树脂孔隙率测定方法

树脂孔隙率测定方法

孔隙率测定方法:

取树脂100mL填充到固定床中,先用HCL溶液(浓度:约1M)洗树脂(流速:4mL/min),直至流进的HCL溶液浓度与流出的HCL溶液浓度始终相同(用0.1M NaOH滴定)。此时,固定床中树脂间隙吸附和填充的则完全是1M的HCL 溶液,用去离子水冲洗树脂,同时收集流出的液体,直至流出的液体呈中性(用pH试纸检测),测定固定床底部收集到液体的体积和HBr浓度(由于此液体中HCL的浓度较低,为了滴定减少误差,应该取收集到的液体10mL到锥形瓶中进行滴定),依据此数据计算可以得到树脂的含水量。建议做两组平行实验以确保实验的准确性。

(完整版)环氧树脂主要性能指标的检测方法

三、环氧树脂主要性能指标的检测方法 1、环氧树脂环氧值、环氧当量的测定 可用光谱分析法或化学分析法进行分析,光谱分析比化学分析容易操作,但是需要用标准试祥做成定量线。 ①光谱分析法 用红外光谱、拉曼光谱或核磁共振光谱等分析方法是很普及的,可用于环氧树脂的定性分析或环氧基的定量分析。红外光谱吸收法:首先用一系列已知环氧当量的环氧树脂的红外光谱做出A910cm-1/A1610 cm-1 (其中910cm-1是环氧基的吸收峰,1610 cm-1是苯环的吸收峰)基线,然后做出A910cm-1/A1610 cm-1与环氧当量标准曲线。这样在测定某一环氧树脂试样的环氧当量时,只需知道该环氧树脂A910/M1610的比值,即可确定其环氧当量。 ②化学分析法 常用的化学分析方法是在适当的溶剂中,使用过量的盐酸与环氧基作用,定量生成氯醇,将过且的盐酸用碱滴定法定量,。常用的溶剂有丙酮、无水醚、吡啶等。有时不用盐酸,而用溴化化氢酸、碘化钾与盐酸、过氯酸与季铵溴化物等为卤化剂,进行直接滴定。 方法多种多样,现今国际上通用的分析法是高氯酸法,适用于各种环氧树脂,但操作过程繁琐。另外还有盐酸/丙酮法、盐酸吡啶法以及盐酸二氧六环法。我国沿用的测定方法以盐酸一丙酮法和盐酸一吡啶法,其中盐酸一丙酮法较适用于分子量在1500以下的环氧树脂,而

盐酸一吡啶法较适用于分子量在1500以上的环氧树脂。相对来说,盐酸一丙酮法应用较多。 溴化季按盐直接滴定法 a)原理 原理是通过高氯酸(HClO4)与溴化四乙基铵(NEt4Br)反应生成的溴化氢与1,2-环氧基的定量反应。该程序包括用高氯酸-冰醋酸标准溶液滴定溶解在含溴化四乙基铵的环氧树脂的二氯甲烷溶液,以结晶紫为指标剂,当环氧基被消耗完,过量的溴化氢会引起过量的结晶紫指标剂变色。 b)溶液配制 结晶紫指标剂:取结晶紫0.5g,溶解于100ml冰醋酸中即得, 0.1 mol /L高氯酸-冰醋酸标准溶液 配制取无水冰醋酸550ml,加入高氯酸HClO4(W/W在70%左右,比重1.75)8.2ml摇匀,在烧杯中缓缓滴加24ml醋酐,用玻璃棒不断搅拌,放冷至室温后,转移到1000ml容量瓶中,加无水冰醋酸稀释至刻度线,摇均匀后,放置24小时使醋酐与溶液中的水充分反应完全。即得0.1N浓度的HClO4-HAc标准溶液。 标定准确称取在105℃干燥至恒重的邻苯二甲酸氢钾KHC8H4O4约0.4g(准确至0.0001 g)置于锥形瓶中,加无水冰醋酸20ml,使溶解,加0.5%结晶紫冰醋酸溶液1—2滴,用高氯酸冰醋酸标准溶液滴定至蓝色,并将滴定结果用空白试验(即不加邻苯二甲酸氢钾)校正。计算如下:

【实力干货】羟值滴定分析原理方法及流程

【实力干货】羟值滴定分析原理方法及流程 1.原理 聚醚羟基在催化剂咪唑作用下与苯酐进行定量反应, 过量的苯酐待反应完成后水解成酸, 用氢氧化钠标准溶液滴定之。 2.仪器和试剂 恒温水浴,98士2℃; 分析天平; 25ml 移液管; 50 mI 滴定管; 实验室现有吡啶, 苯酐,咪唑,1% 酚酞指示剂; 1mol / L 的NaOH 标准溶液。海安石化PEG400 和PEG600。 3.测试步骤 在分析天平上称取一定量样品于250mI清洁、干燥酰化瓶中。用移液管加入25mI酰化剂, 样品溶解后, 密封, 放人恒温水浴中。反应30m in、60min, 中间摇动几次, 到时取离水浴, 冷却至室温后, 加人10 ml水, 充分摇晃。以酚酞为指示剂, 用1mol / L NaOH 标准溶液滴定至桃红色为终点, 同时作空白试验。

4.结果分析 样品名称反应时间催化剂用量(咪唑/吡啶)理论羟值实测羟值羟值检出率 PEG400 30min 2.5‰~280 123.7 44% 60min 116.4 42% 说明本实验方法30min已经足够,延长时间没有必要。在此实验条件下,羟值的检出率只有43%,不适合。相关文献佟琦宇的《聚醚多元醇羟值测定方法的改进》并不适合于实际操作。 样品名称反应时间 催化剂用量 (咪唑/吡啶) 理论羟值实测羟值 羟值检出率 PEG400 30min 2.5‰~280 123.7 / 44% PEG400 30min 16.4‰~280 130.1 133.6 47% PEG600 30min 16.4‰~187 140.1 139.2 75% 催化剂的增加催羟值的测定有一定的作用。 国标中的测试方法:聚醚多元醇-羟值的测定-邻苯二甲酸酐酯化法在115℃回流条件下,羟基与溶解在吡啶中的邻苯二甲酸酐进行酯化反应生成酯,过量的邻苯二甲酸酐经水解转变为酸,用氢氧化钠标准滴定溶液滴定至终点。 (此溶液按作空白滴定时,25mL该溶液应消耗[c(NaOH)=1.000mol/L]氢氧化钠标准滴定溶液45~50mL。) 分析步骤:称取样品(称准至0.0002g)于250ml清洁、干燥的磨口酯化瓶中,用移液管移取25ml酰化剂加入其中,摇动。装上回流装置,在115℃±2℃下回流1小时,回流过程中摇动酯化瓶1~2次,油浴的液面需浸过锥形瓶一半。回流结束后将锥形瓶移出油浴冷却至室温,用10mL吡啶逐滴均匀冲洗冷凝管,取下锥形瓶,加入约0.5mL酚酞指示液, 用c(NaOH)=1.000mol/L氢氧化钠标

织物缩水率测试

织物缩水率测试 一、实验目的与要求 通过试验,测试织物缩水处理前后的尺寸变化,求得织物缩水率。掌握织物缩水率的测试方法,并了解织物产生收缩的原因。 二、实验仪器与用具 试验仪器为水箱、M988型织物缩水机、钢尺、缝线、铅笔等用具。 三、试样 机织物和针织物各两块。 四、实验方法与程序 (一)机织物缩水率的测试 1.试验仪器与用具:使用的仪器为水箱一只,底部为半圆形,上面为400×315mm的长方形,容积为45L,内装撑拌轮,直径为156mm,速度为,使用的工具为量尺等。 2.试样准备:取样数量:每批取3块试样,试样尺寸为经向55cm,纬向全幅。试样标记:先将试样沿经向两端各剪去2.5cm,取中间50cm,纬向全幅。再在试样中间均匀量取3个点,然后按经纬3个位置正确而平直地用铅笔画T字形,T形仔细缝纫,作标记,或用不褪色的笔正确画“T”形,※精确测量3个T形记号之间的经、纬向距离(精确到0.1cm). 3.操作步骤: (1)将清水加入水箱至规定标记(约45L)并加热使水温为。 (2)展开准备好的样布,置于水箱中(一般每次可放置4—6块,视织物厚薄而异)。加盖封闭保温,开动电动机,使搅拌轮转动。样布随着水浪回转翻滚,薄织物连续搅动15min,厚织物连续搅动20min,准时取出布样。 (3)将取出的样本,放入水池中轻轻地整理平整,沿经向叠成四折,用手轻轻压去水分(不得绞拧),将样布展开,平摊在金属网上,在无张力的情况下,保持经纬向垂直,然后把金属网移入温度为的烘箱内烘干。取出样布冷却30min后,分别测量试验后的经纬向之间距离。测量时,应尽量沿纱线方向量,不能歪斜。如发现试样上有折叠痕迹,可用手沿量尺寸方向轻轻摸平,但不能用力过大,以免产生误差。 (4)试样结果计算: 织物缩水率按下式计缩水率= (38—1) 式中:—试验前的实测距离(cm); —试验后的实测距离(cm)。 (二)针织物缩水率和沸水缩水率的测试 1.仪器与工具:使用的仪器为M988型织物缩水机,转速为,容量为40L。使用的工具为量尺(钢卷尺或木尺等)。

GB 2794-81胶粘剂黏度测定方法(旋转黏度计法)

GB 2794-81胶粘剂黏度测定方法(旋转黏度计法) 1 引言 有许多理由都需要进行胶粘剂和粘接试验,其中一些是: (1)性能比较(拉伸、剪切、剥离、弯曲、冲击和劈裂强度;耐久性、疲劳、耐环境性和传导性等)。 (2)对每批胶粘剂进行质量检查,确定是否达到标准要求。 (3)检验表面及其处理的有效性。 (4)确定对预测性能有用的参数(固化条件、干燥条件、胶层厚度等)。 试验对于材料科学和工程的各个方面都十分重要,尢其是对胶粘剂显得更为重要。试验不仅能测定胶粘剂的本身强度,而且还能评价粘接技术、表面清洁、表面处理的有效性、表面腐蚀、胶粘剂涂布、胶层厚度和固化条件等人们非常关心的问题。 本章首先一般性地讨论粘接接头试验的各种类型,只是包括一些比较重要的试验,继而列出某些学科领域中有关的ASTM 方法和实践,以及SAE 航天局推荐的方法(ARP/s)。 2 拉伸 单纯拉伸试验是负荷作用垂直于胶层平面并通过粘接面中心的试验。ASTM D897 粘接接头拉伸强度测试方法是保留在ASTM 中有关胶粘剂最古老的方法之一。对于试验所用试件和夹具的制作必须给予重视,由于设计不妥,试验时会产生边缘应力,有很大的应力集中,所得到的应力数据进行类推求算不同粘接面积或不同构形接头的强度很可能是不真实的。因此,D897 已被D2095 (条型和圆棒试件拉伸强度测试方法)所代替。这种试件按照ASTM D2094 (粘接试验中条型和圆棒试件的制备)标准制作,很容易调整同心度。如果正确地制作试件和进行试验,便能较精确地测定拉伸粘接强度。拉伸试验是评价胶粘剂最普通的试验,尽管是有经验人员设计的接头,也不能保证加荷时完全是拉伸形式。大多数结构材料都比胶粘剂的拉伸强度高。拉伸试验的优点之一是能得到最基本的数据,如拉伸应变、弹性模量和拉伸强度。 加利福尼亚理工学院的维谦斯及其同事对拉伸试验的应力分布进行了分析,发现除非是当胶粘剂与被粘物的模量相匹配时,应力在整个试件里的分布是不均匀的。这种模量的差异造成了剪切应力沿界面传递。 3 剪切 单纯剪切应力是平行于粘接面所产生的应力。单搭接剪切试件不能代表剪切,但却很实用,制作比较简单,测得的数据有实用价值、重复性好。 剪切试验是很普通的试验(对比下列的几种试验),因其试件制备容易,且几何形状和操作条件对很多结构胶粘剂都适用。与拉伸试验一样,剪切试验的应力分布也是不均匀的,破坏应力是按常规方法将负荷除以粘接面积而得,胶层里承受的最大应力要比平均应力高得很多,胶层受到的应力与纯剪切不同。粘接的“剪切”接头的破坏形式与胶层厚度和被粘物的刚度有关,有时以剪切破坏为主,有时以拉伸破坏为主。 目前所用的剪切试验方法,除了ASTM D1002 之外,还有ASTM D3163 ,它与ASTM D1002 相比,构形几乎相同,只是厚度不同。该方法解决了胶粘剂易从边缘挤出来的问题。ASTM D3165 (层压复合的胶粘剂们拉伸剪切强度测试方法)说明了如何制备试件来测定夹层结构的拉伸剪切强度。双搭接剪切试的标准为

实验分析中液体处理技术

实验分析中液体处理技术 ——来自梅特勒-托利多实验室滴定分析的解决方案 实验室滴定分析中,分析天平是精确取样中最常用的工具之一,而USP(美国药典)对称量误 差要求最高,<0.1%,梅特勒-托利多XS/XP/XPE系列分析天平轻而易举也解决这些问题。比如在食品行业中,乳酸的含量测定中,就要定量准确地加入一定量的NaOH,通过乳酸与NaOH反应之后,然后再用硫酸标准滴定液进行剩余的NaOH的量,计算出乳酸的含量,这是非常典型的返滴定实验。这个实验精确称取乳酸的重量很重要,但是精确移液一定量的NaOH也十分关键,是关乎实验精度的重要步骤。为了精确移液,以前实验室最常用的解决方案是使用1~25mL甚至使用50mL的单标移液管,有时为了达到RSD<0.3%,小于10mL的单标移液管和15mL以下的滴定管,难以使用,只能使用20mL以上的单标移液管,和50mL的滴定管,取更多的样品,以便消耗更多的滴定液,达到很好的重现性。单标移液管的良好操作对化验员来说是很大的挑战,而且对粘度大、乳化液之类的样品并不适合。而且对于滴定杯是塑料的情况,单标移液管停靠滴定杯内壁15s的操作并不适合,因为塑料的滴定杯是疏水材料,单标移液管会因为在移液时溶液断流,使得最后比较多的溶液流不出来,导致结果偏差大。而且,每个单标移液管都需要进行检定,工作量很大。 图1:单标移液管图2:ENC-25mL连续分液器 随时科技的进步,更多高精度、方便使用的移液产品越来越多地在实验室使用,避免人为的误差,也使得化验的工作更容易、更轻松。梅特勒-托利多为实验室提供了多种精确移液或滴定的工具: 比如高达20000步的dosing Unit驱动器+DV10xx滴定管,可以配合G20、T50、T70、T90滴定使用; ET系统的滴定仪也可以用作实验室精确移液使用,滴定管的最大体积可达50mL, 瑞宁RAININ的多种规格移液器、分液器为滴定分析提供了丰富的选择。 NCO值(异氰酸酯基)的分析是涂料、油漆、树脂、胶粘剂等化工行业经常测定的一个重要指标, 测试原理: 利用异氰酸酯基与过量的二正丁胺反应生产脲,再用盐酸滴定过量的二正丁胺来定量计算异氰酸 酯基的含量,该反应分两步进行: 第一步:异氰酸酯基与二正丁胺反应:

聚醚多元醇的羟值及羟值计算

聚醚多元醇的羟值及羟值计算 2007-03-03 15:39:07来源: 作者: 【大中小】浏览:401次评论:0条 羟值是聚醚多元醇(以下简称聚醚)的重要特性指标。它涉及聚醚中官能团的含量和聚醚的分子量,为聚醚生产、应用、开发部门所关注。在聚醚合成工业,还用羟值控制生产,所以如投料量,误差分析,产量估算等都离不开羟值。但是由于羟值的单位不够直观,防碍了人们,特别是初学者,深入的认识和理解羟值的含义,以致在有关计算中,往往抛开羟值本身的含义,重复地使用羟值与分子量的关系式,使本来简单的计算复杂化。这不仅增加了工作量,还容易出现计算错误,贻误工作。因此,深入了解有关羟值的概念,灵活运用它进行各类计算是必要的。 1 羟值的含义和单位 从羟值的名称上理解,羟值就是羟基的含量(或浓度)。指的是单位重量的样品中所含羟基的量。所用单位是mgKOH/g,其中的mgKOH是度量羟基的单位。这种单位不如克,升等单位直观,其中的mgKOH似乎与羟基毫无关系。那么1mgKOH 的羟基是多少?与摩尔什么关系?用单位重量的某一化学物质(如mgKOH)做为单位,通常用于表示某一化学基团或某一类化学物质(如酸性物质)的量。因为化学基团与一般的物质不同,不能够独立存在,因此有时在习惯上,或者是根据实际需要把某一基团按化学计量关系折算成含有这种基团的某一化学物质来表示。在聚醚合成及相关的部门,是把羟基折算成KOH表示。按OH与KOH的计量关系-1摩尔KOH中含有1摩尔OH,则1摩尔OH折算成一摩尔KOH,就等于是56.1克或者是56100mgKOH。反过来1mgKOH与1/56100摩尔的羟基相当。因此用mgKOH做为度量羟基的单位时,1mgKOH的羟基就是1/56100摩尔的羟基。可见,mgKOH是

羟值

环氧树脂中羟值(Hydroxyl value) 是指100g树脂中的羟基基团的物质的量。而通常工业上用的羟值是指羟值(Hydroxyl value) 1g样品中的羟基所相当的氢氧化钾(KOH)的毫克数,以mgKOH/g表示。 环氧树脂羟值是表示100g环氧树脂中所含的氢氧基的摩尔数。而羟基值表示含有1mol羟基的环氧树脂质量克数。二者之间的关系为:羟基值=100/羟基。羟值的测试都是酸酐反应做基础的,以被消耗的酸酐量测试出羟基含量。对于环氧树脂而言,由于环氧基的干扰,使羟基的测试复杂化,采用通常的乙酰化法是达不到目的的。目前采用的一种是直接测试环氧树脂的羟基含量;另一种是使环氧基开环形成羟基,并进一步测出羟基含量总和。对高分子量环氧树脂如果知道其羟值大小,就可以计算出它的分子量大小,羟值高,分子量小;反之则大。 在聚氨脂胶黏剂中多以聚酯型聚氨酯居多。在聚酯多元醇的合成过程中,利用羟值与酸值的测试来监控合成反应程度,而且又是检验树脂分子量是否符合产品出厂要求的有效方法。另外,在聚氨酯胶黏剂生产时,羟值与酸值大小,又是异氰酸酯加入改性的重要依据。羟值是聚合物羟基含量的量度,它可以直接反映出聚合物的分子量的大小。同一原料生产的聚酯多元醇,其羟值不同,用途也不一。羟值是衡量它的一个重要指标。对聚酯多元醇,不饱和聚酯树脂与聚醚多元醇,羟值的定义是每克试样中羟基含量相当的氢氧化钾毫克数(mgKOH/g)即为羟值。 测定方法:

1.磁制冷(达到<10^-3k) 2.节流过程和绝热膨胀过程(<1k) 3.绝热去磁(<10^-6k) 4.稀释制冷(=2mk) 5.激光制冷(=170nk) 主要有邻苯二甲酸干-吡啶酰化法。邻苯二甲酸干-吡啶回流法。邻苯二甲酸干-咪唑-吡啶催化法 酸酐-吡啶电位滴定法: 测定原理是用过量酸酐与产品中的羟基反应生成酯和酸,多余的酸酐水解成酸,再用碱进行中和滴定。

聚醚多元醇羟值测定方法

1方法提要 在恒温加热回流条件下,羟基与溶解在吡啶中的邻苯二甲酸酐进行酯化反应,过剩的邻苯二甲酸酐以氢氧化钠标准液滴定。羟值是指每克试样中的-OH 相当于氢氧化钾毫克数。 2仪器 a)三角烧瓶:磨口、带空气冷凝器、300mL b)碱式滴定管:50mL ; c)胖肚移液管:25mL 、50mL ; d)恒温油浴:115℃±2℃。 3试剂 a)邻苯二甲酸酐的吡啶试剂(酰化剂):将80g 邻苯二甲酸酐和12克咪唑溶于500mL 吡啶试剂中,在室温下搅拌24小时使用。试剂要保存在褐色试剂瓶中,如发现溶液颜色加深则应重新配制; b)酚酞指示剂(1%吡啶溶液):将1.0g 酚酞溶解于100mL 吡啶中摇匀; c)氢氧化钠标准滴定溶液:c (NaOH )=0.5mol/L 。 d ) 0.5mol/l 氢氧化钠溶液 4测定步骤 a)把规定量的试样准确称量至0.0001g 后,置于三角烧瓶内,再准确移入25mL 邻苯二甲酸酐吡啶试剂,摇匀使样品溶解,插上空气冷凝器,放入115±2℃油浴中回流,不断平稳振动,加热回流1h 。 b)从油浴中取出,放置室温后,以水洗净空气冷凝器内部,拆下. c)加入10滴酚酞指示剂,再用0.5mol/L 氢氧化钠标准滴定溶液滴定,至粉红色出现并在15s 不褪色为终点。 d)在相同条件下作空白试验。 注1:聚醚试样量按下式规定进行称量: a)试样称取量(g )=561/羟值估计值。如MN-3050聚醚的羟值,约为56mgKOH/g ,称样量为6g -7g 。 5计算 羟值H 按式(1)计算 H =m C V 1.56)(V 21??-…………………………………………………………(1) 式中:H-羟值,mgKOH/g ; V 1-空白滴定时氢氧化钠标准滴定溶液用量,mL ; V 2-试样滴定时氢氧化钠的标准滴定溶液用量,mL ; C-氢氧化钠标准滴定溶液的浓度,mol/L ; m-试样的质量,g ; 56.1-氢氧化钾的摩尔质量,g/mol 。 6允许差 以两次平行测定结果的算术平均值为测定结果,当羟值<120 mgKOH/g 时,两次测定结果的绝对误差应≤1.0mgKOH/g ;当羟值≥120KOH/g 时,两次测定结果的相对误差应≤1.0%。

针对粘弹性体物料的粘度测量方法

针对粘弹性体物料的粘度测量方法 很多客户,尤其是纺织化纤、合成树脂等行业,在测量聚合物时,常常会发现用普通实验室粘度计测量时会发生物料爬杆的现象,得不到很好的测量结果。 发生这种问题的原因主要是由于物料具有粘弹性,由于韦森堡效应所引起的,与法向应力有关,由于高分子流体在流动中形成各向异性结构而产生的。当轴在液体中旋转时,离轴越近的地方剪切速率就越大,故法向应力越大,相应的,高分子链的弹性恢复力就越大,于是使得熔体沿轴向上挤,就出现了爬杆现象。 什么是粘弹性流体?有粘性液体和弹性固体的特性 粘性液体:受力,流动,产生永久性形变 弹性固体:受力,变形,去除外力,形变恢复 粘弹性流体:受力时产生形变,去除外力,形变部分回复,受力时间越长,形变回复部分越少。 用普通粘度计来测量时由于爬杆现象,得到的数据经常是大于真实的粘度值,同时这类物料实际又是假塑性剪切变稀的,因此对这类物料的特性经常使测试者很困惑。

针对这类物料,不能采用同轴圆柱体转子,最简单的方法是采用R/S-CPS锥板流变仪,根据物料的粘度范围选用CP25-1或CP50-1转子,可以先做一下剪切率扫描,得到基本的流变曲线,然后根据情况确定最后的测量条件,一般建议采用低剪切率进行测量,如下图所示,是一个聚合物在不同聚合条件下的流变曲线,从曲线可以发现,该物料是假塑性流体,同时经过实验也发现具有触变性,最后确定在较低剪切率(该样品采用8 S-1)的条件下进行测量,可以获得稳定可靠的粘度值,给生产工艺的确定提供了可靠的实验数据。 对于粘弹性体或凝胶类样品(高分子聚合度高,浓度高)来说,采用锥板流变仪不断线性增加和降低样品受到的应力和剪切率方法,可以从一定程度上限制内部结构的弹性回复对数据造成不一致的麻烦,因此使用R/S流变仪是更适合该样品的测试,具体测量的条件:可以采用剪切率扫描进行流变曲线测试,或者选用一个比较低的剪切率(0-20 /S)进行一段时间的测量,再取平均值。

有机硅环氧树脂的制备及其性能研究

有机硅环氧树脂的制备及其性能研究 有机硅环氧树脂兼有环氧树脂和有机硅的优点而成为一种重要的热固性树脂。以Karstedt催化剂催化不同氢含量的含氢硅油与烯丙基缩水甘油醚间的硅氢加成反应制备了4种不同环氧值的有机硅环氧树脂,利用红外光谱对其化学结构进行了表征。用甲基六氢苯酐分别固化4种有机硅环氧树脂,研究分析它们的初始热分解温度均高于300 ℃,具有优异的耐热性能。 标签:硅氢加成反应;环氧树脂;有机硅;制备 环氧树脂具有机械强度高、粘附力强、电绝缘性好、热稳定性好等优点,广泛应用于涂料、胶粘剂、电子绝缘材料等领域[1~3]。但其耐热性偏低,常在环氧树脂中引入硅原子形成有机硅环氧树脂,提高耐热性[4,5]。有机硅环氧树脂[6]可通过热缩合法、水解缩合法和硅氢加成法[7]等技术来制备,前2种技术易使环氧基团开环而影响环氧值和材料的强度,硅氢加成法具有反应条件温和、活性高,并不影响环氧基团的含量等优势而成为合成有机硅环氧树脂的首选办法[8,9]。 本文将不同氢含量的含氢硅油与烯丙基缩水甘油醚通过硅氢加成反应制备不同环氧值的有机硅环氧树脂,并对其结构进行表征,研究固化产物的耐热性能。 1 实验部分 1.1 主要原料 含氢硅油(氢质量分数分别为0.5%、1.0%、1.5%和1.6%)、甲基六氢苯酐和四甲基二乙烯基硅烷,质量分数均大于99%,开化县弟兄硅酮材料厂;烯丙基缩水甘油醚(AGE)(使用前用分子筛干燥),化学纯,天津市鸿业化工有限公司;氯铂酸,分析纯,沈阳市金科试剂厂;碳酸氢钠、异丙醇、乙酸乙酯(使用前无水硫酸钠干燥),分析纯,国药集团化学试剂有限公司。 1.2 实验仪器 FT-IR傅立叶红外光谱仪,美国Nicolet公司Nexus470型,经KBr压片,扫描范围4 000~500 cm-1,扫描次数32次;NETZSCH TG209热重分析仪,德国耐驰仪器制造有限公司,测试条件为:氮气条件,升温速率为10 ℃/min,从30 ℃升温到700 ℃。 1.3 有机硅环氧树脂的制备 1.3.1 合成原理 以不同氢含量的含氢硅油与烯丙基缩水甘油醚为原料通过硅氢加成反应合

耐1000℃高温的有机硅树脂

碱性和酸性颜料表面用分散剂 美国PCI集团公司的低粘度高分子量含羟基分散剂“PGV—7109”特别适用于聚酯-聚氨酯和聚酯-三聚氰胺体系。据该公司介绍,“HSWADA-60”(用于溶剂型体系)和“WBWADA-60”(用于水性体系)设计与带碱性表面的颜料配用。当要求能与有酸性表面性质的颜料相容时,或者存在碱性和酸性二种颜料表面时,则使用改性的“B”型(代替“60”型)。 无芳香族装饰涂料用有机硅消泡剂 德国Byk-Chemie公司的“Byk 067”是“066”的无溶剂、无气味形式,特别适合于无芳香族装饰涂料和高固体分体系的消泡用。该有机硅助剂也可用于通用工业涂料,其用量为配方总量的011%~015%。该消泡剂应在颜料分散阶段加入。如果在之后的阶段加入,则为使其有效物质充分分散,并避免引起缩孔,提供足够的高切变力使之分散至关重要。 耐1000℃高温的有机硅树脂 日本国立材料化工研究所研究人员开发了一种树脂,它是由硅倍半环氧乙烷混合物与1,3-双苯基乙烯基苯共聚所得的称作“T8二炔”(H8Si8O12)的新型聚合物。这种含有机硅的混杂型材料能耐1000℃高温。该树脂在苯和甲苯中的溶解度使之易于施工。该产品的机械强度和附着力正在测试之中。 单组分和双组分聚氨酯固化用口恶唑烷 美国Industrial Copolymers公司现推出一种单组分和双组分聚氨酯涂料用非结晶双口恶唑烷固化剂。该产品以液态贮存,由此,免除了使用前的加热操作,该产品即使在10℃贮存2年后仍为液态。该固化剂赋予快速透彻的固化,避免了聚氨酯树脂(PUR)配制涂料中常见的针孔、失光和起泡等问题。该固化剂可以二官能团或四官能团不同形式使用,以满足不同的要求。典型用途是房顶或水槽之类耐水涂膜 用湿固化聚氨酯的固化剂。 低于130℃固化的聚氨酯涂料用固 化剂 德国Creanova S pecial Chemie公司 的“Vestanat B1358/100”是一种基于片 状“Vestanat IPDI”的无溶剂封闭多异氰 酸酯。它可与含羟基的聚酯、丙烯酸酯 和醇酸之类树脂配合。其解封温度低, 可配制低于130℃温度下固化的聚氨酯 烘烤磁漆。在传统溶剂体系中,根据多 元醇的活性,用012%~015%二月桂酸 二丁基锡作催化剂,即可在30~60min 内固化。涂膜性能很大程度上取决于所 用的多元醇,这种聚氨酯树脂(PUR)耐 光性和耐候性极佳。通过溶剂的自由选 择,可使许多不同配方得到优化。 新型粘度测量仪 美国Paul V. G ardner公司现可供的“DV-E”测量仪 是一种价廉且易操作的数字粘度计,可 同时测量粘度和转矩。数字显示器显 示粘度(mPa?s或cP)、转矩、转子型号 和转速。可提供013~100r/min的18 种转速。该仪器操作简便、效率高。其 测量准确度达1%,再现性达012%。 UV涂料用非粉末状的蜡分散体  粉末状助剂有时会难以结合入辐射固 化体系中,并且要求较高,德国 Posichem公司研制的“photowax”蜡分散 体能解决这些问题,并简化生产步骤。 该产品基于一种100%固体,易添加且 无粉尘,它们提高了抗划伤性和抗消光 性,防滑,防粘连并且改善了平光和沉 降性。可供选择的品种有4种:2种PE 分散体(牌号名“E1248”和“E1258”),1 种PTFE-PE分散体(“E1282”)和1 种PP分散体(“E1386”)。 无发散物的聚氨酯树脂粉末涂料 用固化剂 德国Bayer公司推出的 “Crelan VP L S2147”是一种基于二氮 丁酮的第二代聚氨酯树脂(PUR)粉末 涂料固化剂,与以前用己内酰胺封闭的 多异氰酸酯交联的粉末涂料不同,这种 二氮丁酮固化剂在交联反应中不会释 出任何己内酰胺或相当于封闭剂的排 放物,也无离解的水,因此更加符合环 保要求。该固化剂无毒,以易加工的几 乎无色的小片粉形式供货。当与所选 羟基聚酯配合时,因熔融粘度低而有优 良的流动性。 有通用相容性的纯丙烯酸酯 德 国Emst J¨ a ger公司的“jagotex EM401” 是基于甲基丙烯酸和丙烯酸的酯类,且 不含苯乙烯的纯丙烯酸分散体。据称, 该产品的耐碱性、耐候性、弹性、耐水性 和附着力等性能均能满足要求。该产 品有通用的相容性,适合于生产石材、 塑料、石棉、水泥、混凝土、木材和其他 底材用外用和内用的平光到丝光涂料。 该产品有良好的颜料润湿性和良好的 粘结力。它与铝粉浆和金色铜粉浆的 相容性也扩大了金属底色漆的范围。 具有良好附着力的丙烯酸酯—苯 乙烯分散体 德国Alberdingk Boley公 司开发的一种“AS6500”产品所得聚合 物对无机底材有极好的附着力。该产 品是一种含活性附着力促进剂的55% 丙烯酸酯-苯乙烯分散体。该基料最 适用于生产糊状物耐水建筑物和砖瓦 粘合剂,以及液压粘结体系用的粘合剂 和弹性剂。 塑料用热熔粘合剂 日本Daikyo 公司现推出一种改性聚烯烃型热熔粘 合剂。它可用于PP、PE或PET之类未 作预处理的塑料上面。与许多传统热 熔粘合剂不同,该新产品能承受-20~ +60℃温度。 专用于硝基纤维素和热塑性丙烯 酸的润湿剂 德国Byk Chemie公司的 溶剂型涂料用润湿分散剂“Disperbyk 140”适用于所有传统涂料基料,尤其适 用于硝基纤维素和热塑性丙烯酸树脂。 该助剂能防止各种情况中的颜料絮凝, 由此使成品色浆和涂料的颜色和着色 强度稳定。此外,该助剂改善了颜料的 润湿,提高了光泽。该产品用于工业、 装饰和木器涂料用的颜料浆中 ,可降低 研磨浆料的粘度。 ? 6 4 ?涂料工业 1999年第10期 ?国外简讯?

不饱和聚酯树脂羟值测定方法

不饱和聚酯树脂羟值测定方法 1 术语 羟值:中和通过乙酰化反应与1g不饱和聚酯树脂化合的乙酸,所消耗的氢氧化钾的毫克数。 2 方法原理 本方法是以对甲苯横酸作催化剂,在乙酸乙酯中,利用乙酸酐与羟基乙酰化反应进行的。过量的乙酸酐用吡啶/水混合液水解,生成的 乙酸用氢氧化钾-甲醇标准溶液滴定。滴定中,存在于树脂中的游离酸也被碱中和,所以羟值是在单独测定酸值后,最后计算求得。 不饱和聚酯树脂酸值的测定按GB 2895-82《不饱和聚酯树脂酸值的测定》进行。 3 试剂 3.1 乙酸化溶液:将1.4g纯净、干燥的对甲苯磺酸溶于111ml无水乙酸乙酯中,当完全溶解时,在搅拌下缓慢地加入12ml新蒸熘的乙酸酐,保存在干燥器中。 注:推荐乙酸酐用五氧化二磷干燥处理后,过滤、蒸馏备用。 3.2 吡啶/水混合液:3/2(体积比) 3.3 混合指示剂:将3体积01%  甲酚红乙醇溶液混合。  百里酚蓝乙醇溶液与1体积01% 3.4 正丁醇/甲苯混合液:2/1(体积比)。 3.5 氢氧化钾-甲醇标准溶液:0.5~0.6N[1)]。按GB 601-77《标准溶液制备方法》进行。 以上所用化学试剂均为分析纯。 4 仪器和设备 4.1 碘瓶:250ml。 4.2 滴定管:50ml。 4.3 移液管:10ml。 4.4 磁力搅拌器。 4.5 恒温水浴:控制在50±1℃。 4.6 分析天平:感量0.001g. 4.7 电位滴定仪。

采用说明: (1)ISO 2554-1974中,氢氧化钾-甲醇标准溶液为0.5N。 5 试验步骤  如果羟值的5.1 称取3~5g[(1)]约含5mg当量羟基的试样〔试样质量(g)=280/羟值〕,准确到0001g( 近似值不知道应按本方法做初步 试验)。放入250ml碘瓶中。准确加入10ml乙酰化溶液,并放入磁力搅拌棒,立即塞上瓶塞,用乙酸乙酯湿润瓶口。开动磁力搅拌器搅拌,使 试样溶解(不易溶解的试样,可稍加温热或再加入5~10ml 酰化溶液,使之溶解)。 5.2 将碘瓶置于50±1℃的水浴中,浸入深度约10mm,保持45min。也可以在保持结果不变的情况下,适当减少时间。 5.3 取出碘瓶,冷却至室温,加入2ml蒸馏水,在搅拌下充分混合,再加10ml吡啶/水混合液,搅拌5min。 5.4 用30~60ml正丁醇/甲苯混合液[2)],冲洗瓶塞和瓶内壁。加入5滴混合指示剂,在不断搅拌下,用氢氧化钾-甲醇标准溶液滴定。 当溶液由黄色变得清澈时,再加入2~3滴混合指示剂,继续滴定,直到溶液由黄色变为蓝色,即为终点。记下消耗的氢氧化钾-甲醇标准溶 液的毫升数V1[3)]。 如果溶液的颜色很深或溶液不清时,可用电位滴定代替指示剂确定终点。用甘汞电极作参比电极,玻璃电极作指示电极。 5.5 在相同条下做空白试验。记下消耗的氢氧化钾-甲醇标准溶液的毫升数V2。 6 试验结果 6.1 每次试验的羟值HV按下式计算: Hv = {(V1-V2)×N×56.1}/G + Av 式中: Hv——不饱和聚酯树脂的羟值,mgKOH/g; V1——滴定试样时所消耗的氢氧化钾-甲醇标准溶液的体积,ml; V2——滴定空白试样时所消耗的氢氧化钾-甲醇标准溶液的体积,ml; N——氢氧化钾标准溶液的当量浓度; G——试样质量,g; Av——试样的酸值,mgKOH/g; (V2-V1)——可以是正值或负值。 6.2 测定结果至少以两个平行试样测定结果的算术平均值表示,两上平行试样结果差不得超过2个羟值单位并修约成整数。 7 试验报告 试验报告应包括以下内容: a. 试验名称、牌号、批号; b. 试样来源、送样日期; c. 测定过程中的特殊现象及对结果可能有影响的所有事项; d. 测试结果。 e. 测试人员、测试日期。

ACR树脂)的检测方法

加工助剂(ACR树脂)的检测方法及质量对型材生产的影响 相关专题:塑料助剂 时间:2011-10-26 10:13 来源:阿里巴巴塑料价格库 1 ACR生产技术简介 1.1 ACR的结构 ACR树脂是丙烯酸酯类(acrylicester)高分子聚合物,分子结构多数为非交联的线性无规共聚物,也有认为具有“核-壳”结构的产品。与PVC分子相比,其分子量较高,一般在100—800万左右(重均分子量)。聚合工艺通常采用多段自由基乳液聚合。 1.2 工艺流程 1.3 配方简介 ACR的原料配比见表1。 1.4 工艺对指标的影响 ACR的生产中工艺参数对相应的指标有影响(见表2)。 2 ACR产品的指标检测 2.1 常规项目 2.1.1 挥发份 (1)烘箱法

采用标准为GB/T2914[聚氯乙烯树脂挥发物(包括水)测定方法],控制条件为1050C,2h。 挥发份含量,%=【(Wo—W1)/Wo】×100% 其中:W。一烘干前样品重量 W1一烘干后样品重量 (2)仪器法 仪器采用SC69—02B型水份快速测定仪。 主要步骤:天平零位的调整,预干燥处理,称取试样,红外线加热,投影屏刻度平稳,读取结果。 2.1.2 细度 指标为大于98%(质量)树脂颗粒通过40目筛(孔径0.45nun)。对该指标不同使用厂家要求的指标值不同。 2.1.3特性粘度 主要仪器:乌式粘度计; 试剂:三氯甲烷。 2.1.4杂质含量 该指标为企业内控项目,按PVC树脂标准制定,标准水平与之相当,指标值为≤50个/100g树脂。 2.2 非常规项目 这些非常规项目一般没有绝对的标准值,只能用来作相对比较。虽然没有列在标准中,但它们对于反映产品的本质结构和内在性能往往更有效。 2.2.1 热稳定性 如果ACR合成工艺或原材料有问题(如含有St、AN等非丙烯酸酯类成份),其热稳定性就会下降。 (1)静态热稳定性 将样品放在白色搪瓷盘或者表面皿中,置于180℃烘箱中,10~30rain后取出,观察其颜色变化。 部分厂家产品的静态热稳定性已接近于国外同类产品水平,同时也有一些厂家的产品差距很大。 (2)动态热稳定性 试验表明,ACR树脂在双辊开炼后,不同厂家的样品差别较为明显。国内部分厂家产品的动态热稳定性已接近于国外同类产品水平,同样,也有一些厂家的产品差距较大。 2.2.2 流变性能 采用转矩流变仪测定产品的塑化性能。对于转矩流变曲线(见图1)意义的解释也

有机硅型环氧树脂固化剂的制备及性能研究

有机硅型环氧树脂固化剂的制备及性能研究 以氨丙基三乙氧基硅烷(KH550)为反应单体,通过水解缩合反应合成了以Si—O—Si为主要链段,—NH2为活泼基团的环氧树脂固化剂。利用—NH2与环氧基团的反应将耐热性较好的Si—O—Si链段引入到交联网络中。通过反应原料和产物的红外吸收光谱和核磁共振波谱对比分析证明了水解缩合反应的发生;通过非等温DSC分析和T-β外推法确定了反应体系的固化特征温度;用环氧树脂E51混合体系粘接的黄铜板,其相对最大剪切强度为14.4 MPa,固化物在N2氛围中失重10%的温度为378.6 ℃,残炭率为26.2%。 标签:环氧树脂;有机硅;固化剂;耐热性 环氧树脂具有优异的粘接性能、力学性能和化学稳定性,是现代高新工程领域不可或缺的高性能材料[1],而且环氧树脂固化剂对树脂固化物的性能有很大影响[2~4]。 环氧树脂固化后呈三维网络结构,交联密度较高,且存在耐热温度较低、韧性不足等缺陷。通过物理共混或化学聚合的方式改性环氧树脂的柔韧性和耐高低温性能使其获得更广泛的应用一直是研究重点。有机硅材料具有良好的柔韧性、优异的耐高低温和电绝缘性能,而且有机硅化合物可以被赋予多种反应性功能基团,如烷氧基、羟基等,利用功能化的有机硅化合物来改性其他聚合物材料,将使得被改性聚合物材料具有某些独特的性能,尤其是在提高光通率、耐高温降解以及耐烧蚀等方面具有显著的优势[5]。 利用有机硅化合物或聚合物改性环氧树脂一直是国内外研究的热点领域,环氧树脂含有的环氧基、羟基等官能团,可与有机硅中的胺基、羟基、烷氧基以及引入的其他功能基团进行反应,生成改性环氧共聚物或交联固化材料[4]。有机硅类固化剂可以在固化物中引入稳定和柔性的Si—O—Si链,能够改善环氧树脂的柔韧性、热稳定性能,同时还能增强有机硅链段与环氧树脂的相容性[6]。 本研究以氨丙基三乙氧基硅烷(KH550)为主要原料,通过水解缩合得到Si—O—Si为主要链段、以—NH2为活性基团的环氧树脂固化剂,以此提高改性环氧树脂的耐高温性能。 1 实验部分 1.1 实验原料 氨丙基三乙氧基硅烷(KH550),工业级,南京优普化工有限公司;环氧树脂(E51),工业级,巴陵石化有限公司;无水乙醇、甲苯、盐酸,分析纯,北京化工厂;去离子水,自制。 不锈钢板、铝板、铜板,市售。

有机硅玻璃树脂

SI-101有机硅玻璃树脂 SI-101玻璃树脂是一种有机硅树脂预聚体的乙醇溶液,本产品固化后的薄膜坚硬透明、绝缘性能好,且具有耐摩擦、耐热、耐老化、耐辐射、低温不脆化、疏水、防潮、无毒、透光率强等优点。本品具有低温固化性,溶于乙醇、丁醇、戊醇、乙酸乙酯、丙酮等溶剂。 [技术指标] 1、外观: 无色透明液体 2、粘度(25℃): 5~50 mpa.s 3、固含量: ≥30% 4、PH值:6~7 5、硬度(摆杆硬度):0.7~0.9 6、透光率:90~92% 7、干燥性能(90℃±2℃): 12~14 h 8、附着力:1~2级 9、柔韧性:1~3mm 10、冲击强度:40~50 kg.m 11、电气强度:30~50 MV/m 12、相对介电常数:3~6 13、介电损耗因数:102~103 14、体积电阻率:1012~1014 15、表面电阻:1011~1013 [产品应用] 1、涂敷有机玻璃、聚碳酸酯等材料,可提高其光透过率,耐磨性和耐紫外光辐射性,建议用作飞机玻璃、汽车玻璃、太阳镜、光学仪器、电子仪器显示屏等的表面保护膜。 2、涂敷铜、铝等金属构件可有效防腐。 3、作为纸张与陶瓷的上光涂料(如扑克、商标、书刊封面等)可使之光亮滑爽、耐磨并防水,增加弹性及挠曲性。 4、高频线圈等高温、高湿条件下电子、电器元件的绝缘涂料。 5、代替乳胶漆用于内墙的高级装饰涂料,光滑耐磨、寿命长。 6、室温硫化硅橡胶与金属表面粘接的表面处理。 7、其它未尽和待开发的应用。 [用法用量] 以酒精等溶剂稀释1~10倍,然后以适当的涂布方式,涂于基材表面,常温或加热固化即可。为实现常温快速固化,本产品备有配套的固化剂,固化剂的加入量一般占整个稀释溶液的0.1~1%。 [注意事项] 本品属易燃品,危险性类似于无水酒精。光、热、空气、酸、碱等物与其接触会加速聚合,应贮藏于阴暗和低温处,室温贮存不超过3个月。加入固化剂后

环氧树脂胶的物理特性及测试方法

环氧树脂胶的物理特性及测试方法 1. 粘度 粘度为流体(液体或气体)在流动中所产生的内部磨擦阻力,其大小由物质种类、温度、浓度等因素决定。按GB2794-81《胶粘剂测定法(旋转粘度计法)》之规定,采用NOJ-79型旋转粘度计进行测定。其测试方法如下:先将恒温水浴加热到40℃,打开循环水加热粘度计夹套至40℃,确认40℃恒温后将搅拌均匀的A+B混合料倒入粘度计筒中(选取中筒转子)进行测定。 2. 密度 密度是指物质单位体积内所含的质量,简言之是质量与体积之比。按GB4472之规定采用比重瓶测定。相对密度又称比重,比重为某一体积的固体或液体在一定温度下的质量与相同体积在相同温度下水的质量之比值。测试方法: 用分析天平称取清洁干净的比重瓶的重量精确到0.001g,称量数为m1,将搅拌均匀的混合料小心倒入(或抽入)比重瓶内,倒入量至刻度线后,用分析天平称其重量,精确到0.001g,称量数为m2。 密度g/ml=(m2- m1)/V (V:比重瓶的ml数) 3. 沉淀试验:80℃/6h<1mm 测试方法:用500ml烧杯取0.8kgA料放入恒温80℃热古风干燥箱内烘6小时,观其沉淀量。 4. 可操作时间(可使用时间)测定方法: 取35g搅拌均匀的混合料,测其40℃时的粘度(方法同1粘度的测定)记录粘度值、温度时间、间隔0.5小时后,再进行测试。依次反复测若干次观其粘度变化情况。测试时料筒必须恒温40℃,达到起始粘度值一倍的时间,即为可操作时间(可使用时间)。 5. 凝胶时间的测定方法: 采用HG-1A凝胶时间测定仪进行测定。取1g左右的均匀混合料,使其均匀分布在预先加热到150±1℃的不锈钢板中心园槽中开动秒表,同时用不锈钢小勺不断搅拌,搅拌时要保持料在圆槽内,小勺顺时针方向搅拌,直到不成丝时记录时间,即为树脂的凝胶时间,测定两次,两次测定之差不超过5秒,取其平均值。 6. 热变形温度

树脂羟值测定方法

羟值测定 3.1. 4.1 方法提要 在115℃回流条件下,PTMEG中的羟基与溶解在吡啶中的邻苯二甲酸酐进行酯化反应生成酯,过量的邻苯二甲酸酐经水解转变为酸,用氢氧化钠标准滴定溶液滴定至终点。 水分影响酯化反应,样品的水分含量不宜高于0.2%,如果高于0.2%,应脱水后测定。 3.1. 4.2 仪器 a 酯化瓶:250mL,带有磨口空气冷凝管,冷凝管长度不小于60cm;(或具塞 三角烧瓶带冷凝装置) b 油浴:115℃±2℃; c 滴定管:50mL,碱式滴定管; d 单标线吸管:25mL。 3.1. 4.3 试剂 a 吡啶:AR; b 邻苯二甲酸酐—吡啶溶液:称取111-116g邻苯二甲酸酐于700mL吡啶中, 摇至溶解,于棕色瓶中放置过夜后使用。如溶液出现颜色则应舍弃去。(有效期:7天) (此溶液按作空白滴定时,25mL该溶液应消耗[c(NaOH)=1.000mol/L]氢氧化钠标 准滴 定溶液45~50mL。) c 酚酞指示液:10g/L吡啶溶液; d 氢氧化钠标准滴定溶液:c(NaOH)=1.000mol/L; e 盐酸标准滴定溶液:c(HCl)=0.1000mol/L。 3.1. 4.4 分析步骤 称取PTMEG样品9~11g(称准至0.0002g)于250ml清洁、干燥的磨口酯化瓶中,用移液管移取25ml酰化剂加入其中,摇动。装上回流装置,在115℃±2℃下回流1小时,回流过程中摇动酯化瓶1~2次,油浴的液面需浸过锥形瓶一半。回流结束后将锥形瓶移出油浴冷却至室温,用10mL吡啶逐滴均匀冲洗冷凝管,取下锥形瓶, 加入约0.5mL酚酞指示液, 用c(NaOH)=1.000mol/L氢氧化钠标准滴定溶液滴定至溶液呈粉红色并保持15S不褪色为终点,同时作空白试验及测定样品酸值。空白与样品消耗的c(NaOH)=1.000mol/L氢氧化钠标准滴定溶液体积之差为9~11mL。否则,适当调整试样质量,重新测定。 3.1. 4.5 结果计算 样品羟值以下式计算: 羟值 = ﹤56.1×(V0-V1)×c/m ﹥+ 酸值 式中: V0—空白试验滴定所消耗氢氧化钠标准溶液体积,ml; V1—滴定试样所消耗氢氧化钠标准溶液体积,ml; c—氢氧化钠标准溶液浓度,mol/L; m—试样质量, g 56.1—KOH的摩尔质量。 注:取样量参照试样滴定消耗碱液大于空白消耗碱液的3/4来推算。 3.1. 4.5 分析结果的表示 测定结果以平行测定两个结果的算术平均值表示,两次平行测定结果的差值 不大 于2.00 mgKOH/g。 注:如果空白与样品消耗体积差小于10.00ml,则结果保留3位有效数字;若不小于10.00ml,则结果保留4位有效数字。

相关文档
最新文档