流量较小。 放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。 气体放电管 气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu 焊片和惰性气体组成。 在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生电子雪崩现象,另外,电离出来的阳离子也在电场作用下向阴极运动,与阴极表面发生碰撞,产生二次电子,二次电子也参加电离作用,一旦满足: r(ead-1)=1 时放电管由非自持放电过渡到自持放电,管内气体被击穿,放电管放电,此时放电电压称为击穿电压Vs。其中,r表示一个正离子轰击阴极表面而

专题复习常见气体的制取和收集教案

《专题复习:常见气体的制取和收集》教案 南京师大附中江宁分校王镭 教学目标: 1、知识与技能: (1)知道气体的制取装置、收集装置、尾气处理装置,以及在制取气体时的操作注意事项。(2)能正确选用“固固加热型”和“固液不加热型”制气装置来制备气体。 (3)能正确选用排水法、向下排空气法、向上排空气法来收集气体。 、 2、过程与方法: (1)通过气体制取、收集方法的学习,培养学生分析问题和解决问题的能力。 (2)培养学生拓展知识空间的能力和创新意识。 3、情感态度与价值观: 使学生在师生互动、生生互动的学习环境中,充分发挥学习的主动性,培养终生学习的能力。教学重、难点: 1、气体的制取装置和收集装置。 2、综合性气体制备实验的设计。 【 教学方法: 讨论、交流、归纳、练习 教学设计说明 实验教学是化学学科培养学生能力的重要渠道,也是最具有化学学科特色的教学形式,在历年的中考中,与实验有关的内容也占了很大比例。而在初中化学所学的实验内容中,常见气体的制取和收集是相当重要的一个内容,在历年的中考试题中出现得也很多。实验本应是学生最感兴趣的部分,但在以往的教学中,复习课的课堂教学大多是教师一言堂式的机械重复,学生提不起兴趣,思维量不够,课堂教学效益低。所以我在设计这样一堂专题复习课时,在原有知识的基础上,通过对所学知识的进一步探索,对所学内容进行新的组合,来实现一种高层次的知识与能力的挖掘、拓展。 新的课程标准提出了知识与技能、过程与方法、情感态度与价值观的三维目标。我设计的这节课的重点除了从知识与技能的角度进行气体制取装置的应用教学外,同时加强培养学生对学习内容、过程和方法的反思、拓展能力。 本节课以实验的重要性引入,在教学过程中,分别归纳、总结了如何选择实验室制取气体的发生装置和收集装置,之后引导学生对发生装置和收集装置进行进一步的探索、改进,这样既对所学知识掌握得更加透彻,也不会使学生因为复习旧有知识而感到枯燥,提高了学生学习的兴趣。同时,还注意引导学生对与制取气体实验密切相关的尾气处理装置和检查气密性的操作方法进行总结,以培养学生全面的思维习惯。 教学过程:

气体放电管介绍及使用注意事项

气体放电管介绍及使用注意事项 气体放电管 气体放电管包括二极管和三极管,电压范围从75V—3500V,超过一百种规格,严格按照CITEL标准进行生产、监控和管理。放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。 气体放电管包括贴片、二极管和三极管,电压范围从75V—3500V,超过一百种规格,严格按照CITEL标准进行生产、监控和管理。 放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。 优点:绝缘电阻很大,寄生电容很小,浪涌防护能力强。 缺点:在于放电时延(即响应时间)较大,动作灵敏度不够理想,部分型号会出现续流现象,长时间续流会导致失效,对于波头上升陡度较大的雷电波难以有效地抑制。 结构简介 放电管的工作原理是气体放电。 当外加电压增大到超过气体的绝缘强度时,两极间的间隙将放电击穿,由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压水平。 五极放电管的主要部件和两极、三极放电管基本相同,有较好的放电对称性,可适用于多线路的保护。(常用于通信线路的保护) 注意事项 接地连线应当具有尽量短的长度 接地连线应具有足够的截面,以泄放暂态大电流。 放电管的失效模式 放电管受到机械碰撞,超耐受的暂态过电压多次冲击以及内部出现老化后,将发生故障。 故障的模式(即失效模式)有两种:

第一种是呈现低放电电压和低绝缘电阻状态;第二种是呈现高放电电压状态。 开路故障模式比短路故障模式具有更大的危害性: 开路故障模式令人难以及时察觉,从而不能采取补救措施。 现在的电源SPD产品中,带有失效报警装置,如声,光报警,颜色变化提示等,这些措施的采取对于及时发现和更换已经失效的SPD是有利的。 透明的容器(当然常见的是玻璃)中充有某种低压气体。在这气体中放电,会有特殊的现象。比如柔光,弧光,闪光。 导体中的游离电荷是电子承载的,电子是带负电的。当然要从阴极射出。 本文由深圳市瑞隆源电子有限公司提供,专业制造各种防雷器,避雷器,放电管,陶瓷气体放电管等。TEL=+86-755-82908296。

气体放电管和压敏电阻组合构成的抑制电路原理

气体放电管和压敏电阻组合构成的抑制电路原理 上传者:dolphin 由于压敏电阻(VDR)具有较大的寄生电容,用在交流电源系统,会产生可观的泄漏电流,性能较差的压敏电阻使用一段时间后,因泄漏电流变大可能会发热自爆。为解决这一问题在压敏电阻之间串入气体放电管。图1 中,将压敏电阻与气体放电管串联,由于气体放电管寄生电容很小,可使串联支路的总电容减至几个pF。在这个支路中,气体放电管将起一个开关作用,没有暂态电压时,它能将压敏电阻与系统隔开,使压敏电阻几乎无泄漏电流。但这又带来了缺点就是反应时间为各器件的反应时间之和。例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图2 的R2、G、R3 的反应时间为150ns,为改善反应时间加入R1 压敏电阻,这样可使反应时间为25ns。 金属氧化物压敏电阻(MOV)的电压-电流特性见图3,金属氧化物压敏电阻(MOV)特性参数见表1。气体放电管(GDT)的电压-电流特性见图4,气体放电管(GDT)特性参数见表2。

金属氧化物压敏电阻(MOV)特性参数 由于浪涌干扰所致,一旦加在气体放电管两端的电压超过火花放电电压(图4 的u1)时,放电管内部气体被电离,放电管开始放电。放电管端的压降迅速下降至辉光放电电压(图4 的u2)(u2 在表2 中的数值为140V 或180V,与管子本身的特性有关),管内电流开始升高。随着放电电流的进一步增大,放电管便进入弧光放电状态。在这种状态下,管子两端电压(弧光电压)跌得很低(图4的u3)(u3 在表2 中数值为15V 或20V,与管子本身的特性有关),且弧光电压在相当宽的电流变动范围(从图4 的i1→i2 过程中)内保持稳定。因此,外界的高电压浪涌干扰,由于气体放电管的放电作用,被化解成了低电压和大电流的受保护情况(u3 和i2),且这个电流(从图4 的i2→i3)经由气体放电管本身流回到干扰源里,免除了干扰对灯具可能带来的危害。随着浪涌过电压的消退,流过气体放电管的电流降到维持弧光放电状态所需的最小值以下(约为10mA~100mA,与管子本身的特性关),弧光放电便停止,并再次通过辉光放电状态后,结束整个放电状态(熄弧)。

气体放电管基础知识教学提纲

2.1气体放电管 2.1.1简介 气体放电管是在放电间隙内充入适当的气体介质,配以高活性的电子发射材料及放电引燃机构,通过银铜焊料高温封接而制成的一种特殊的金属陶瓷结构的气体放电器件。它主要用于瞬时过电压保护,也可作为点火开关。在正常情况下,放电管因其特有的高阻抗(>1000MΩ)及低电容 (<2pF)特性,在它作为保护元件接入线路中时,对线路的正常工作几乎没有任何不利的影响。当有害的瞬时过电压窜入时,放电管首先被击穿放电,其阻抗迅速下降,几乎呈短路状态,此时,放电管将有害的电流通过地线或回路泄放,同时将电压限制在较低的水平,消除了有害的瞬时过电压和过电流,从而保护了线路及元件。当过电压消失后,放电管又迅速恢复到高阻抗状态,线路继续正常工作。 气体放电管是一种间隙式的防雷保护元件,它在通信系统的防雷保护中已获得了广泛应用。放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。由于放电管的极间绝缘电阻很大,寄生电容很小,对高频电子线路的雷电防护具有明显的优势。 气体放电管的基本特点是:通流量容量大,绝缘电阻高,漏电流小。但残压高,反应时间慢(≤100ns),动作电压精度较低,有续流现象。 Figure 1气体放电外观图 2.1.2气体放电的伏安特性 气体放电管的伏安特性通常与管子的哪些电极间施加什么极性的电压没有关系。现以一个直流放电电压为150V的二极放电管为例,来说明放电管伏安特性的基本特征。下图是按电子元件伏安特性的惯用画法,即以电压为自便量,画作横坐标;以电流为应变量,画作纵坐标。由于电流的范围很大,其变化常达几个数量级,所以电流用对数坐标表示。 如图所示的伏安特性上,当逐渐增加两电极间的电压时,放电管在A点放电,A点的电压称为放电管的直流放电电压。在A到B之间的这段伏安特性上,其斜率(即动态电阻du/di)是负的,称为负阻区。如果200V的直流电压源经1MΩ的电阻加到放电管上,放电管即工作在此区间,这时的放电具有闪变特征。BC段为正常辉光放电区,在此区间内电压基本不随电流而变,当辉光覆盖整个阴极表面时,电流再增加,电压也不增加。CD段称为异常辉光放电区。直流放电电压为90V~300V放电管,其辉光放电区BD的最大电流一般在0.2A~1.5A 之间。当电流增加到足够大时放电E点突然进入电弧放电区,即使是同一个放电管,放电由辉光转入电弧时的电流值也是不能精确重复的。在电弧放电时,处在电场中加速了的正离子轰击阴极表面,阴极材料被溅射到管壁上,阴极被烧蚀,使间隙距离增加,管壁绝缘变坏。在采用合适的材料后,放电管可以做到导通10KA、8/20μs电流数百次。在电弧区,放电管

GDT气体放电管2RXXXL-5.5×6参数

2RXXXL-5.5×6 Series Features ●Size:5.5mm*6mm ●Stable breakdown voltage. ●High insulation resistance. ●Low capacitance (≤1pF) ●High holdover voltage ●Storage and operational temperature: -40℃~ +90℃●UL Certificate Number:E511538Applications ●Transient Voltage Surge Suppression(TVSS) ●Cable Telephone Product ●Modems/Cable Modems ●Broadband/CATV/Coaxial Protectors ●Communication Lines ●Power Supplies Specification Status:Draft (mm) Electrical Characteristics (TA = 25 °C unless otherwise noted) Part Number DC Breakdown Voltage Tolerance Impulse Spark-over Voltage Impulse Discharge Current 10hits(5hits each polarity) AC Discharge Current 5 hits Insulation Resistance* Capacitance 100V/s of Vs 1kv/μs8/20μs50Hz GΩ1MHz 2R075L-5.5×6 75V ±20% ≤600V 5KA 5A ≥10 ≤1pF 2R090L-5.5×6 90V ±20% ≤600V 5KA 5A ≥10 ≤1pF 2R150L-5.5×6 150V ±20% ≤600V 5KA 5A ≥10 ≤1pF 2R200L-5.5×6 200V ±20% ≤700V 5KA 5A ≥10 ≤1pF 2R230L-5.5×6 230V ±20% ≤700V 5KA 5A ≥10 ≤1pF 2R300L-5.5×6 300V ±20% ≤900V 5KA 5A ≥10 ≤1pF 2R350L-5.5×6 350V ±20% ≤1000V 5KA 5A ≥10 ≤1pF 2R400L-5.5×6 400V ±20% ≤1000V 5KA 5A ≥10 ≤1pF 2R470L-5.5×6 470V ±20% ≤1200V 5KA 5A ≥10 ≤1pF 2R600L-5.5×6 600V ±20% ≤1400V 5KA 5A ≥10 ≤1pF 2R1000L-5.5×6 1000V ±20% ≤2000V 3KA 3A ≥1 ≤1pF 2R2000L-5.5×6 2000V ±20% ≤2700V 2KA 2A ≥1 ≤1pF 1)At delivery AQL 0.65 leave ⅡMilitary Standard 105 E. 2)In ionized mode 3)Test according to ITU-T Rec.k.12 1

陶瓷气体放电管工作原理及选型应用

陶瓷气体放电管工作原理及选型应用 、产品简述 陶瓷气体放电管(Gas Tube)是防雷保护设备中应用最广泛的一种开关器件,无论是交直流电源的防雷还是各种信号电路的防雷,都可以用它来将雷电流泄放入大地。其主要特点是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥109Ω),击穿电压分散性较大(±20%),反应速度较慢(最快为0.1~0.2μs)。按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡)。 2、工作原理 气体放电管由封装在充满惰性气体的陶瓷管中相隔一定距离的两个电极组成。 其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充的气体主要是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少电子发射能。这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可以保持在一个确定的误差范围内。当其两端电压低于放电电压时,气体放电管是一个绝缘体(电阻Rohm>100MΩ)。当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗, 使其两端电压迅速降低,大约降几十伏。气体放电管受到瞬态高能量冲击时,它能以10-6秒量级的速度,将其两极间的高阻抗变为低阻抗,通过高达数十千安的浪涌电流。 3、特性曲线

Vs导通电压,Vg辉光电压,Vf弧光电压,Va熄弧电压 4、主要特性参数 ①直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值。这是放电管的标称电压,常用的有90V、150V、230V、350V、470V、600V、800V 等几种,我们有最高3000V、最低70V的。其误差范围:一般为±20%,也有的为±15%。 ②脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs的脉冲电压时的击穿电压值。因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。 陶瓷气体放电管对低上升速率和高上升速率电压的响应如下图所示。

气体放电管在浪涌抑制电路的应用

气体放电管在浪涌抑制电路的应用摘要:阐述了浪涌电压产生的机理,介绍了气体放电管的工作原理、特性参数和在浪涌抑制电路中的应用。 关键词:浪涌电压抑制;气体放电管;应用 1 浪涌电压的产生和抑制原理 在电子系统和网络线路上,经常会受到外界瞬时过电压干扰,这些干扰源主要包括:由于通断感性负载或启停大功率负载,线路故障等产生的操作过电压;由于雷电等自然现象引起的雷电浪涌。这种过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰。浪涌电压会严重危害电子系统的安全工作。消除浪涌噪声干扰,防止浪涌危害一直是关系电子设备安全可靠运行的核心问题。为了避免浪涌电压损害电子设备,一般采用分流防御措施,即将浪涌电压在非常短的时间内与大地短接,使浪涌电流分流入地,达到削弱和消除过电压、过电流的目的,从而起到保护电子设备安全运行的作用。 2 浪涌电压抑制器件分类 浪涌电压抑制器件基本上可以分为两大类型。第一种类型为橇棒(crow bar)器件。其主要特点是器件击穿后的残压很低,因此不仅有利于浪涌电压的迅速泄放,而且也使功耗大大降低。另外该类型器件的漏电流小,器件极间电容量小,所以对线路影响很小。常用的撬棒器件包括气体放电管、气隙型浪涌保护器、硅双向对称开关(CSSPD)等。 另一种类型为箝位保护器,即保护器件在击穿后,其两端电压维持在击穿电压上不再上升,以箝位的方式起到保护作用。常用的箝位保护器是氧化锌压敏电阻(MOV),瞬态电压抑制器(TVS)等。 3 气体放电管的构造及基本原理 气体放电管采用陶瓷密闭封装,内部由两个或数个带间隙的金属电极,充以惰性气体(氩气或氖气)构成,基本外形如图1所示。当加到两电极端的电压达到使气体放电管内的气体击穿时,气体放电管便开始放电,并由高阻变成低阻,使电极两端的电压不超过击穿电压。 (a) BB型(b)BBS型 图1 气体放电管的基本外形 4 气体放电管与其它浪涌抑制器件参数比较 1)火花间隙(Arc chopping) 为两个形状象牛角的电极,彼此间有很短的距离。当两个电极间的电位差达到一定程度时,间隙被击穿打火放电,由此将过电流释放入地。 优点:放电能力强,通流容量大(可做到100kA以上),漏电流小; 缺点:残压高(2~4kV),反应时间慢(≤100ns),有跟随电流(续流)。 2)金属氧化物压敏电阻(Metal oxside varistor)

陶瓷气体放电管及其主要参数

关于陶瓷气体放电管及其主要参数 放大器和光接收机的信号输入、输出接线柱上,通常都和“地”之间接一只陶瓷气体放电管,用以避雷和防止干扰脉冲损坏放大模块、光接收组件。当发生钢绞线和电源线相碰的事故以后,由于陶瓷气体放电管击穿放电持续时间比较长,内部的电极往往融化失效,损坏的比例极高;遭雷击时,也会有较高比例的陶瓷气体放电管损坏。损坏的陶瓷气体放电管有一部分引脚烧断、或短路,比较容易发现和检出,但是有相当一部分从外表上看不出来,也没有短路,维修人员往往以为好的而没有将其更换。 损坏的陶瓷气体放电管在修理时必须更换新管,否则,这些光光接收机和放大器极容易遭雷击和脉冲干扰危害而引起放大模块和光接收组件损坏!许多各地同仁反应,修理过的光接收机和放大器比较容易再次损坏,其中最主要的原因就可能就是损坏的陶瓷气体放电管没有更换! 更换陶瓷气体放电管时必须注意换进原来型号的管子,因为不同型号的陶瓷气体放电管的性能参数是不一样的。 下面简要介绍陶瓷气体放电管的基本结构和基本特性,并附表列出两个厂家的产品参数供同仁参考。 陶瓷气体放电管内部有二个相对的针柱形金属电极,每个电极由支架和敷了钡(容易发射电子)的钨丝所组成,极间距离1.2mm左右(因此是互相绝缘的),放电管内部涂有氧化钠和消气剂,充有80~200毫米汞柱的氖气或氩气。有线电视上用的陶瓷放电管的极间电容通常≤2pf,因此它接在光接收机、放大器的信号输出、输入端子上对信号影响极微;陶瓷放电管的击穿放电时间通常≤2微妙(10-6s级),比雷击电流数十微妙的波头时间要短些,因此能保护器件免遭雷击。但是两者的时间处于同一个数量级,而且差距很小,因此陶瓷放电管一定要直接接在光接收机、放大器的信号输出、输入端子上,中间不可有电感线圈隔着,否则会造成延时,致使雷击电流波头电流到达之前不能导通放电,达不到防雷保护的作用。 另一种防雷器件叫“压敏电阻”,它的击穿放电时间通常达到10-8s级,比陶瓷气体放电管要快二个数量级,因此是很好的防雷器件,广泛用于交流电源电路的防雷保护。但是它不能代替接在光接收机、放大器信号输入、输出接线柱上的陶瓷气体放电管。因为压敏电阻存在几十微安的漏电流,极间电容也大,取代进去会造成信号损失等问题。 陶瓷气体放电管规格型号和参数 主要用于有线电视、长话、市话程控交换设备及各种电子、电器设备的防雷、防过电压保护。

放电管介绍及选型(详解)

放电管介绍及选型(详解)

放电管特性及选用 吴清海 放电管的分类 放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。 气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。气体放电管同流量大,但动作电压较难控制。 半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO 时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。半导体放电管的保护机理和应用方式和气体放电管相同。半导体放电管动作电压控制精确,通流量较小。

放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。 气体放电管 气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu焊片和惰性气体组成。 在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生

一、实验室制取气体时收集气体的方法

1.排水法 (1)难溶或微溶于水,且与水不发生化学反应的气体,都可以用排水法收集。(2)一般能用排水法收集的气体,应尽量用此法,因为排水法收集的气体纯度大,但含一定的水蒸气。 2.排气法 (1)不与空气发生反应,且密度与空气密度相差较大的气体,都 可用排空气法收集,相对分子质量大于29的气体用向上排空气法收集,相对分子质量小于29的气体用向下排空气法收集。 (2)排空气集气法的特点是操作简单,但所收集到的气体纯度不高。 注意: A .用排水法收集气体时,导气管伸入集气瓶口即可,这样便于操作;用排空气法收集气体时,导气管伸入到集气瓶的底部,这样可充分排净集气瓶中的空气。B.集满气体的集气瓶,盖上毛玻璃片后,是正放在桌面上还是倒放在桌面上,取 决于气体的密度,为了减少集气瓶内的气体向空气中扩散,密度比空气小的气体,集满集气瓶后,盖上毛玻璃片,要倒置在桌面上;密度比空气大的气体,在正放在桌面上。 二、收集气体时验满的方法 (1)排水法: 集气瓶里的水要装满,瓶口处不能留有气泡,倒立在水槽里,到集气瓶中的水完全排出为止。 (2)排空气法: 要把验满的工具放在靠近集气瓶口处,不能放在集气瓶内。 三、气体的干燥与除杂 气体的干燥原则: 浓硫酸、固体氢氧化钠、硫酸铜固体、氯化钙固体作干燥剂。 (1)选择干燥剂:选择干燥剂要根据气体和干燥剂的性质,干燥剂不能与被干燥的物质反应。 (2)选择干燥装置:干燥装置由干燥剂的状态来决定。干燥时,装置要么是“长进短出”要么是“大口进、小口出”。

气体净化除杂原则: 不减少被净化气体,不引进新的杂质。除杂方法:酸性杂质用碱性试剂吸收,碱性杂质用酸性试剂吸收,或者用能与杂质生成沉淀或生成可溶性物质的试剂。除杂顺序:一般来说,除杂在前,干燥在后。 四、氧气的制取 2KClO3 =MnO2△=2KCl+3O2↑或 2KMnO4=△=K2MnO4+MnO2+O2↑ 1、实验操作步骤: ①连:按要求把仪器连接好 ②检:检查装置的气密性。 ③装:把氯酸钾和二氧化锰的混合物装入试管中。 ④定:把试管固定在铁架台上。 ⑤点:点燃酒精灯给试管加热。(先预热) ⑥收:收集氧气。 ⑦移:实验完毕把导管从水中移出。 ⑧熄:熄灭酒精灯 (1)实验时注意的问题: A、根据酒精灯和水槽的高度固定试管,使酒精灯的外焰正对着试管里有药品的部位。 B、试管口应略向下倾斜,防止药品中湿存的水分受热后变成水蒸气,到达管口冷却成水滴,再回流到管底,使试管破裂。 C、铁夹应夹在离试管口1/3处,且不要夹得太紧,以免夹破试管。药品应倾斜铺在试管底部,以增大药品的受热面积,同时便于氧气逸出。伸入试管内的导管,应只稍伸出橡皮塞即可,便于气体排出。导管上应有一段橡皮管,便于操作,以免折断导管。 D、如果以高锰酸钾制氧气时,试管口应塞一团棉花,防止加热时高锰酸钾粉末进入导管,如果用氯酸钾为原料制氧气时,试管口不能塞棉花,这是因为棉花是易燃物,而氯酸钾又具有强氧化性,放氧速率快,很容易着火燃烧,以至发生爆炸。 (2)实验室用排水法收集氧气时 导管口开始有气泡逸出时不能收集,因为开始从导管中逸出的气泡是容器中的空气,当气泡连续均匀地从导管口逸出时,此时可收集。由于氧气的密度大,为防止氧气逸散到空气中,收满氧气的集气瓶应盖上玻璃片,正放在桌面上。 (3)催化剂 化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质都没有变化的物质叫做催化剂。注意:催化剂可以加快和减慢反应速率,催化剂一定要纯净。

高中常见气体的制备与收集

常见气体的制备与收集 应掌握O2、H2、CO2、Cl2、HCl、SO2、NO、NO2、H2S、NH3、CH4、C2H4、C2H2等13种气体的实验室制法。其中包括药品选择、反应原理、仪器装置、操作要点、净化、干燥、收集、检验、尾气处理等一系列的基本知识和基本操作技能 1.气体的发生装置 一般根据反应物状态和反应条件设计气体发生装置,通常气体的发生装置有如下几种 2.气体的收集方法 根据气体的密度、溶解性、稳定性可将气体的收集方法分为三种 (1)排水集气法 适用于不溶于水或微溶于水且不与水发生反应的气体。优点是收集的气体纯度高,易判断是否收集满。若有些气体虽在水中有一定的溶解性或与水微弱反应,也可通过往水中加入电解质,抑制与水反应。如用排饱和食盐水的方法可收集浓度较高的Cl2。(装置见图7—6a)(2)向上排空气收集法 适用于不跟空气发生反应且密度比空气大的气体(装置见图7—6b) (3)向下排空气集气法 适用于不跟空气发生反应且密度比空气小的气体。(装置如图7—6c) 3.常见气体制备原理,装置选择

[说明] ①制备少量O 2还可以用反应: , ,选择发生装置(B )。 ②制备少量NH 3可以加热浓氨水 或将浓氨水滴入 盛NaOH 固体的烧瓶中,选择发生装置(B )。

4.尾气的处理装置 具有毒性或污染性的尾气必须进行处理,常用处理尾气装置,如图7—7。 一般常用吸收液吸收这些有害气体,a、b、c为溶解度不是很大的尾气处理装置,d为溶液度大且吸收速率很快的尾气处理装置,难以吸收的尾气如CO,应于末端燃烧除去,如e。此处还可以用塑料袋盛装尾气。 5.气体的净化和干燥 气体的净化、干燥装置一般常用的有洗气瓶、干燥管、U形管和双通加热管几种。如7—8。 (1)洗气瓶(如图c)中一般装入液体除杂试剂。除杂试剂应通过化学反应将杂质吸收或将杂质气体转化为所制取的气体。常见除杂试剂有: ①强碱溶液:如NaOH溶液可吸收CO2、SO2、H2S、Cl2、NO2等呈酸性的气体 ②饱和的酸式盐溶液,可将杂质气体吸收转化,如: 饱和NaHCO3溶液能除去CO2中混有的HCl、SO2等强酸性气体。 饱和NaHSO3溶液能除去SO2中混有的HCl、SO3等气体。 饱和NaHS溶液能除去H2S中混有的HCl气体。 ③浓H2SO4:利用它的吸水性,可除去H2、SO2、HCl、CO、NO2、CH4等气体中混有的水蒸气。但由于浓H2SO4有强氧化性,不能用来干燥具有强还原性气体,如H2S、HBr、HI等。

气体放电管简介

气体放电管简介 气体放电管是一种间隙式的防雷保护元件,它在通信系统的防雷保护中已获得了广泛应用。放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。由于放电管的极间绝缘电阻很大,寄生电容很小,对高频电子线路的雷电防护具有明显的优势。放电管保护特性的不足之处在于其放电时延较大,动作灵敏度不够理想,对于波头上升陡度较大的雷电波难以有效地抑制。为了改善放电管的保护特性,先进的制造工艺正应用于放电管新型产品的开发中,随着保护特性的不断改善,放电管在电子设备与电子系统防雷保护应用中的适应性正在增强。 第一节结构简介 放电管的工作原理是气体放电。当放电管两级之间施加一定压力时,便在极间产生不均匀电场,在此电场作用下,管内气体开始游离,当外加电压增大到使极间场强超过气体的绝缘强度时,两极之间间隙将放电击穿,由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压水平,这种残压一般很低,从而使得与放电管并联的电子设备免受过电压的损坏。 早期的放电管是以玻璃作为管子的封装外壳,现已改用陶瓷作为封装外壳,放电管内充入电器性能稳定的惰性气体(如氩气和氖气等),放电电极一般为两个、三个或五个,电极之间由惰性气体隔开。按电极个数的设置来划分,放电管可分为二极、三极和五极放电管。图1给出了一个陶瓷二极放电管的结构示意图,它由纯铁电极、镍铬钴合金帽、银铜焊帽和陶瓷管体等主要部件构成。管内放电电极上涂敷有放射性氧化物,管内内壁也涂敷有放射性元素,用于改善放电特性。放电电极主要有针形和杯形两种结构,在针形电极的放电管中,电极与管体壁之间还要加装一个圆筒热屏,该热屏可以使陶瓷管体受热趋于均匀,不致出现局部过热而引起管断裂。热屏内也涂敷放射性氧化物,以进一步减小放电分散性。在杯形电极的放电管中,杯口处装有钼网,杯内装有铯元素,其作用也是减小放电分散性。图-2给出了一个三极放电管的结构示意图,它也是由纯铁电极、镍铬钴合金帽、银铜焊帽和陶瓷管体等主要部件构成。与二极放电管不同,在三极放电管中增加了镍铬钴合金圆筒,作为第三电极,即接地电极。五极放电管的主要部件与二、三极放电管基本相同,它具有较好的放电对称性,可适合于多线路的保护。 1—陶瓷管2—银铜焊帽 3—金属管帽 1—银铜焊帽2—金属管帽 2—接地电极4—电极引线 5—陶瓷管 图1陶瓷二级放电管结构示意图 图2三级放电管结构示意图 第二节伏安特性 气体放电管的伏安特性通常与管子的哪些电极间施加什么极性的电压没有关系。现以一个直流放电电压为150V的二极放电管为例,(其伏安特性如图3所示),来说明放电管伏安特性的基本特征。图3是按电子元件伏安特性的惯用画法,即以电压为自便量,画作横坐标;以电流为应变量,画作纵坐标。由于电流的范围很大,其变化常达几个数量级,所以电流用对数坐标表示。 在图3所示的伏安特性上,当逐渐增加两电极间的电压时,放电管在A点放电,A点的电压称为放电管的直流放电电压。在A到B之间的这段伏安特性上,其斜率

气体放电管

气体放电管 气体放电管是一种开关型保护器件,图是气体放电管的原理图符号。 气体放电管的工作原理是气体放电。当两极间的电压足够大时,极间间隙将被放电击穿,由原来的绝缘状态转化为导电状态,类似短路。导电状态下两极间维持的电压很低,一般在20~50V之间,因此可以起到保护后级电路的效果。气体放电管的主要指标有响应时间、直流击穿电压、冲击击穿电压、通流容量、绝缘电阻、极间电容及续流遮断时间。 气体放电管的响应时可以达到数百ns以至数s,在保护器件中是最慢的。当线缆上的雷击过电压使防雷器中的气体放电管击穿短路时,初始的击穿电压基本为气体放电管的冲击击穿电压,一般在600V 以上。放电管击穿导通后,两极间维持电压下降到20~50V。另一方面,气体放电管的通流量比压敏电阻和TVS管要大。气体放电管与TVS等保护器件合用时应使大部分的过电流通过气体放电管泄放,因此气体放电管一般用于保护电路的最前级,其后级的保护电路由压敏电阻或TVS管组成。这两种器件的响应时间很快,对后级电路的保护效果更好。气体放电管的绝缘电阻非常高,可以达到千兆欧姆的量级。极间电容的值非常小,一般在5pF以下。极间漏电流非常小,为nA 级。因此气体放电管并接到线路上对线路基本不会构成什么影响。

气体放电管的续流遮断是设计电路需要重点考虑的一个问题。如前所述,气体放电管在导电状态下续流维持电压一般为20~50V。在直流电源电路中应用时,如果两线间电压超过15V,则不可以在两线间直接应用放电管,在50Hz交流电源电路中使用时,虽然交流电压有过零点,可以实现气体放电管的续流遮断,但气体放电管类的器件在经过多次导电击穿后,其续流遮断能力将大大降低,长期使用后,在交流电路的过零点也不能实现续流遮断。因此,在交流电源电路的相线对保护地线、中线对保护地线单独使用气体放电管是不合适的。在以上的线对之间使用气体放电管时需要与压敏电阻串联。在交流电源电路的相线对中线的保护中基本不使用气体放电管。 在防雷电路的设计中,应注重气体放电管的直流击穿电压、冲击击穿电压、通流容量等参数值的选取。设置在普通交流线路上的放电管,要求它在线路正常运行电压及其允许的波动范围内不能动作,则它的直流放电电压应满足:min(Ufdc) 1.8 U。式中,Ufdc为直 P 流击穿电压;min(Ufdc)为直流击穿电压的最小值; U为线路正常 P 运行电压的峰值。 气体放电管主要可应用在交流电源口相线、中线的对地保护,直流电源口的工作地和保护地之间的保护,信号口中线对地的保护,射频信号馈线芯线对屏蔽层的保护。 气体放电管的失效模式在多数情况下为开路,因电路设计原因或其他因素导致放电管长期处于短路状态而被烧坏时,也可引起短路的失效模式。气体放电管使用寿命相对较短,以多次冲击后性会下降。

半导体放电管和气体放电管的基础知识

半导体放电管和气体放电管的基础知识 气体放电管的结构及特性 开放型气体放电管放电通路的电气特性主要取决于环境参数,因而工作的稳定性得不到保证。为了提高气体放电管的工作稳定性,目前的气体放电管大都采用金属化陶瓷绝缘体与电极进行焊接技术,从而保证了封接的外壳与放电间隙的气密性,这就为优化选择放电管中的气体种类和压力创造了条件,气体放电管内一般充电极有氖或氢气体。气体放电管的各种电气特性,如直流击穿电压、冲击击穿电压、耐冲击电流、耐工频电流能力和使用寿命等,能根据使用系统的要求进行调整优化。这种调整往往是通过改变放电管内的气体种类、压力、电极涂敷材料成分及电极间的距离来实现的。气体放电管有二极放电管及三极放电管两种类型。有的气体放电管带有电极引线,有的则没有电极引线。从结构上讲,可将气体放电管看成一个具有很小电容的对称开关,在正常工作条件下它是关断的,其极间电阻达兆欧级以上。当浪涌电压超过电路系统的耐压强度时,气体放电管被击穿而发生弧光放电现象,由于弧光电压低,仅为几十伏,从而可在短时间内限制了浪涌电压的进一步上升。气体放电管就是利用上述原理来限制浪涌电压,对电路起过压保护作用的。 随着过电压的降低,通过气体放电管的电流也相应减少。当电流降到维持弧光状态所需的最小电流值以下时,弧光放电

停止,放电管的辉光熄灭。气体放电管主要用来保护通信系统、交通信号系统、计算机数据系统以及各种电子设备的外部电缆、电子仪器的安全运行。气体放电管也是电路防雷击及瞬时过压的保护元件。气体放电管具有载流能力大、响应时间快、电容小、体积小、成本低、性能稳定及寿命长等特点;缺点是点燃电压高,在直流电压下不能恢复截止状态,不能用于保护低压电路,每次经瞬变电压作用后,性能还会下降。 半导体放电管也称固体放电管是一种PNPN元件,它可以被看作一个无门电极的自由电压控制的可控硅,当电压超过它的断态峰值电压或称作雪崩电压时,半导体放电管会将瞬态电压箝制到元件的开关电压或称转折电压值之内。电压继续增大时,半导体放电管由于负阻效应进入导通状态。只有在当电流小于维持电流时,元件才会复位并恢复到它的高阻抗状态。半导体放电管的优点包括它的快速响应时间,稳定的电气性能参数以及长期使用的可靠性。其响应速度是气体放电管的千分之一,而寿命是气体放电管的10倍以上。半导体放电管是负阻元件,其能量转移特性使之不会被高电压是你坏。这一点是远胜于TVS二极管的。另一方面,半导体放电管也能做到较高的浪涌电流和很低的电容值。 半导体放电管主要用作电子通讯和数据通讯电路的首级和二级过电压保护器。一、半导体放电管的结构和工作原理

填埋气体的收集系统

填埋气体的收集系统 The manuscript was revised on the evening of 2021

目录 1概述3 生活垃圾的定义 (3) 城市生活垃圾处理方法简介 (3) 3 4 5 6 6 6 6 6 8 9 9 9 10 13 13 13 13 13 15 15 15 16 16 17 17

《固体废弃物与噪声控制课程设计》课程设计任务书 一.课程设计题目 填埋气体的收集系统 二.设计参数 1.垃圾以250t/d(240t/d、230t/d、220t/d、210t/d)进行填埋;考虑垃圾填埋压实后的密度为650kg/m3,垃圾资源化和填埋期间的自然降解对垃圾的减容率为15%,覆盖土容积按填埋垃圾量的10%计, 2.填埋气体产气量计算 任选一种填埋气体的计算方法,进行产气量的估算。 三.课程设计报告的内容 经对比后,确定填埋场的结构;计算服务年限为10年(2016年-2025年)的填埋场库容及覆土量;对填埋气体的产气量进行估算并确定收集系统;若气体需要收集,进行抽气井布点(回收气体占总产气量的60%),并画出填埋场的工艺流程图、抽气井及井口装置图、竖直抽气井的布置图;绘制设计任务书中的图纸;写出设计说明书及计算说明书。 四.格式 课程设计说明书内容完整、计算准确、论文简洁、文理通顺、装订整齐、A4打印;图表要整齐,每个图、表都要有名称和编号,并与说明书内容一致,最后成果及图表要字体工整。

(正文:宋体,5号字;1号标题小4号字;行间距:20磅;页眉(固体废弃物与噪声控制课程设计)、页码:如-1-;所有公式必须用公式编辑器进行编辑。表格必须三线表。) 五.设计时间 2014年6月16日~2014年6月20日 环境工程教研室 2014-6-12 1概述 生活垃圾的定义 根据《中华人民共和国固体废物污染物环境防治法》中的规定,生活垃圾是指在日常生活中或者为日常生活提供服务的活动中产生的固体废物以及法律、行政法规规定视为生活垃圾的固体废弃物。 一般而言,工业废弃物之外的固体废弃物都可以统称为生活垃圾。但是在日常生活中所讲的生活垃圾是指由家庭日常产生并由城市环境卫生机构收集处置的混合固体废弃物,以及与这类废物性质类似的办公、商业、园林废弃物

九年级化学“常用气体的收集方法”知识拓展练习题(无答案)

“常用气体的收集方法”知识拓展练习题 一、选择题 1.一氧化氮是汽车尾气中的一种大气污染物,它是无色气体,难溶于水、密度比空气略大,在空气中能与氧气迅速反应生成红棕色的二氧化氮.在实验室制取一氧化氮时,收集一氧化氮应采用的收集方法是( ) A. 向上排空气集气法 B. 排水集气法 C. 向下排空气集气法 D. 排水集气法或向上排空气集气法 2.NO是大气污染物之一,但少量的NO在人体内却有扩张血管、增强记忆力的功能。已知NO不溶于水且不与水反应,密度比空气大,易与O2反应生成NO2。那么该气体用什么方法收集( ) ①向上排空气法②向下排气法③排水法 A. ① B. ② C. ③ D. ①②③均可 3.下列收集装置,可以用来收集氧气的是() A. ①③ B. ①②③⑥ C. ①⑤⑥ D. ①②③④ 4.某气体既能用排水法收集,又能用向上排空气法收集,则该气体具有的性质() A. 易溶于水,密度小于空气 B. 易溶于水,密度大于空气 C. 难溶于水,密度小于空气 D. 难溶于水,密度大于空气 5.一氧化氮是无色气体,难溶于水、密度比空气略大,在空气中能与氧气迅速反应生成红棕色的二氧化氮.以下收集一氧化氮的方法正确的是() A. 向下排空气集气法 B. 排水集气法或向上排空气集气法 C. 向上排空气集气法 D. 排水集气法 6.某极难溶于水的无毒气体,它的密度约是空气密度的,那么在实验室中收集这种气体的方法可以是( ) ①向上排空气法②向下排空气法③排水法 A. ②③ B. ①③ C. ①② D. ①②③ 7.如图所示的集气瓶中装有排水法收集的某气体,据此判断与这种气体有关的物理性质是() A. 无色气体 B. 不易溶于水,密度比空气小 C. 密度比空气大,不易溶于水 D. 易溶于水,密度比空气大 8.某无毒气体的密度约是空气密度的,且极难溶于水,那么收集该气体的方法是()①向下排空气法

放电管原理及选型使

放电管的原理及选型使 1、产品简述 陶瓷气体放电管(Gas Tube)是防雷保护设备中应用最广泛的一种开关器件,无论是交直流电源的防雷还是各种信号电路的防雷,都可以用它来将雷电流泄放入大地.其主要特点是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥109Ω),击穿电压分散性较大(±20%),反应速度较慢(最快为0.1~0.2μs)。按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡)。 2、工作原理 气体放电管由封装在充满惰性气体的陶瓷管中相隔一定距离的两个电极组成。 其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充的气体主要是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少电子发射能。这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可以保持在一个确定的误差范围内。当其两端电压低于放电电压时,气体放电管是一个绝缘体(电阻Rohm〉100MΩ).当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗, 使其两端电压迅速降低,大约降几十伏。气体放电管受到瞬态高能量冲击时,它能以10—6秒量级的速度,将其两极间的高阻抗变为低阻抗,通过高达数十千安的浪涌电流. 3、特性曲线

Vs导通电压, Vg辉光电压,Vf弧光电压,Va熄弧电压 4、主要特性参数 ①直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值.这是放电管的标称电压,常用的有90V、150V、230V、350V、470V、600V、800V等几种,我们有最高3000V、最低70V的。其误差范围:一般为±20%,也有的为±15%。 ②脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs的脉冲电压时的击穿电压值。因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。 陶瓷气体放电管对低上升速率和高上升速率电压的响应如下图所示。 ③冲击放电电流Idi:分为8/20μs波(短波)和10/1000μs波(长波)冲击放电电流两种。常用的是8/20μs波.冲击放电电流又分为单次冲击放电电流(8/20μs波冲击1次)和标称冲击放电电流(8/20μs波冲击10次),一般后者约为前者的一半左右,有2.5 kA、5 kA、10 kA、20 kA……等规格。

相关文档
最新文档