非线性系统模型参数估计的算法模型

非线性系统模型参数估计的算法模型
非线性系统模型参数估计的算法模型

通过动态非线性偏最小二乘法对非线性模型进行预测以及控制

通过动态非线性偏最小二乘法对非线性模型进行预测以及控制 G. BAFFI, J. MORRIS and E. MARTIN 过程分析与控制技术中心,纽卡斯尔大学,纽卡斯尔,英国 通过动态非线性偏最小二乘(PLS )模型,模型预测控制(MPC)技术延伸到了非线性系统。对于嘈杂的建模,PLS显示有适合它的多元回归方法,相关性以及/或者总线的数据。在一个“静态”框架内,这种方法已广泛应用于工业过程一些数据的建模和分析中。本文的贡献是对于非线性动态PLS框架在MPC应用中的发展。该非线性动态PLS模型利用了一个基于误差的非线性偏最小二乘算法,其中非线性内部模型是建立于自回归与外源输入(ARX )框架。特别地,我们应该将二次和前馈神经网络内部模型考虑在内。一个MPC框架内的一个动态的PLS模型的应用开辟了一种基于多元统计基础的预测方法,这一方法不仅应用于过程建模,推理估计和性能监控,同时也可进行模型预测控制。一个基准仿真的pH值中和系统验证了非线性动态PLS框架在模型预测控制中的应用。 关键词:模型预测控制,非线性动态偏最小二乘

引言 模型预测控制(MPC )正成为一种常规的采用先进的过程控制策略。基于线性过程模型的MPC算法已被广泛研究并应用于化工流程工业。这主要归功于它们处理过程约束,时间延迟和多变量系统的能力。然而,许多过程是高度非线性的,并且,基于线性过程模型的MPC算法可能会导致控制性能不佳;这样一来,MPC技术就延伸到了非线性过程1-6。 在MPC中,感知的过程动态模型首先发展为预测过程在未来一定时间内的输出值。这些数值被用来评估未来的控制动作,以减少预定义的代价函数。基于程控制策略的过程建模和模型都是特别依赖于感兴趣的系统中的适当的数学表达式的可利用性。一种方法是通过基于详细的化学和物理现象的知识原理的机理原理以及模型的发展来确定过程行为。虽然一些非线性的MPC方法已经应用于基于非线性的展开机理模型,但是由于他们的发展需要详细知识和时间,这一方法未能受到广泛的应用6。此外,在现代这个响应式的制造环境中,对于复杂的多产品生产家,精确的理论模型的研发甚至可能不实用。 由于一些正在研究的不具体的过程知识比那些需要制定一个物理原理模型更加具有需求性,从过程操作数据鉴定而来的以经验数据为基础的模型提供了另一种机械建模。在工业流程上,这使得非线性的MPC算法得到了更广泛的应用。这种结构包括多项式自回归滑动平均模型(ARMA)3,Volterra级数模型5,7和神经网络模型8,9。当那些属于基本过程表示的是相关过程变量性质的正在发展的经验表示模型时,一个重要的、潜在的甚至严重的问题产生了。无视相关结构能够严重影响用于获得该模型的非线性优化技术参数。一种解决方案是应用基于偏最小二乘(PLS )建模技术的多变量的统计预测,且这种建模技术考虑到了数据底层结构的相关性。 这项工作的目的是评估动态非线性PLS在MPC应用上的适用性。一个良好已知的基准pH中和模型10已应用于测试动态非线性偏最小二乘回归模型及其在非线性PLS MPC方案中的使用。严重的非线性特征提供了一个主要的建模挑战。

定向井随钻测量误差模型及误差源分析(2)

定向井随钻测量误差模型及误差源分析 狄敏燕卢春阳 摘要:介绍了测量误差模型的发展,Williamson 等人提出的MWD误差新模型,及新模型存在的误差源分析。 主题词:MWD误差模型误差源 分析测量误差的最初模型于60年代末70年代初由Warlstrom.提出,是在假设测量过程测点间的误差是随机的基础上,引入了误差椭圆来描述井眼的不确定性,由此而来的误差预测值比实际上的小,原因主要是采用了原始状态的统计误差模型。沃尔夫和瓦德在假设误差是随机的的基础上,引入了系统误差,精度要高得多。1981年瓦伦从实际井对测量误差作了细致的分析,证实了系统误差和随机误差的存在,且位置的系统误差比随机误差要大。在沃尔夫和瓦德时代,当时普遍使用的仪器为照相工艺的仪器,包括非惯性连续测量传感器。随着更先进的测量工具出现和普及使用,原有的误差模型已不能满足要求。 随老区不断地部署新井,小靶区及井距的加密这两方面的问题使量化井眼位置误差显得尤为重要。防碰及中靶的风险要求井眼位置不确定性降到最小,而沃尔夫和德·瓦特误差模型未提及,己无法满足要求。在这种情况下,Williamson 等人提出了一种预测MWD误差新模型。 该误差模型采用以下假设,但对测量误差统计概率未作任何限制性假设。 ·计算井眼位置误差是由井眼测点存在的测量误差唯一确定; ·井眼测点可分成三个基本测量向量,包括井深D,井斜I,方位A。对每个测点,误差传播数学公式还需用到工具面角α; ·来自不同误差源的误差在统计学上是相互独立的; ·每个测量误差及计算井眼位置的相应变动之间存在线形关系; ·在任一测点上的测量误差对计算井眼位置的合成效果等于单个误差的矢量总和。

非线性模型参数估计的遗传算法

滨江学院 毕业论文(设计)题目非线性模型参数估计的遗传算法 院系大气与遥感系 专业测绘工程 学生姓名李兴宇 学号200923500** 指导教师王永弟 职称讲师 二O一三年五月二十日

- 目录- 摘要 (3) 关键词 (3) 1.引言 (3) 1.1 课题背景 (3) 1.2 国内外研究现状 (4) 1.3 研究的目的和意义 (4) 1.4 论文结构 (5) 2.遗传算法简介 (5) 2.1 遗传算法的起源 (5) 2.2 遗传算法的基本思想 (6) 2.2.1 遗传算法求最优解的一般步骤 (7) 2.2.2 用技术路线流程图形式表示遗传算法流程 (7) 2.3 遗传算法的基本原理及设计 (8) 2.3.1 适应度设计 (8) 2.3.2 遗传算子操作 (9) 3.遗传算法的应用实例 (9) 3.1 非线性模型参数估计 (10) 3.2 实例分析 (10) 4.结语 (12) 参考文献 (12) 英文题目 (14) - 1 -

- 2 - 致谢 (15)

非线性模型参数估计的遗传算法 李兴宇 南京信息工程大学滨江学院测绘工程专业,南京 210044 摘要:关于非线性模型计算中的参数估计是十分棘手的问题,为此常常将这样的问题转化成非线性优化问题解决,遗传算法作为一种具有强适应性的全局搜索方法而被频繁的应用于非线性系统参数估计的计算当中,本文介绍了遗传算法及其理论基础,阐述了遗传算法在非线性模型参数估计中的应用的起源和发展,引入实例说明了遗传算法在非线性模型参数估计的实际运用中的实现,并概述了基于遗传算法的非线性参数模型估计具体解算过程,将使用遗传算法得到的结果与其他算法的解算结果进行比较,结果表明:遗传算法是一种行之有效的搜索算法,能有效得到全局最优解,在今后的研究中值得推广。 关键词:遗传算法非线性模型参数估计应用 1.引言 1.1课题背景 当前科学技术的发展和研究已经进入了进入各个领域、多个学科互相交叉、互相渗透和互相影响的时代,生命科学的研究与工程科学的交叉、渗透和相互补充提高便是其中一个非常典型的例子,同时也表现出了近代科学技术发展的一个新的显著特点。遗传算法研究工作的蓬勃发展以及在各个领域的广泛应用正是体现了科学发展过程的的这一明显的特点和良好的趋势。 非线性科学是一门研究复杂现象的科学,涉及到社会科学、自然科学和工程技术等诸多领域,在测绘学的研究中,尤其是在测量平差模型的研究和计算过程中,大量引入的都是非线性函数方程模型,而对于非线性模型的解算,往往过程复杂。遗传算法的出现为研究工作提供了一种求解多模型、多目标、非线性等复杂系统的优化问题的通用方法和框架。 对于非线性系统的解算,传统上常用的方法是利用其中参数的近似值将非线性系统线性化,也就是线性近似,测绘学中通常称之为线性化,经过线性化之后,将其视为线性模型并利用线性模型的解算方法得到结果,这就很大程度的简化了解算步骤,减少了工作量,但同时会带来新的问题,运用这种传统方法得到的数据结果存在的误差较大、精度不足等问题。利用线性近似方法对非线性模型进行参数估计,精度往往取决于模型的非线性强度。 - 3 -

非线性回归分析

SPSS—非线性回归(模型表达式)案例解析 2011-11-16 10:56 由简单到复杂,人生有下坡就必有上坡,有低潮就必有高潮的迭起,随着SPSS 的深入学习,已经逐渐开始走向复杂,今天跟大家交流一下,SPSS非线性回归,希望大家能够指点一二! 非线性回归过程是用来建立因变量与一组自变量之间的非线性关系,它不像线性模型那样有众多的假设条件,可以在自变量和因变量之间建立任何形式的模型非线性,能够通过变量转换成为线性模型——称之为本质线性模型,转换后的模型,用线性回归的方式处理转换后的模型,有的非线性模型并不能够通过变量转换为线性模型,我们称之为:本质非线性模型 还是以“销售量”和“广告费用”这个样本为例,进行研究,前面已经研究得出:“二次曲线模型”比“线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的趋势变化”,那么“二次曲线”会不会是最佳模型呢? 答案是否定的,因为“非线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的变化趋势” 下面我们开始研究: 第一步:非线性模型那么多,我们应该选择“哪一个模型呢?” 1:绘制图形,根据图形的变化趋势结合自己的经验判断,选择合适的模型 点击“图形”—图表构建程序—进入如下所示界面:

点击确定按钮,得到如下结果:

放眼望去, 图形的变化趋势,其实是一条曲线,这条曲线更倾向于"S" 型曲线,我们来验证一下,看“二次曲线”和“S曲线”相比,两者哪一个的拟合度更高! 点击“分析—回归—曲线估计——进入如下界面

在“模型”选项中,勾选”二次项“和”S" 两个模型,点击确定,得到如下结果: 通过“二次”和“S “ 两个模型的对比,可以看出S 模型的拟合度明显高于

常见非线性回归模型

常见非线性回归模型 1.简非线性模型简介 非线性回归模型在经济学研究中有着广泛的应用。有一些非线性回归模型可以通 过直接代换或间接代换转化为线性回归模型,但也有一些非线性回归模型却无 法通过代换转化为线性回归模型。 柯布—道格拉斯生产函数模型 y AKL 其中L和K分别是劳力投入和资金投入, y是产出。由于误差项是可加的, 从而也不能通过代换转化为线性回归模型。 对于联立方程模型,只要其中有一个方程是不能通过代换转化为线性,那么这个联立方程模型就是非线性的。 单方程非线性回归模型的一般形式为 y f(x1,x2, ,xk; 1, 2, , p) 2.可化为线性回归的曲线回归 在实际问题当中,有许多回归模型的被解释变量y与解释变量x之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为

线性关系,利用线性回归求解未知参数,并作回归诊断。如下列模型。 (1)y 0 1e x (2)y 0 1x2x2p x p (3)y ae bx (4)y=alnx+b 对于(1)式,只需令x e x即可化为y对x是线性的形式y01x,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。 对于(2)式,可以令x1=x,x2=x2,?,x p=x p,于是得到y关于x1,x2,?, x p 的线性表达式y 0 1x12x2 pxp 对与(3)式,对等式两边同时去自然数对数,得lnylnabx ,令 y lny, 0 lna, 1 b,于是得到y关于x的一元线性回归模型: y 0 1x。 乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为yt本身是异方差的,而lnyt是等方差的。加性误差项模型认为yt是等 方差的。从统计性质看两者的差异,前者淡化了y t值大的项(近期数据)的作用, 强化了y t值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则 对近期数据拟合得效果较好。 影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。 异方差可以同构选择乘性误差项模型和加性误差项模型解决,必要时还可以使用 加权最小二乘。

非线性模型预测控制_front-matter

Communications and Control Engineering For other titles published in this series,go to https://www.360docs.net/doc/ab18791238.html,/series/61

Series Editors A.Isidori J.H.van Schuppen E.D.Sontag M.Thoma M.Krstic Published titles include: Stability and Stabilization of In?nite Dimensional Systems with Applications Zheng-Hua Luo,Bao-Zhu Guo and Omer Morgul Nonsmooth Mechanics(Second edition) Bernard Brogliato Nonlinear Control Systems II Alberto Isidori L2-Gain and Passivity Techniques in Nonlinear Control Arjan van der Schaft Control of Linear Systems with Regulation and Input Constraints Ali Saberi,Anton A.Stoorvogel and Peddapullaiah Sannuti Robust and H∞Control Ben M.Chen Computer Controlled Systems E?m N.Rosenwasser and Bernhard https://www.360docs.net/doc/ab18791238.html,mpe Control of Complex and Uncertain Systems Stanislav V.Emelyanov and Sergey K.Korovin Robust Control Design Using H∞Methods Ian R.Petersen,Valery A.Ugrinovski and Andrey V.Savkin Model Reduction for Control System Design Goro Obinata and Brian D.O.Anderson Control Theory for Linear Systems Harry L.Trentelman,Anton Stoorvogel and Malo Hautus Functional Adaptive Control Simon G.Fabri and Visakan Kadirkamanathan Positive1D and2D Systems Tadeusz Kaczorek Identi?cation and Control Using Volterra Models Francis J.Doyle III,Ronald K.Pearson and Babatunde A.Ogunnaike Non-linear Control for Underactuated Mechanical Systems Isabelle Fantoni and Rogelio Lozano Robust Control(Second edition) Jürgen Ackermann Flow Control by Feedback Ole Morten Aamo and Miroslav Krstic Learning and Generalization(Second edition) Mathukumalli Vidyasagar Constrained Control and Estimation Graham C.Goodwin,Maria M.Seron and JoséA.De Doná Randomized Algorithms for Analysis and Control of Uncertain Systems Roberto Tempo,Giuseppe Cala?ore and Fabrizio Dabbene Switched Linear Systems Zhendong Sun and Shuzhi S.Ge Subspace Methods for System Identi?cation Tohru Katayama Digital Control Systems Ioan https://www.360docs.net/doc/ab18791238.html,ndau and Gianluca Zito Multivariable Computer-controlled Systems E?m N.Rosenwasser and Bernhard https://www.360docs.net/doc/ab18791238.html,mpe Dissipative Systems Analysis and Control (Second edition) Bernard Brogliato,Rogelio Lozano,Bernhard Maschke and Olav Egeland Algebraic Methods for Nonlinear Control Systems Giuseppe Conte,Claude H.Moog and Anna M.Perdon Polynomial and Rational Matrices Tadeusz Kaczorek Simulation-based Algorithms for Markov Decision Processes Hyeong Soo Chang,Michael C.Fu,Jiaqiao Hu and Steven I.Marcus Iterative Learning Control Hyo-Sung Ahn,Kevin L.Moore and YangQuan Chen Distributed Consensus in Multi-vehicle Cooperative Control Wei Ren and Randal W.Beard Control of Singular Systems with Random Abrupt Changes El-Kébir Boukas Nonlinear and Adaptive Control with Applications Alessandro Astol?,Dimitrios Karagiannis and Romeo Ortega Stabilization,Optimal and Robust Control Aziz Belmiloudi Control of Nonlinear Dynamical Systems Felix L.Chernous’ko,Igor M.Ananievski and Sergey A.Reshmin Periodic Systems Sergio Bittanti and Patrizio Colaneri Discontinuous Systems Yury V.Orlov Constructions of Strict Lyapunov Functions Michael Malisoff and Frédéric Mazenc Controlling Chaos Huaguang Zhang,Derong Liu and Zhiliang Wang Stabilization of Navier–Stokes Flows Viorel Barbu Distributed Control of Multi-agent Networks Wei Ren and Yongcan Cao

非线性模型参数估计的EViews操作

非线性模型参数估计的EViews 操作 例3.5.2 建立中国城镇居民食品消费需求函数模型。根据需求理论,居民对食品的消费需求函数大致为: ()01,,f P P X Q =。 其中,Q 为居民对食品的需求量,X 为消费者的消费支出总额,P1为食品价格指数,P0为居民消费价格总指数。 表3.5.1 中国城镇居民消费支出及价格指数 单位:元 资料来源:《中国统计年鉴》(1990~2007) 估计双对数线性回归模型μββββ++++=031210n n n P L LnP X L Q L 对应的非线性模型: 3 21 1ββ βP P AX Q = 这里需要将等式右边的A 改写为0 e β。取0β,1β,2β,3β的初值均为1。

Eviews操作: 1、打开EViews,建立新的工作文档:File-New-Workfile,在Frequency选择Annual,在Start date输入“1985”,End date输入“2006”,确认OK。 2、输入样本数据:Object-New Object-Group,确认OK,输入样本数据。 图1 3、设置参数初始值:在命令窗口输入“param c(1) 1 c(2) 1 c(3) 1 c(4) 1”,回车确认。 4、非线性最小二乘法估计(NLS):Proc-Make Equation,在NLS估计的方程中写入Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4),方程必须写完整,不能写成Q C(1) X P1 P0。确定输出估计结果:

图2 NLS注意事项: 1).参数初始值: 如果参数估计值出现分母为0等情况将导致错误,解决办法是:手工设定参数的初始值及范围,比如生产函数中的c(2)肯定是介于0-1之间的数字。 eviews6.0中并没有start 的选项,只有iteration的次数和累进值得选择。只能通过param c(1) 0.5 c(2) 0.5来设置。 2).迭代及收敛 eviews用Gauss Seidel迭代法求参数的估计值。迭代停止的法则:基于回归函数或参数在每次迭代后的变化率,当待估参数的变化百分比的最大值小于事先给定的水平时,就会停止迭代。当迭代次数到了迭代的最大次数时也会停止,或者迭代过程中发生错误也会停止。

模型预测控制

云南大学信息学院学生实验报告 课程名称:现代控制理论 实验题目:预测控制 小组成员:李博(12018000748) 金蒋彪(12018000747) 专业:2018级检测技术与自动化专业

1、实验目的 (3) 2、实验原理 (3) 2.1、预测控制特点 (3) 2.2、预测控制模型 (4) 2.3、在线滚动优化 (5) 2.4、反馈校正 (5) 2.5、预测控制分类 (6) 2.6、动态矩阵控制 (7) 3、MATLAB仿真实现 (9) 3.1、对比预测控制与PID控制效果 (9) 3.2、P的变化对控制效果的影响 (12) 3.3、M的变化对控制效果的影响 (13) 3.4、模型失配与未失配时的控制效果对比 (14) 4、总结 (15) 5、附录 (16) 5.1、预测控制与PID控制对比仿真代码 (16) 5.1.1、预测控制代码 (16) 5.1.2、PID控制代码 (17) 5.2、不同P值对比控制效果代码 (19) 5.3、不同M值对比控制效果代码 (20) 5.4、模型失配与未失配对比代码 (20)

1、实验目的 (1)、通过对预测控制原理的学习,掌握预测控制的知识点。 (2)、通过对动态矩阵控制(DMC)的MATLAB仿真,发现其对直接处理具有纯滞后、大惯性的对象,有良好的跟踪性和较强的鲁棒性,输入已 知的控制模型,通过对参数的选择,来获得较好的控制效果。 (3)、了解matlab编程。 2、实验原理 模型预测控制(Model Predictive Control,MPC)是20世纪70年代提出的一种计算机控制算法,最早应用于工业过程控制领域。预测控制的优点是对数学模型要求不高,能直接处理具有纯滞后的过程,具有良好的跟踪性能和较强的抗干扰能力,对模型误差具有较强的鲁棒性。因此,预测控制目前已在多个行业得以应用,如炼油、石化、造纸、冶金、汽车制造、航空和食品加工等,尤其是在复杂工业过程中得到了广泛的应用。在分类上,模型预测控制(MPC)属于先进过程控制,其基本出发点与传统PID控制不同。传统PID控制,是根据过程当前的和过去的输出测量值与设定值之间的偏差来确定当前的控制输入,以达到所要求的性能指标。而预测控制不但利用当前时刻的和过去时刻的偏差值,而且还利用预测模型来预估过程未来的偏差值,以滚动优化确定当前的最优输入策略。因此,从基本思想看,预测控制优于PID控制。 2.1、预测控制特点 首先,对于复杂的工业对象。由于辨识其最小化模型要花费很大的代价,往往给基于传递函数或状态方程的控制算法带来困难,多变量高维度复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性、强耦合,最优控制难以实现。而预测控制所需要的模型只强调其预测功能,不苛求其结构形式,从而为系统建模带来了方便。在许多场合下,只需测定对象的阶跃或脉冲响应,便可直接得到预测模型,而不必进一步导出其传递函数或状

介绍一种定向井MWD仪器误差分析模型

龙源期刊网 https://www.360docs.net/doc/ab18791238.html, 介绍一种定向井MWD仪器误差分析模型 作者:张楠张鹏宇张昊宋晓健 来源:《石油研究》2019年第11期 摘要:Warlstrom.在60年代末70年代初提出的定向井随钻测量误差模型是在假设测量过程测点间的误差是随机的基础上,引入了误差椭圆来描述井眼的不确定性,该模型的误差预测值比实际的小,原因主要是采用了原始状态的统计误差模型。沃尔夫和瓦德在假设误差是随机的的基础上,引入了系统误差,精度要高得多。1981年瓦伦对测量误差作了细致的分析,证 实了系统误差和随机误差的存在,且位置的系统误差比随机误差要大。在沃尔夫和瓦德时代普遍使用的测量仪器为照相仪器,随着先进的测量工具出现和普及使用,小靶区及井距的加密,防碰及中靶的风险,要求井眼位置不确定性降到最小,原有的误差模型已无法满足要求。在这种情况下,Williamson 等人提出了一种预测MWD误差的新模型。 关键词:定向井;MWD误差模型;误差分析 一、定向井MWD测量误差新模型的建立 定向井MWD测量误差新模型是在以下假设条件下建立的: 1、计算井眼位置误差是由井眼测点的测量误差唯一确定; 2、井眼测点可分成三个基本测量向量:井深H,井斜α,方位φ; 3、来自不同误差源的误差在统计学上是相互独立的; 4、每个测量误差及计算井眼位置的相应变动之间存在线性关系; 5、在任一测点上的测量误差对计算井眼位置的合成效果等于单个误差的矢量总和。 二、定向井MWD测量误差新模型误差源分析 误差源是工具在测量过程中产生误差的一种物理现象。误差项是特定测量工具测量时对误差源的描述。误差模型是由一系列误差项组成的,误差项的选择标准是能准确反映测量工具或系统的所有重要误差源。 误差传播方式有四种,即随机(Random)、系统(Systematic)、逐井(Well by well)、全球(Global)。1、传感器误差

第7章 非线性模型参数估值

第7章 非线性模型参数估值 7.1 引言 数学模型是观测对象各影响因素相互关系的定量描述。在获得实验数据并做了整理之后,就要建立数学模型。这一工作在科学研究中有着十分重要的意义。 人们选用的模型函数可以是经验的,可以是半经验的,也可以是理论的。模型函数选定之后,需要对其中的参数进行估值并确定该估值的可靠程度。对于线性模型,待求参数可用线性最小二乘法求得,即用前一章中介绍的确定线性回归方程的方法。对于非线性模型,通常是通过线性化处理而化为线性模型,用线性最小二乘法求出新的参数,从而再还原为原参数。这种方法在处理经验模型时,简便易行,具有一定的实用价值。但要注意到,这样做是使变换后的新变量y '的残差平方和(即剩余平方和)最小,这并不能保证做到使原变量y 的残差平方和也达最小值。因此,得到的参数估计值就不一定是最佳的估计值。可见在求理论模型的参数时,这种线性化的方法尚有其不足之处。此外,还有些数学模型无法线性化,所以用线性化的方法是行不通的。为此,需要一种对非线性模型通用的(不管是经验模型还是理论模型,不管这个模型能否线性化),能够得到参数最佳估计值的参数估计方法。 在工程中,特别是在化学工程中的数学模型大多是非线性、多变量的。设y ?为变量x 1,x 2,…,x p ,的函数,含有m 个参数b 1,b 2,…,b m ,则非线性模型的一般形式可表示为: =y ?f (x 1,x 2,…,x p ;b 1,b 2,…,b m ) (7.1) 或写为 ),(?b x f y = (7.2) 式中x 为p 维自变量向量,b 为m 维参数向量。 设给出n 组观测数据 x 1 ,x 2 ,… ,x n y 1 ,y 2 ,… ,y n 我们的目的是由此给出模型式(7.2)中的参数b 的最佳估计值。可以证明,这个最佳估计值就是最小二乘估计值。 按最小二乘法原理,b 应使Q 值为最小,即 ∑==-=n i i i y y Q 12min )?( 或写成 ∑==-=n i i i f y Q 1 2min )],([b x (7.3) 现在的问题是根据已知的数学模型和实验数据,求出使残差平方和最小,即 目标函数式(7.3)取极小值时的模型参数向量b 。这显然是一个最优化的数学问题,可以采用逐次逼近法求解。这种处理方法实质上是逐次线性化法或某种模式的搜索法。在下面各节中将介绍几个适用方法。

非线性最小二乘平差

非线性最小二乘平差 6-1问题的提出 经典平差是基于线性模型的平差方法。然而在现实世界中,严格的线性模型并不多见。测量上大量的数学模型也是非线性模型。传统的线性模型平差中的很多理论在非线性模型平差中就不一定适用;线性模型平差中的很多结论在非线性模型平差中就不一定成立;线性模型平差中的很多优良统计性质在非线性模型平差中就不一定存在。例如,在线性模型平差中,当随机误差服从正态分布时,未知参数X 的最小二乘估计具有一致无偏性和方差最小性。但在非线性模型平差中,即使随机误差严格服从正态分布,未知参数X的非线性最小二乘估计也是有偏的。其方差一般都不能达到最小值。 对于测量中大量的非线性模型,在经典平差中总是进行线性近似(经典的测量平差中称之为线性化),即将其展开为台劳级数,并取至一次项,略去二次以上各项。如此线性近似,必然会引起模型误差。过去由于测量精度不高,线性近似所引起的模型误差往往小于观测误差,故可忽略不计。随着科学技术的不断发展,现在的观测精度已大大提高,致使因线性近似所产生的模型误差与观测误差相当,有些甚至还会大于观测误差。例如,GPS载波相位观测值的精度很高,往往小于因线性近似所产生的模型误差。因此,用近似的理论、模型、方法去处理具有很高精度的观测结果,从而导致精度的损失,这显然是不合理的。现代科学技术要求估计结果的精度尽可能高。这样,传统线性近似的方法就不一定能满足当今科学技术的要求。另外,有些非线性模型对参数的近似值十分敏感,若近似值精度较差,则线性化会产生较大的模型误差。由于线性近似后,没有顾及因线性近似所引起的模型误差,而用线性模型的精度评定理论去评定估计结果的精度,从而得到一些虚假的优良统计性质,人为地拔高了估计结果的精度。 鉴于上述各种原因,对非线性模型平差进行深入的研究是很有必要的。非线性模型的平差和精度估计以及相应的误差理论研究也是当前国内外测绘界研究的前沿课题之一。 电子教材 > 第六章非线性模型平差 > 6-2 非线性模型平差原理

非线性模型参数估计方法步骤

EViews非线性模型参数估计方法步骤 1.新建EViews工作区,并将时间序列X、P1和P0导入到工作区; 2.设定参数的初始值全部为1,其方法是在工作区中其输入下列命令 并按回车键 param c(1) 1 c(2) 1 c(3) 1 c(4) 1 3.估计非线性模型参数,其方法是在工作区中其输入下列命令并按 回车键 nls q=exp(c(1))*x^c(2)*p1^c(3)*p0^c(4) 4.得到结果见table01(91页表3. 5.4结果)(案例一结束) Dependent Variable: Q Method: Least Squares Date: 03/29/15 Time: 21:44 Sample: 1985 2006 Included observations: 22 Convergence achieved after 9 iterations Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4) Coefficient Std. Error t-Statistic Prob. C(1) 5.567708 0.083537 66.64931 0.0000 C(2) 0.555715 0.029067 19.11874 0.0000 C(3) -0.190154 0.143823 -1.322146 0.2027 C(4) -0.394861 0.159291 -2.478866 0.0233 R-squared 0.983631 Mean dependent var 1830.000 Adjusted R-squared 0.980903 S.D. dependent var 365.1392 S.E. of regression 50.45954 Akaike info criterion 10.84319 Sum squared resid 45830.98 Schwarz criterion 11.04156 Log likelihood -115.2751 Hannan-Quinn criter. 10.88992 Durbin-Watson stat 0.672163 (92页表3.5.5结果)(案例二过程) 5.新建EViews工作区,并将时间序列X、P1和P0导入到工作区;

非线性模型预测控制_Chapter10

Chapter 10 Numerical Optimal Control of Nonlinear Systems In this chapter,we present methods for the numerical solution of the constrained ?nite horizon nonlinear optimal control problems which occurs in each iterate of the NMPC procedure.To this end,we ?rst discuss standard discretization techniques to obtain a nonlinear optimization problem in standard form.Utilizing this form,we outline basic versions of the two most common solution methods for such problems,that is Sequential Quadratic Programming (SQP)and Interior Point Methods (IPM).Furthermore,we investigate interactions between the differential equation solver,the discretization technique and the optimization method and present several NMPC speci?c details concerning the warm start of the optimization routine.Finally,we discuss NMPC variants relying on inexact solutions of the ?nite horizon optimal control problem. 10.1Discretization of the NMPC Problem The most general NMPC problem formulation is given in Algorithm 3.11and will be the basis for this chapter.In Step (2)of Algorithm 3.11we need to solve the optimal control problem minimize J N n,x 0,u(·) :=N ?1 k =0ωN ?k n +k,x u (k,x 0),u(k) +F J n +N,x u (N,x 0) with respect to u(·)∈U N X 0(n,x 0), subject to x u (0,x 0)=x 0,x u (k +1,x 0)=f x u (k,x 0),u(k) .(OCP n N ,e ) We will particularly emphasize the case in which the discrete time system (2.1)is induced by a sampled data continuous time control systems ˙x(t)=f c x(t),v(t) ,(2.6)L.Grüne,J.Pannek,Nonlinear Model Predictive Control , Communications and Control Engineering, DOI 10.1007/978-0-85729-501-9_10,?Springer-Verlag London Limited 2011275

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

非线性系统模型参数估计的算法模型

非线性系统模型参数估计的算法模型 摘要:针对非线性系统模型的多样性,提出了适用于多种非 线性模型的基于粒子群优化算法的参数估计方法。计算结果表明,粒子群优化算法是非线性系统模型参数估计的有效工具。 关键词:粒子群优化算法;非线性系统;参数估计;优化abstract: aiming at the diversity of nonlinear system model, it is proposed in this article a parameter estimation method based on particle group optimization algorithm that is applicable to a variety of nonlinear models. the result shows that the particle group optimization algorithm for parameter estimation of nonlinear system model is an effective tool. key words: particle group optimization algorithm;nonlinear system; parameter estimation; optimization 0 引言 非线性系统广泛地存在于人们的生产生活中,但是,目前我们对非线性系统的认识还不够深入,不能像线性系统那样,把所涉及的模型全部规范化,从而使辩识方法也规范化。非线性模型的表达方式相对比较复杂,目前还很少有人研究各种表达方式是否存在等效关系,因此,暂时还没有找到对所有非线性模型都适用的参数模型估计方法[1]。如果能找到一种不依赖于非线性模型的表达方式的 参数估计方法,那么,也就找到了对一般非线性模型系统进行参数

测量误差论文

测量误差理论与矿山数据质量 测量误差理论与矿山GIS数据质量的当代发展* 摘要为了建立矿山GIS辅助决策中位置数据和属性数据的误差理论,发展矿山GIS 产品的质量评价指标体系,本文系统地论述测量误差理论与矿山GIS数据质量的当代发展,以便为设计与建立一个可靠和健全的矿山GIS提供参考。 关键词矿山GIS 误差理论数据质量 1 引言 70年代以前,我国矿图的绘制和管理主要采用人工方法。80年代以来,众多测绘、地理、地质和计算机等学科的学者们联合开展了计算机矿图数据库管理系统和基于AutoCAD软件平台的机助矿图绘制系统研究,并进一步发展成一些实用化的“地质测绘信息系统”,还相继建立了某些专用的“事务性管理系统”。90年代初,随着地理信息系统(GIS)的发展和应用的广泛普及,在对上述系统进行改造和集成基础上,又兴起了建立矿山地理信息系统(MGIS)热潮。这些系统的研究和建立已在矿山抢险救灾、安全生产、现代化管理和智能决策等方面显示了强大的生命力。但在应用实践中也发现,由于缺少统一的空间数据质量标准,使得原先花费大量人力、财力所建立的矿山空间数据库因通用性差、精度混乱,以及无法进行数据转换等缺点,而不得不重新建库,造成极大浪费。更为重要的是,在矿山安全和生产管理中,对矿山空间几何数据分析和处理结果精度的技术要求极高。例如,在矿山发生井筒或巷道塌方事故后,需要根据MGIS迅速确定井下巷道在地面上的相应准确位置,以便打钻孔至井下该巷道处,及时进行通风并输送食物和水等,维持井下受困人员的生命,为抢险救灾赢得时间。又如,在井下发生突水事故时,需要利用MGIS 迅速判断突水点的精确位置,以便进一步确定标高低于突水点的受水威胁区域,及时撤离

相关文档
最新文档