空气湿度与体感温度表

空气湿度与体感温度表

湿度的计算

空气相对湿度RH%的计算 空气相对湿度RH%,计算 内容摘要:相对湿度是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高,它的单位是% 相对湿度 相对湿度是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高,它的单位是%。相对湿度为100%的空气是饱和的空气。相对湿度是50% 的空气含有达到同温度的空气的饱和点的一半的水蒸气。相对湿度超过100%的空气中的水蒸气一般凝结出来。随着温度的增高空气中可以含的水就越多,也就是说,在同样多的水蒸气的情况下温度升高相对湿度就会降低。因此在提供相对湿度的同时也必须提供温度的数据。通过相对湿度和温度也可以计算出露点。 以下是计算相对湿度的公式: 其中的符号分别是: ρw–绝对湿度,单位是克/立方米 ρw,max–最高湿度,单位是克/立方米 e–蒸汽压,单位是帕斯卡 E–饱和蒸汽压,单位是帕斯卡 s–比湿,单位是克/千克 S–最高比湿,单位是克/千克

「绝对湿度」指一定体积的空气中含有的水蒸气的质量,一般其单位是克/立方米。绝对湿度的最大限度是饱和状态下的最高湿度。绝对湿度只有与温度一起才有意义,因为空气中能够含有的湿度的量随温度而变化,在不同的高度中绝对湿度也不同,因为随着高度的变化空气的体积变化。但绝对湿度越靠近最高湿度,它随高度的变化就越小。 下面是计算绝对湿度的公式: 其中的符号分别是: [编辑]相对湿度(RH) 一台溼度計正在紀錄相對濕度 「相对湿度」(RH)是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高。相对湿度为100%的空气是饱和的空气。相对湿度是50%的空气含有达到同温度的空气的饱和点的一半的水蒸气。相对湿度超过100%的空气中的水蒸气一般凝结出来。随着温度的增高,空气中可以含的水就越多。也就是说,在同样多的水蒸气的情况下,温度降低,相对湿度就会升高;温度升高,相对湿度就会下降低。因此在提供相对湿度的同时也必须提供温度的数据。通过最高湿度和温度也可以计算出露点。

TR-10数字温度计使用说明书

TR-10便携式记录型测温仪使用说明 一,概述: TR-10是一款具备数据记录功能的温度测量仪表,仪表可记录100个温度点和时间,摄氏华氏转换,超温报警等功能。广泛应用于暖通制冷维修、食品、宠物等行业。 二,技术参数: 1、温度传感器:NTC K=103,B=3435 2、测温范围:-40℃~+110℃, 3、测温精度:±1℃(-20℃~+80℃),±2℃(-40℃~-20℃,+80℃~+110℃) 4、记录点数:100个, 5、采样周期:记录状态下为间隔时间,非记录状态下为10S 6、显示未定要求—电磁兼容测试:(1)EFT干扰测试>2级 (2)ESD测试>2级 7、时间:2009年1月1日—2099年12月31日 产品出厂参数值:日期为09 01 01,时间为12:00 00 间隔时间为001,(1分钟) 上限温度值都为:000.0度 下限温度值都为:000.0度 三,产品示意图: 正面图片:要求有液晶屏全部显示,以及能看清按键上的字。

背面图片:要求说明有背面各个部分的功能,及按键的图片,必要时增加局部放大的图片 液晶屏显示的说明: 说明液晶屏各部分显示代表的参数 四,按键操作说明: 按键使用模式说明:按一下按键立即抬起为“时间按”,按住按键查过五秒后抬起为“长时间按”前置按键的使用说明: Record: 功能一:开启和关闭记录功能 功能二:在记录过程中或记录完成后,按此键可以查看温度记录点的参数。 ▲▼: 功能一:增加和减小所要设置的数值;长按可以连续增加或减小参数值。 功能二:查看记录的温度点; Clear:清除所有已经记录的温度点值。 后置按键使用说明: Set: 功能一:长时间按此键五秒为进入或退出参数设置模式; 功能二:短时间按可退出温度查看状态。 Time: 功能一:短时间按为切换年月日和时分秒, 功能二:长时间按此键五秒进入或退出时间或日期设置状态。 Switch: 功能一:短时间按为摄氏华氏转换。 功能二:长按五秒为12/24小时转换功能。

大气压的五种变化

大气压的五种变化 在不同的季节,不同的气候条件和地理位置等条件下,地球上方大气压的值有所不同。本文择取大气压的五种主要变化,做一些分析讨论,供参考。 从微观角度看,决定气体压强大小的因素主要有两点:一是气体的密度n;二是气体的热力学温度T。在地球表面随地势的升高,地球对大气层气体分子的引力逐渐减小,空气分子的密度减小;同时大气的温度也降低。所以在地球表面,随地势高度的增加,大气压的数值是逐渐减小的。如果把大气层的空气看成理想气体,我们可以推得近似反映大气压随高度而变化的公式如下: μ=p0gh/RT 由上式我们可以看出,在不考虑大气温度变化这一次要因素的影响时,大气压值随地理高度h的增加按指数规律减小,其函数图象如图所示。在2km以内,大气压值可近似认为随地理高度的增加而线性减小;在2km以外,大气压值随地理高度的增加而减小渐缓。所以过去在初中物理教材中有介绍:在海拔2千米以内,可以近似地认为每升高12米,大气压降低1毫米汞柱。 地球表面大气层里的成份,变化比较大的就是水汽。人们把含水汽比较多的空气叫“湿空气”,把含水汽较少的空气

叫“干空气”。有些人直觉地认为湿空气比干空气重,这是不正确的。干空气的平均分子量为,而水气的分子量只有,所以含有较多水汽的湿空气的密度要比干空气小。即在相同的物理条件下,干空气的压强比湿空气的压强大。 在地球表面,由赤道到两极,随地理纬度的增加,一方面由于地球的自转和极地半径的减小,地球对大气的吸引力逐渐增大,空气密度增大;另一方面由于两极地区温度较低,所以空气中的水汽较少,可近似看成干空气,所以由赤道向两极,随地理纬度增加,大气压总的变化规律是逐渐增大。 对于同一地区,在一天之内的不同时间,地面的大气压值也会有所不同,这叫大气压的日变化。一天中,地球表面的大气压有一个最高值和一个最低值。最高值出现在9~10时。最低值出现在15~16时。 导致大气压日变化的原因主要有三点。一是大气的运动;二是大气温度的变化;三是大气湿度的变化。 日出以后,地面开始积累热量,同时地面将部分热量输送给大气,大气也不断地积累热量,其温度升高湿度增大。当温度升高后,大气逐渐向高空做上升辐散运动,在下午15~16时,大气上升辐散运动的速度达最大值,同时大气的湿度也达较大值,由于此二因素的影响,导致一天中此时的大气压最低。16时以后,大气温度逐渐降低,其湿度减小,向上的辐散运动减弱,大气压值开始升高;进入夜晚;大气

湿度空气计算方法

相对湿度、露点温度转换的基本原理说明 湿度研究对象是气体和水汽的混合物。 无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。 湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达: 1、 压力为P,温度为T的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T和压力P下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。 2、实际水汽压与同一温度条件下的饱和水汽压的比值 从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。 对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的(在湿度论坛中,本人给出了温度to饱和水汽压的简化公式以及计算程序,可下载)。 上面说道:饱和水汽压是与温度相关的量。 在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。 基于上述解释,可以看出,只要测量得到了露点温度,通过温度to饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。 同样,只要测量了当前混合气体的正常温度,就可以通过温度to饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压 实际水汽压除以饱和水汽压,就可以得到相对湿度。 湿度的单位换算 测湿仪表的显示值,通常是相对湿度或露点温度,在需要用其它单位时可进行换算。换算的方法如下: 1.相对湿度与实际水汽压间的换算 由相对湿度的定义可得: ---------------------------(1) 式中:RH----相对湿度,%RH; e----实际水汽压,hPa; E---饱和水汽压,hPa。 因此: -------------------------------(2) 即:实际水汽压等于相对湿度乘以相同温度下的饱和水汽压。 由于饱和水汽压E是温度的函数,所以用相对湿度换算为实际水汽压或用实际水汽压计算相对湿度,都必须已知当时的温度值。在计算饱和水汽压时,应确定是冰面还是水面,以正确选用计算公式。 2.相对湿度换算为露点温度 由于露点温度定义为空气中的水汽达到饱和时的温度,所以,必须先计算出实际水汽压。根据露点的定义,这时的水汽压就是露点温度对应的饱和水气压。因此,可以用对饱和水汽压求逆的方法计算露点温度。 用Goff-Grattch方程求逆非常困难,常用饱和水汽压的简化公式计算,而 简化公式很多,一般采用国军标GJB1172推荐的公式: ----------(3) 式中:E------为饱和水汽压,Pa;

大气温度垂直分布规律及原因

大气温度垂直分布规律及原因各层的特点及原因:

大气温度随高度变化曲线: 逆温现象:对流层由于热量主要直接来自地面辐射,所以海拔越高,气温越低。一般情况下,海拔每上升1000米,气温下降6°C。有时候出现下列情况:①海拔上升,气温升高;②海拔上升1000米,气温下降幅度小于6°C。这就是逆温现象。逆温现象往往出现在近地面气温较低的时候,如冬季的早晨。逆温现象使空气对流运动减弱,大气中的污染物不易扩散,大气环境较差。 对流层中温度的垂直分布: 在对流层中,总的情况是气温随高度而降低,这首先是因为对流层空气的增温主要依靠吸收地面的长波辐射,因此离地面愈近获得地面长波辐射的热能愈多,气温乃愈高。离地面愈远,气温愈低。其次,愈近地面空气密度愈大,水汽和固体杂质愈多,因而吸收地面辐射的效能愈大,气温愈高。愈向上空气密度愈小,能够吸收地面辐射的物质——水汽、微尘愈少,因此气温乃愈低。整个对流层的气温直减率平

均为0.65℃/100m。实际上,在对流层内各高度的气温垂直变化是因时因地而不同的。 对流层的中层和上层受地表的影响较小,气温直减率的变化比下层小得多。在中层气温直减率平均为0.5—0.6℃/100m,上层平均为 0.65—0.75℃/100m。 对流层下层(由地面至2km)的气温直减率平均为0.3—0.4℃/100m。但由于气层受地面增热和冷却的影响很大,气温直减率随地面性质、季节、昼夜和天气条件的变化亦很大。例如,夏季白昼,在大陆上,当晴空无云时,地面剧烈地增热,底层(自地面至300—500m高度)气温直减率可大于干绝热率(可达1.2—1.5℃/100m)。但在一定条件下,对流层中也会出现气温随高度增高而升高的逆温现象。造成逆温的条件是,地面辐射冷却、空气平流冷却、空气下沉增温、空气湍流混合等。但无论那种条件造成的逆温,都对天气有一定的影响。例如,它可以阻碍空气垂直运动的发展,使大量烟、尘、水汽凝结物聚集在其下面,使能见度变坏等等。下面分别讨论各种逆温的形成过程。(一)辐射逆温 由于地面强烈辐射冷却而形成的逆温,称为辐射逆温。图2·35表明辐射逆温的生消过程。图中a为辐射逆温形成前的气温垂直分布情形;在晴朗无云或少云的夜间,地面很快辐射冷却,贴近地面的气层也随之降温。由于空气愈靠近地面,受地表的影响愈大,所以,离地

湿度及其计算【内容充实】

什么是湿度(RH%)及计算公式 一、湿度定义 在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,用RH%表示。总言之,即气体中(通常为空气中)所含水蒸汽量(水蒸汽压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。 二、湿度测量方法 湿度测量从原理上划分有二、三十种之多。但湿度测量始终是世界计量领域中著名的难题之一。一个看似简单的量值,深究起来,涉及相当复杂的物理—化学理论分析和计算,初涉者可能会忽略在湿度测量中必需注意的许多因素,因而影响传感器的合理使用。 常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和电子式传感器法。 三、绝对湿度和相对湿度、露点 湿度很久以前就与生活存在着密 切的关系,但用数量来进行表示较为困难。对湿度的表示方法有绝对湿度、相对湿度、露点、湿气与干气的比值(重量或体积)等等。 ?绝对湿度是指每立方米的空气中含有水蒸气的质量。 ?相对湿度(Relative Humidity,缩写为RH)是指水蒸气在空气中达到饱和的程度,饱和时为100%RH。当绝对湿度不变时温度越高相对湿度越小。当空气中的含水量没有达到饱和状态,实际含水量与饱和含水量的比值就是相对湿度。相对湿度达到100%,水就不会再自然蒸发了。温度不同,饱和水量也不同,温度越高,容纳的水越多,温度降低了,空气中不能容纳原来那麽多的水了就会出现结露。 ?凝露是当空气湿度达到一定饱和程度时,在温度相对较低的物体上凝结的一种现象。 湿度是普遍存在的,而凝露只是湿度达到一定程度时的一种特殊现象。 四、相对湿度RH%的计算公式

温度与相对湿度要点

温度与相对湿度、绝对湿度、饱和湿度的关系 绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位 绝对湿度的单位习惯用毫米水银柱高来表示。也常用l 立方米空气中所含水蒸汽的克数来表示。 (3)说明 ①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。 ②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。 相对湿度 2 5 4P su x =? (1)定义或解释 ①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。 ②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明 ①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。 ②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点 (1)定义或解释 ①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。 ②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位 习惯上,常用摄氏温度表示。 (3)说明 ①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg ,12℃时的饱和蒸汽压为lO.52mmHg 。则此时:空气的绝对湿度p=10.52mmHg , 空气的相对湿度.B=(10.52/17.54)×100%=60%。 采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。 ②露点的测定,在农业上意义很大。由于空气的湿度下降到露点时,空气中的水蒸汽就凝结成露。如果露点在O℃以下,那末气温下降到露点时,水蒸汽就会直接凝结成霜。知道了露点,可以预报是否发生霜冻,使农作物免受损害。 ⑨气温和露点的差值愈小,表示空气愈接近饱和。气温和露点接近,也就是此时的相对湿度百分比值大,人们感觉气候潮湿;气温和露点差值大,即此时的相对湿度百分比值小,人们感觉气候干燥。人体感到适中的相对湿度是60~70%。 ④严格地说,露点时的饱和汽压和空气当时的水汽压强是不相等的。

温度计的使用教案

温度计的使用教案. 温度计的使用教案 【教学目标】 1、:知道温度的概念;知道温度计的工作原理及使用方法;能够使用温度计进行简单的测量。 2、过程与方法:通过动手制作简单的温度计,让学生体验科学探究的乐趣。 【教学方法】教师演示实验引导,学生实验探究。 【教学手段与准备】传统教学手段与多媒体教学相结合;若干只

烧杯、冷水、热水、温水、实验常用温度计、寒暑表、带玻璃管的小瓶。 【教学过程】 1、巧设实验、导入新课。 首先在讲台上放置冷、热、温三杯水,然后找一位学生走上讲台,先把两根手指分别放入热水和冷水中,一段时间以后,将手指取出然后同时放入温水中,我会问:两只手对温水的感觉相同吗?让学生描述自己的感受。接着我会追问:凭感觉判断温度可靠吗?要想准确知道物体的温度该怎么办呢?这样很自然的导入课题——温度计。 2、启发思维、新课教学。 首先我会向学生展示冬季与夏季的图片,启发学生思考为什么在夏季和冬季会感到热和冷呢?为何有如此大的差别呢?学生根据生活经 验会很容易回答:因为温度不同。进而我会引导学生总结得出温度的概念及其单位。温度——物体的冷热程度;单位:摄氏度(℃)。接下来让同学们说一说生活中常见的温度值,比如人体的正常体温、沸水的温度、冰水混合物的温度等等。随后给学生讲解摄氏温度的相关知识,包括0C和100C的具体规定,以及0到100摄氏度之间刻度的划分,为后面的自制温度计铺平了道路。掌握了温度的概念,接下来是我新课教学中的重点部分——温度计。为了培养学生动手、动脑的能力,我将带领学生自制温度计。学生在我的引导下积极讨论,大胆尝试,像发明家一样研制温度计,体验发明创造的无穷乐趣。学生在制作过程中深刻的理解了温度计的构造及其原理,从而掌握重点,

温度计的使用方法

小学六年级科学能力测试实验器材使用方法 一、温度计的使用方法 方法一 1、测量前,观察所要使用的温度计,了解它的量程(测量范围)和分度值(每一小格对应的温度值); 2、测量时使温度计的玻璃泡跟被测液体充分接触(要浸没在被测液体中); 3、待示数稳定后再读数; 4、读数时温度计玻璃泡要留在被测液体中,不能取出来读数。 方法二 1 在测量之前要先估计被测液体的温度; 2 根据估计的温度选用量程合适的温度计。 3 温度计的玻璃泡要全部浸没在待测液体中,但不要碰到容器底和容器壁。 4 玻璃泡全部浸没在待测液体中要稍候一会儿。等它的示数稳定后再读数。 5 读数时,玻璃泡要继续留在被测量液体中。 6 视线要与温度计中液柱的上表面相平。正确记录测量结果要有数字和单位。 二、酒精灯的使用方法 使用酒精灯时,先要检查灯芯,如果灯芯顶端不平或已烧焦,需要剪去少许使其平整,然后检查灯里有无酒精,灯里酒精的体积应大于酒精灯容积的1/4,少于2/3。在使用酒精灯时,应注意,绝对禁止用酒精灯引烧另一盏酒精灯,而应用燃着的火柴或木条来引燃;用完酒精灯,必须用灯帽盖灭,不可用嘴去吹灭,否则可能将火焰沿灯颈压入灯内,引起着火或爆炸。不要碰倒酒精灯,万一洒出的酒精在桌上燃烧起来,不要惊慌,应立即用湿抹布扑盖。 三、量筒的使用方法 要看清凹液面和量程 不能用量筒配制溶液或进行化学反应。 不能加热,也不能盛装热溶液以免炸裂 量取液体时应在室温下进行。 读数时,视线应与液凹液面最低点水平相切。 量取已知体积的液体,应选择比已知体积稍大的量筒,否则会造成误差过大。如量取15mL 的液体,应选用容量为20mL的量筒,不能选用容量为50mL或100mL的量筒。 出错点:A.手拿着量筒读数;B.读数时有的俯视,有的仰视;C.有的不能依据需量取液体体积选择合适量程的量筒。D.液体加多了,又用滴管向外吸。 正确方法:使用量筒时应根据需量取的液体体积,选用能一次量取即可的最小规格的量筒。操作要领是"量液体,筒平稳;口挨口,免外流;改滴加,至刻度;读数时,视线与液面最低处保持水平"。若不慎加入液体的量超过刻度,应手持量筒倒出少量于指定容器中,再用滴管滴至刻度处。 四、弹簧测力计使用方法 1、被测物体重力不能超过弹簧测力计的量程; 2、读数时,视线应垂直于刻度; 3、在测量前,应先调零; 4、不用刻度已被损坏的弹簧测力计; 5、待示数稳定后才读数。 6、如果是测摩擦力,要匀速拉动弹簧测力计。 五、天平的使用方法 ①放:把天平放在水平桌面上; ②调:先调节游码至标尺的零刻线,然后调节横梁两端的平衡螺母,直至横梁平衡; ③测:把物体放在天平的左盘里,向右盘里加减法码,直至天平平衡; ④读:读数时,除加砝码的总质量外,千万别忘了还要加上游码对应的质量数。这样,使用天平时左侧的托盘上应放待测物质,右侧的托盘上应放砝码。这样符合使用习惯。砝码加游码读数之和就是待测物质的质量。如果右侧的托盘上放待测物质,左侧的托盘上放砝码,那么,砝码质量和减去游码读数得到的差就是待测物质的质量。这虽然不符合课本上的规定,

大气温度垂直分布规律及原因

大气温度垂直分布规律及原因 各层的特点及原因: 层次特点原因 对流层①气温随高度增加而递减,每上升100米降低℃。 ②对流动动显著(低纬17~18、中纬10~12、高纬 8~9千米)。 ③天气现象复杂多变。 热量绝大部分来自地面, 上冷下热,差异大,对流 强, 水汽杂质多、对流运动显 著。 平流层起初气温变化小,30千米以上气温迅速上升。 大气以水平运动为主。 大气平稳天气晴朗有利高空飞行。 臭氧吸收紫外线。 上热下冷。 水汽杂质少、水平运动。 高层大气存在若干电离层,能反射无线电波,对无线电通信 有重要作用。[自下而上分三层:中间层、暖层(电 离层)、逃逸层] 太阳紫外线和宇宙射线作 用 大气温度随高度变化曲线: 逆温现象:对流层由于热量主要直接来自地面辐射,所以海拔越高,气温越低。一般情况下,海拔每上升1000米,气温下降6°C。有时候出现下列情况:①海拔上升,气温升高;②海拔上升1000米,气温下降幅度小于6°C。这就是逆温现象。逆温现象往往出现在近地面气温较低的时候,如冬季的早晨。逆温现象使空气对流运动减弱,大气中的污染物不易扩散,大气环境较差。

对流层中温度的垂直分布: 在对流层中,总的情况是气温随高度而降低,这首先是因为对流层空气的增温主要依靠吸收地面的长波辐射,因此离地面愈近获得地面长波辐射的热能愈多,气温乃愈高。离地面愈远,气温愈低。其次,愈近地面空气密度愈大,水汽和固体杂质愈多,因而吸收地面辐射的效能愈大,气温愈高。愈向上空气密度愈小,能够吸收地面辐射的物质——水汽、微尘愈少,因此气温乃愈低。整个对流层的气温直减率平均为℃/100m。实际上,在对流层内各高度的气温垂直变化是因时因地而不同的。 对流层的中层和上层受地表的影响较小,气温直减率的变化比下层小得多。在中层气温直减率平均为—℃/100m,上层平均为—℃/100m。 对流层下层(由地面至2km)的气温直减率平均为—℃/100m。但由于气层受地面增热和冷却的影响很大,气温直减率随地面性质、季节、昼夜和天气条件的变化亦很大。例如,夏季白昼,在大陆上,当晴空无云时,地面剧烈地增热,底层(自地面至300—500m 高度)气温直减率可大于干绝热率(可达—℃/100m)。但在一定条件下,对流层中也会出现气温随高度增高而升高的逆温现象。造成逆温的条件是,地面辐射冷却、空气平流冷却、空气下沉增温、空气湍流混合等。但无论那种条件造成的逆温,都对天气有一定的影响。例如,它可以阻碍空气垂直运动的发展,使大量烟、尘、水汽凝结物聚集在其下面,使能见度变坏等等。下面分别讨论各种逆温的形成过程。 (一)辐射逆温 由于地面强烈辐射冷却而形成的逆温,称为辐射逆温。图2·35表明辐射逆温的生消过程。图中a为辐射逆温形成前的气温垂直分布情形;在晴朗无云或少云的夜间,地面很快辐射冷却,贴近地面的气层也随之降温。由于空气愈靠近地面,受地表的影响愈大,所以,离地面愈近,降温愈多,离地面愈远,降温愈少,因而形成了自地面开始的逆温(图2·35b);随着地面辐射冷却的加剧,逆温逐渐向上扩展,黎明时达最强(图2·35中c);日出后,太阳辐射逐渐增强,地面很快增温,逆温便逐渐自下而上地消失(图2·35中d、e)。 辐射逆温厚度从数十米到数百米,在大陆上常年都可出现,以冬季最强。夏季夜短,逆温层较薄,消失也快。冬季夜长,逆温层较厚,消失较慢。在山谷与盆地区域,由于冷却的空气还会沿斜坡流入低谷和盆地,因而常使低谷和盆地的辐射逆温得到加强,往往持续数天而不会消失。

温度计说明书

电子体温计使用说明书 本电子体温计采用高精度传感器和微电脑技术,能够快速、准确、方便地测出人体的温度。外壳采用日本进口无毒规格 测量范围:分辨率: 0.1测量精度:±重量: 约显示方式:外观尺寸:约电池: 使用方法: 1.用棉花棒或卫生纸粘取酒精擦拭消毒感温头和量温棒部分,为避免机件受损,请勿以酒精或其它溶液接触感温头及量温棒以外的部件。 2.按ON/OFF 2 秒,然后显示上次的测量温度约2闪烁,表示可以测量温度了。 3.测腋窝温度:测温前,手臂自然下垂,将腋窝紧闭1分钟,使腋窝温度稳定;将体温计的感温头置入腋窝中央并夹紧约1分钟,待显示屏℃符号停止闪烁,即表示腋窝温度已测量完成。 4.测口腔温度:测量前将双唇闭上约1分钟,使口腔内温度 平稳,将体温计的感温头置于舌下内侧根部,和舌头密接后,将双唇紧闭约1分钟,待显示屏℃符号停止闪烁,即表示口腔温度已测量完成。 5. 如果温度>37.5℃,则听到短促的报警声:Bi-Bi-Bi-Bi (每

0.125秒响一次),表示测量完成并警示已发烧了。 如果温度≤37.5℃,则听到较慢的声音:Bi-Bi-Bi-Bi (每0.5秒响一次),表示测量完成并且体温正常。 6. 如果测量温度小于32.0℃,则显示L℃;大于等于42.0℃, 则显示H℃。 7. 按ON/OFF按钮,关闭电源,否则,体温计会在8分40 秒后自动切断电源。 电池更换 1 力不足必须尽快更换电池,以确保测量之准确性。 2.更换电池时,把体温计的显示屏朝下,拉出电池盖,再轻 轻地拉出体温计机芯约5-15mm(切勿用力过猛、拉出过多,以免损坏元器件),将旧电池取出,负极朝上装入一颗新电池,把机芯推回原位,装上电池盖即可。 注意事项: 电子体温计属精密电子产品,故请注意: 1.请勿从高处掉下及扭曲机体。 2.感温头至显示屏前端可以用酒精消毒,显示屏及以后部分 因无防水装置,只可用干布擦拭,切不可放入水中或在热水中煮沸消毒。 3.除更换电池外请勿打开任何部件。 4.勿置于高温,阳光直射处,勿触及任何腐蚀性物品,以防 止机件产生化学变化,影响操作功能。 5.废电池请妥善处理,切勿随意丢弃以免污染环境及水源。

空气负离子与温湿度的关系

空气负离子与温湿度的关系 摘要:研究了在自然条件下温度、湿度和温湿度同时改变时空气负离子浓度的变化规律。实验表明,湿度对负离子浓度有明显作用,随湿度逐渐升高(相对湿度 10%~80%),负离子浓度从200个/cm3升至8000个/cm3以上,负离子浓度上升的幅度随湿度增加逐渐增大;负离子浓度也随温度升高而升高 (在5~40C之间);温湿度同时变化时,负离子浓度变化率增大。 关键词:空气负离子;相对湿度;温度 空气负离子被称做空气的维生素,对人体健康有利。自然界的空气负离子主要来源于自然界中放射性物质、水的冲击作用引起的Lenard效应、宇宙射线、空气与地面的摩擦、风的作用以及闪电雷电等[1]。空气分子或原子被电离时,释放出一个电子,该电子附着在周围的分子或原子上,结合一定的水分子(一般结合 8~10个水分子)形成空气负离子,失去电子的形成正离子。日本医学界通过大量的观测和临床实验,证实空气负离子有益人体健康 [2-4]。根据大地测量学和地理物理学国际联盟大气联合委员会采用的理论,空气负离子是02-(H20)n或0H-(H20)n或C032- (H20)n [5]。空气负离子浓度因地区气候不同有明显差异,大气流动、异性电荷中和、电场、微粒吸附、土壤中放射性物质的活动、自然地理条件的变化和季节等因素都会影响空气负离子的浓度。一般认为,夏季的温度高于冬季,夏季的负离子浓度也较高;在雨或雪后,湿度的变化很大,空气负离子浓度也很高 [6]。对空气负离子的研究已有100多年,但其随自然条件变化的规律目前仍鲜见详细的报道,笔者针对温度和湿度对空气负离子浓度的影响进行了详细研究。 1.实验 1.1实验地点 为减少外界因素影响,模拟自然条件的空气负离子浓度变化趋势,所以选择污染较少,植有很多树木的郊区为实验点,实验时避免外界的噪声、振动、电场和人走动等因素的影响,进行长时间(从2002年12月至2003年3月)的连续测试。 1.2实验仪器 采用由中国建筑材料科学研究院研制的静态法离子测定仪AIT-!。静态法是测定离子采集器上的电荷,而不是测定电流。先用稳恒电源对采集器充一定电量,让其在空中自由放电,通过对带电体剩余电荷(O)与放电时间(t)的关系进行科学分析,得出带电体周围空气中负离子浓度。用浙江浙大中控自动化仪表有限公司生产的中控仪表(JL-30B彩屏无纸记录仪)记录温度和湿度的变化。空气离子测定仪和中控仪表的采样装置放在1m3密闭仓中,外部连接电脑。通过电脑选择测试参数、记录测试条件和测试结果。 1.3实验过程 空气离子测定仪每20min采集1个数据,24h连续测试,由计算机随时记录其放电曲线,并保存测试时间和与之相对应点的负离子浓度值,同时记录温度和湿度。通过1台电炉加热来控制环境温度,用2个直径为22.5cm圆形敞口盛有水的器皿调节湿度。在1次测试完成后,用制图程序对测试数据进行处理,绘出浓度变化与温度和湿度的关系曲线。

相对湿度

在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,用RH%表示。总言之,即气体中(通常为空气中)所含水蒸汽量(水蒸汽压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。 二、湿度测量方法 湿度测量从原理上划分有二、三十种之多。但湿度测量始终是世界计量领域中著名的难题之一。一个看似简单的量值,深究起来,涉及相当复杂的物理—化学理论分析和计算,初涉者可能会忽略在湿度测量中必需注意的许多因素,因而影响传感器的合理使用。 常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和电子式传感器法。 三、绝对湿度和相对湿度、露点 湿度很久以前就与生活存在着密 切的关系,但用数量来进行表示较为困难。对湿度的表示方法有绝对湿度、相对湿度、露点、湿气与干气的比值(重量或体积)等等。 绝对湿度是指每立方米的空气中含有水蒸气的质量。 相对湿度(Relative Humidity,缩写为RH)是指水蒸气在空气中达到饱和的程度,饱和时为100%RH。当绝对湿度不变时温度越高相对湿度越小。当空气中的含水量没有达到饱和状态,实际含水量与饱和含水量的比值就是相对湿度。相对湿度达到100%,水就不会再自然蒸发了。温度不同,饱和水量也不同,温度越高,容纳的水越多,温度降低了,空气中不能容纳原来那麽多的水了就会出现结露。

凝露是当空气湿度达到一定饱和程度时,在温度相对较低的物体上凝结的一种现象。 湿度是普遍存在的,而凝露只是湿度达到一定程度时的一种特殊现象。 四、相对湿度RH%的计算公式 计算相对湿度可按照下述公式: 其中的符号分别是: ρw –绝对湿度,单位是克/立方米 ρw,max –最高湿度,单位是克/立方米 e –蒸汽压,单位是帕斯卡 E –饱和蒸汽压,单位是帕斯卡 s –比湿,单位是克/千克 S –最高比湿,单位是克/千克 湿空气 大气中的空气总含有水蒸气,通常称为湿空气。在许多工程实际中都要利用湿空气,它所含的水蒸气量虽不多,却显得特别重要。由于水蒸气的性质不同于气体,而有其本身的特殊性,因此本章专题讨论湿空气的基本知识。

使用温度计的注意事项

如果是实验使用的温度计,则一定要仔细阅读说明指导,要明确所使用温度计的测量范围,一个温度计并不是在什么情况下都可以使用的。注意各种操作的细节,才能读出正确的读数。 温度计怎么看? 1、手拿着温度计的上端,这样做可以避免手的温度影响表内液体的胀缩。确保温度计的玻璃泡全部浸入被测的液体中,注意不要碰到容器底或容器壁。如果温度表的玻璃泡碰到容器的底或壁,测定的便不是水的温度。这样所得出的读数就不准确了。 2、温度计玻璃泡浸入被测液体后要稍等一会,等待温度计的示数稳定后再进行读数。如果不等温度表内液柱停止升降就读数,所读的就不是水的真正温度。 3、读数时温度计的玻璃泡要继续留在液体中,读数时拿出水面则所读的就不是水的真正温度,视线要与温度计中液柱的上表面相平。否则就会使读书偏高或偏低。 注意在测温前千万不要甩。 当临时测定室内外的温度时,用手拿温度计的上端,等温度计内的液柱停止升降时,再读数;读数时,视线也要与温度计的液柱顶端相平;如果长期测定室外的温度,要把温度计挂在背阴通风的地方。 如果是人体温度计,在使用之前先将温度计甩一下,确保读数在35℃以下,然后确保把温度计置于腋窝正中处(一般情况之下都测的是腋温),最少测5分钟,然后取出温度计,转到侧面,看与红色刻度线平齐的刻度。 使用温度计的注意事项 根据所用测温物质的不同和测温范围的不同,可以将温度计分成很多类型。对于我们普通人来说,最熟悉最常用的就是测量体温的温度计了。那么体温计在使用中需要注意哪些问题呢? 如果是测口温,那么使用前要先将温度计度数甩到35℃以下。将体温计置於舌下,至少量3-5分钟,若是体温片量则2分钟就可以了。取出体温计,读取温度数据后,以卫生纸擦拭乾净,再以酒精棉片消毒(以旋转方式自尾端擦至水银端)。体温片取出后静待10秒,读取度数后,丢弃。注意:婴幼儿、呼吸困难、意识不清者、有痉挛病史及无法合作者请勿量口温。进食、喝热饮、抽烟、嚼口香糖、剧烈运动、情绪激动及洗澡需待30分钟后再测量。若持体温片,手持末端,勿接触体温片感温点。 如果是测腋温,则使用前要先将温度计度数甩到35℃以下。将体温计置於腋下最顶端,水银端和腋下的皮肤紧密接触并夹紧,以免脱位或掉落。测量5-10分钟后,取出体温计,读

大气温度垂直分布规律及原因

大气温度垂直分布规律及原因各层的特点及原因: 大气温度随高度变化曲线:

对流层中温度的垂直分布: 在对流层中,总的情况是气温随高度而降低,这首先是因为对流层空气的增温主要依靠吸收地面的长波辐射,因此离地面愈近获得地面长波辐射的热能愈多,气温乃愈高。离地面愈远,气温愈低。其次,愈近地面空气密度愈大,水汽和固体杂质愈多,因而吸收地面辐射的效能愈大,气温愈高。愈向上空气密度愈小,能够吸收地面辐射的物质——水汽、微尘愈少,因此气温乃愈低。整个对流层的气温直减率平均为0.65℃/100m。实 际上,在对流层内各高度的气温垂直变化是因时因地而不同的。 对流层的中层和上层受地表的影响较小,气温直减率的变化比下层小得多。在中层气温直减率平均为0.5—0.6℃/100m,上层平均为0.65—0.75℃/100m。 对流层下层(由地面至2km)的气温直减率平均为0.3—0.4℃/100m。但由于气层受地面增热和冷却的影响很大,气温直减率随地面性质、季节、昼夜和天气条件的变化亦很大。例如,夏季白昼,在大陆上,当晴空无云时,地面剧烈地增热,底层(自地面至300—500m 高度)气温直减率可大于干绝热率(可达1.2—1.5℃/100m)。但在一定条件下,对流层中也会出现气温随高度增高而升高的逆温现象。造成逆温的条件是,地面辐射冷却、空气平流冷却、空气下沉增温、空气湍流混合等。但无论那种条件造成的逆温,都对天气有一定的影响。例如,它可以阻碍空气垂直运动的发展,使大量烟、尘、水汽凝结物聚集在其下面,使能见度变坏等等。下面分别讨论各种逆温的形成过程。 (一)辐射逆温 由于地面强烈辐射冷却而形成的逆温,称为辐射逆温。图2·35表明辐射逆温的生消过程。图中a为辐射逆温形成前的气温垂直分布情形;在晴朗无云或少云的夜间,地面很快辐射冷却,贴近地面的气层也随之降温。由于空气愈靠近地面,受地表的影响愈大,所以,离地面愈近,降温愈多,离地面愈远,降温愈少,因而形成了自地面开始的逆温(图2·35b);随着地面辐射冷却的加剧,逆温逐渐向上扩展,黎明时达最强(图2·35中c);日出后,太阳辐射逐渐增强,地面很快增温,逆温便逐渐自下而上地消失(图2·35中d、e)。 辐射逆温厚度从数十米到数百米,在大陆上常年都可出现,以冬季最强。夏季夜短,逆温层较薄,消失也快。冬季夜长,逆温层较厚,消失较慢。在山谷与盆地区域,由于冷却的空气还会沿斜坡流入低谷和盆地,因而常使低谷和盆地的辐射逆温得到加强,往往持续数天而不会消失。 (二)湍流逆温

相对湿度 、露点温度转换的计算公式

相对湿度、露点温度转换的计算公式 湿度研究对象是气体和水汽的混合物。 无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。 湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达: 1、压力为P,温度为T 的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T 和压力P 下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。 2、实际水汽压与同一温度条件下的饱和水汽压的比值 从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。 对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。 但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的(在湿度论坛中,本人给出了温度to 饱和水汽压的简化公式以及计算程序,可下载)。 上面说道:饱和水汽压是与温度相关的量。 在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。 基于上述解释,可以看出,只要测量得到了露点温度,通过温度to 饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。 同样,只要测量了当前混合气体的正常温度,就可以通过温度to 饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压 实际水汽压除以饱和水汽压,就可以得到相对湿度。

体温计的使用方法(详解4篇)

体温计的使用方法(详解4篇) 体温计的使用方法(详解4篇) 体温计的使用方法详解(一): 水银体温计是体温计中较为常用的一种,因为造成误差较小,测量操作简单,成本较低等多方面因素被人们广泛使用。 使用方法: 1.确保体温计度数在35℃以下才能够开始使用; 2.对体温计进行校验,确定体温计能够正常使用; 3.将体温计水银端放置在腋下,让其与皮肤亲密接触; 4.在5-10分钟以后取出体温计; 5.读取测量度数的时候眼神与体温计刻度平行,目光直视; 6.如果受到测量时间不足或者其他因素影响,则需要重新进行测量。 7.如果体温计出现水银柱断裂的情景,采用以下两种方式进行消除: (1)把体温计放置在干冰与酒精的混合液体中进行冷缩处理,直至所有的水银都收缩到测温包中。 (2)把体温计放置在温度比测量温度最高值略微高一点的恒温槽中,在水银连接后再取出体温计,然后放置在空气中进行冷却处理。

注意事项: 1、测量体温前,不能够做剧烈运动或者洗澡等影响测量结果的行为; 2、在体温计打碎以后,需进行紧急处理,避免中毒或环境污染等现象的发生。 3、在测量体温之前,不要食用会影响测量结果的食物(热水冷饮等食物); 4、在使用体温计的时候,保护好体温计,避免在打碎后造成水银污染; 5、在进行测量的时候,腋下不能有汗液,如果有汗液会导致测量结果不准确; 6、测量时间未满就取出体温计,需要重新进行测量,时间从头开始计算; 水银体温计能够有效监控到我们的身体情景,但存在的安全隐患也十分大,学会正确使用水银体温计对我们来说是很重要的,小伙伴们赶快和梨子一齐学习起来吧。 体温计的使用方法详解(二): 玻璃体温计使用方法及其注意 使用办法 1、使用前必须要进行消毒,一般玻璃体温计会放在口中进行一个测温,进行消毒后使用能够有效避免病从口入。如果是水银体温计,我们就需要将水银体温计甩到35.5摄氏度以下。 2、如果有人感冒发烧,我们能够将玻璃体温计放到他的舌头下或者腋下进行测量体温。在测量的时候嘴巴和腋下必须要闭紧,也不要太紧,避免玻璃碎裂。然后测量3-5分钟后取出。

相对湿度计算含湿量焓值

根据相对湿度计算含湿量的公式 op d 622- =B ( op )) /( 其中:o为相对湿度,百分比 P为水蒸气饱和分压力,可查水蒸气表,和温度一一对应,pa B为大气压,不同的海拔和地区不一样。一般为101325pa 温度与湿空气的水蒸气饱和分压力的拟合公式(我们一般用到的范围为(0~50°),拟合范围越小,则精度越高。 饱和水蒸气表 Linear model Poly3: f(x) = p1*x^3 + p2*x^2 + p3*x + p4 Coefficients (with 95% confidence bounds): p1 = 0.07394 (0.06667, 0.08122) p2 = -0.2556 (-0.8097, 0.2985) p3 = 62.49 (50.92, 74.06) p4 = 581.9 (518.4, 645.4) Goodness of fit: SSE: 6391 R-square: 1 Adjusted R-square: 0.9999 RMSE: 30.21

空气焓值的定义及空气焓值的计算公式: 空气的焓值是指空气所含有的决热量,通常以干空气的单位质量为基准。焓用符号i表示,单位是kj/kg干空气。湿空气焓值等于1kg干空气的焓值与dkg水蒸气焓值之和。 湿空气焓值计算公式化: i=1.01t+(2500+1.84t)d 或i=(1.01+1.84d)t+2500d (kj/kg干空气) 式中:t—空气温度℃ d —空气的含湿量g/kg干空气 1.01 —干空气的平均定压比热kj/(kg.K) 1.84 —水蒸气的平均定压比热kj/(kg.K) 2500 —0℃时水的汽化潜热kj/kg 由上式可以看出:(1.01+1.84d)t是随温度变化的热量,即“显热”;而2500d 则是0℃时dkg水的汽化潜热,它仅随含湿量而变化,与温度无关,即是“潜热”。

相关文档
最新文档