4D地震检波器

4D地震检波器

与过去相比,勘探开发公司如今面临更大的风险和更复杂的钻井环境,因此获得准确的地层构造图和油藏机理具有重要意义。目前使用的地震测量方法,如拖曳等浮电缆检波器组、临时海底布放地震检波器和井下电缆布放地震检波器等,能提供目的产油区域的测量。由于这些方法具有相对高的作业费用、不能下入井内或受环境条件的限制等,而且这些测量方法提供的图像不全面、不连续、分辨率不是很高,因此难于实现连续实时油藏动态监测。为了解决这些问题,威德福公司开发出基于光纤的井下地震检波器系统,能提供整个油井寿命期间永久高分辨率4D油藏图像和油藏管理。

威德福公司生产的基于光栅技术的全光学地震加速度检波器是专门为永久性井下测量而设计的,在单根光纤上能布置多传感器阵列,包括威德福生产的光纤温度计、压力计、多相流量计和分布式温度传感器系统。光线从地面沿光缆向下传播到井内并反射回到地面,光学信号被转换成测量数据,用常规方法解释获取的测量资料。井下地震加速度检波器接收地震波,可处理成地层和流体前缘图像。

永久井下光纤3分量(3C)地震测量具有高的灵敏度和方向性,能产生高精度空间图像,不仅能提供近井眼图像,而且能提供井眼周围地层图像,在某些情况下测量范围能达数千英尺。光纤地震测量系统在油井的整个寿命期间运行、能经受恶劣的环境条件(温度达175℃,压力达14500psi),测量系统没有可移动部件和井下电子器件。每个3C地震加速度检波器被封装在直径1in的保护外壳中,能安装到复杂的完井管柱及小的空间内。地震检波器非常坚固,能经受强的冲击和振动。光纤地震检波器还具有动态范围大和信号频带宽的特点,该系统的信号频带宽度为3~800Hz,能记录从极低到极高频率的等效响应。

永久井下地震测量能用于勘探和开发阶段的油藏成像和油藏监测。在勘探活动中,井下地震提供新远景区的图像、构建原始油藏模型。对于正在开发的油田,4D垂直地震剖面(VSP)和连续地震监测是有用的油藏管理工具,提供油藏生产动态监测。永久井下地震检波器可提供时延流体运动、扫油效率、漏失的油气层和其它油藏参数的图像。井下永久地震测量获取的数据具有连续性和可比性,由于不需要更换井下测量设备,因此节约了时间和费用,减少了对健康、安全和环境的影响。

2002年12月,威德福公司在法国西南部道达尔菲纳埃尔夫公司经营的Izaute

贮气井中成功完成了世界上第一个多测点、多分量井下地震检波器组的安装。检波器组被安装在4in油管与9-5/8in套管之间,其中5个3C地震测点用于变井源距垂直地震剖面测量,并为规划的时延成像提供重复性VSP测量。安装在储层层面的第六个3C测点用来记录潜在的微地震事件。光纤地震检波器组的安装过程用了不到12h,没有

出现作业问题,获取的资料与先前常规电缆测井资料具有好的一致性,而且比地面地震测量资料的分辨率高,提高了识别气水界面和解释近井眼油藏构造的能力。

地震勘探在海洋石油勘探中的基本原理

地震勘探在海洋石油勘探中的基本原理

————————————————————————————————作者: ————————————————————————————————日期:

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。能

五种地震检波器

五种地震检波器 地震检波器是一种将机械振动转换为电信号的地震勘探专用振动传感器,是槽波地震勘探仪器中接收地震信号的个器件,它的性能会影响地震勘探结果。煤矿井下地震信号的信噪比较低、波形场复杂、地震勘探条件复杂,因此研制针对于槽波地震勘探的检波器非常重要。 实际勘探中应用为广泛的地震检波器为动圈式地震检波器。随着技术和方法的不断创新,检波器类型越来越丰富。我国开展了许多针对地震检波器的应用研究和试验工作,研究了三分量MEMS地震检波器、光学地震检波器、压电式地震检波器、电化学地震检波器等新型检波器。 1、动圈式地震检波器 根据资料显示,大部分槽波勘探都是使用动圈式地震检波器,它属于速度型地震检波器。在使用动圈式地震检波器进行槽波地震探测时,经常检测到一种频率为400Hz的形似自激振荡或感应干扰的现象。经研究发现,它是由于两分量速度检波器中检波器芯体的高频谐振引起,术语称之为检波器二次谐振。速度检波器的二次谐振属于机械谐振范畴,二次谐振现象在各种型号的动圈式地震检波器产品上都存在。对于精度要求较高的槽波地震勘探而言,这种高频谐振就变得十分有害而不容忽视。对于检波器的二次谐振现象,可以改用加速度检波器芯体,这样可以从根本上解决这个问题。 2、光学地震检波器 光学地震检波器主要是利用光波敏感元件的特性研制的,根据传感机理的不同可以分为强度调制型、光纤光栅型、马赫–曾德尔干涉型、迈克尔逊干涉型、萨格纳克干涉型、法布里珀罗干涉型、光纤激光型以及光栅型等,各种类型的光纤地震检波器研究取得了不少实验室及实际应用成果。光学检波器具有灵敏度高、安全可靠、频带宽、动态范围大、适应性强等优点。光学检波器有较强的抗电磁干扰能力,是未来地震检波器有可能采用的主要技术之一。但光学检波器制作工艺难度大、成本高,目前广泛应用于井下槽波地震勘探尚有难度。 3、电化学地震检波器 电化学地震检波器是利用电化学原理,将振动信号转换为电信号的检波器。

地震灾害模拟体验实验报告

地震灾害模拟体验实验报告 吴丽红人文学院历本101班 10020126 一、实验目的 了解地震灾害的成因、分类、危害以及地震的防灾措施等。 二、实验内容 体验模拟地震的震动状况、观看关于地震的影片,了解地震灾害的特征、危害、分布等基本知识以及防灾减灾的对策。 三、实验原理简述 当今人类面临着地震灾害的严重威胁,给各国人民造成了难以估计的生命与财产的巨大损失。目前,预防地震灾害,减轻地震灾害带来的损失已经成为各国政府的重要工作之一。与此同时,认识了解地震灾害发生以及发展的规律,对地震灾害进行科学的评估,以期有朝一日对地震灾害进行准确的预报,制定减轻地震灾害的防御对策等已成为广大科学家们重要的研究课题。 (https://www.360docs.net/doc/ab190321.html,/i?word=%B5%D8%D5%F0%B4%F8&opt-image=on&cl=2& lm=-1&ct=201326592&ie=gbk) 1、地震灾害的相关概念 大地或地壳的突然震动就是地震。震源是地球内部直接发生震动的地方,震中是震源在地面上垂直投影。震源深度是指震源到地面的垂直距离。震中距是在地面上从震中到任一点的距离。 震级是指地震的大小,是以地震仪测定的每次地震活动释放的能量多少来确定

的。中国目前使用的震级标准,是国际上通用的里氏分级表,共分9个等级,在实际测量中,震级则是根据地震仪多地震波所作的记录计算出来的。地震越大,震级的数字越大,震级每差一级,通过地震被释放的能量相差约32倍。地震按震级大小四类:震级小于3级的地震称为弱震;震级等于或大于3级且小于或等于4.5级的地震称为有感地震;震级大于4.5级且小于6级的地震称为中强震;震级等于或大于6级的地震称为强震,其中震级大于或等于8级的地震又可称为巨大地震。 烈度表示地面受到地震的影响和破坏的程度,它用“度”来表示。一般而言,震级越大,烈度就越高。同一次地震,震中距不一样的地方烈度就不一样。 2、地震波的传播 地震波是指从震源产生向四外辐射的弹性波。地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部氛围地壳、地幔和地核三个圈层。地震波按传播方式分为三种类型:纵波、横波和面波。纵波是推进波,地壳中传播速度为5.5-7千米/秒,传播速度较快,可以通过固体、液体和气体传播,又称为P波,它使地面上下振动,破坏性较弱。横波是剪切波,在地壳中的传播速度为3.2-4千米/秒,又称为S波,只能通过固体传播,它使地面发生前后、左右抖动,破坏性较强。面波又称为L波,是由纵波与横伯伯哦字地表相遇后激发产生的混合波,波长大,只能沿地表面传播,是造成建筑物强烈破坏的主要原因。 3、地震的成因及分类 地震的成因到目前为止,仍然是一个有争议性的问题。但是地震的发生大致可以分为人为和自然两方面,其中绝大多数的地震是由自然引起的,成为天然地震,其中天然地震又可以分为构造地震、火山地震和塌陷地震。构造地震是由于地壳深处岩层错动、破裂所造成的地震策划能够为构造地震。这类地震发生的次数最多,破坏力也最大,约占全世界地震的90%以上。火山地震是由于火山作用,如岩浆活动、气体爆炸等引起的地震称为火山地震。只有在火山活动区才可能发生火山地震,这类地震只占全世界地震的7%左右。塌陷地震是由于地下溶洞或矿井顶部塌陷而引起的地震称为塌陷地震。这类地震的规模比较小,影响范围小,不会造成大的破坏。认为地震可分为人工地震和诱发地震两种。人工地震是由于某些人为的原因,如工业爆破,矿山开采,核爆炸等,也能引起地面剧烈振动,但是影响范围小,不会造成大的破坏。 4、地震的分布 世界地震带分布主要包括四个带: 环太平洋地震带:全世界地震释放总能量的80%来自这个带,大约80%的浅源地震和90%的中深源地震都集中在这个地区。 地中海-喜马拉雅山地震带:这个带以浅源地震为主,多位于大陆部分,分布范围较广。 大洋中脊带:地震活动性较弱,均为浅源地震。 东非裂谷带:地震活动较强,均为浅源地震。

地震勘探检波器原理和特性及问题分析.

地震勘探检波器原理和特性及问题分析2010-07-19 在地震勘探工作中,由于对检波器的原理和性能了解和认识得不够,致使在检波器的选择和使用上存在着一些不当之处,不清楚检波器的.参数与响应特性之间的关系,以及这些参数对地震信号的影响,在检波器使用和对比时往往针对性不强.为此,从检波器的振动力学原理入手,分析了位移、速度和加速度3种类型检波器的频率响应特性,并阐述了检波器不同的机电转换原理;在此基础上,深入分析了检波器的特性参数对地震信号的影响以及地震勘探对检波器性能和参数的要求.根据地震勘探中地震波冲击振动信号的特点,认为具有频率范围宽、动态范围大、失真度小、灵敏度高、检波器允差小等特点的检波器才能满足地震勘探的需要.同时,对目前检波器使用中的一些做法进行了探讨,尤其是检波器对比试验中存在的问题.综合分析认为,只有掌握了检波器的原理、性能和参数,才能正确地选择和使用检波器. 作者:吕公河 Lv Gonghe 作者单位:中国石油化工集团公司胜利石油管理局地球物理物探开发公司,山东东营,257100 刊名:石油物探 ISTIC PKU 英文刊名:GEOPHYSICAL PROSPECTING FOR PETROLEUM 年,卷(期): 2009 48(6) 分类号:P631.4 关键词:地震检波器检波器性能特性参数振动系统机电转换原理频率响应特性seismic geophone geophone performance characteristic parameters vibration system electro-mechanical transform principle frequency response characteristics

模拟地震

【探究缘由】2004年12月26日的印度洋海域地震并引发的海啸,让全世界为之震惊。面对这样的自然灾害,人类的力量实在渺小。人地关系的和谐发展是我们追求的目标,先让我们进行一次地震模拟实验吧!【活动目的】地震是一种常见的、突发的自然灾害。在学习有关专题后,我们用实验模拟地震,以正确理解震级和烈度的关系,强化学生防灾减灾自我救护的意识。【知识整合】结合物理学中有关机械波的知识。【活动准备】地震模拟实验所需的基本材料有:一个高大中空的讲台、一把榔头、一堆木制积木、一堆乐高(有咬合口)积木等。【活动过程】1.在讲台上用普通的木制积木搭建一建筑物(表示建筑物抗震性能一般),榔头敲击讲台四周,模拟地震的发生。2.改变敲击力度,模拟震级升高,烈度加大,建筑物毁坏。3.改变震中距、震源深浅等地震要素,烈度随之改变。4.在讲台上用普通的木制积木搭建两个不同结构的建筑物,使之位于不同位置(如一位于桌角,另一位于桌中央),敲击讲台,观察结果。5.采用乐高积木(表示建筑物抗震性能良好)继续重复上述步骤,模拟实验。(填写表格略)【分析结论】改变震级、震中距、震源深浅、地质构造、地貌特点、地面建筑物的结构等要素,可理解地震、烈度与灾度的区别与联系,即每次地震只有一个震级,却有不同的烈度。【拓展建议】1.能否设计出更精准的实验敲击力度,使实验更具有可观测性和比较性。2.能否将两种积木结合,尝试搭建框架结构或钢筋混凝土结构建筑物,继续实验。【知识链接】震级·烈度·灾度一个地方发生了地震,它的强度有多大?破坏程度如何?灾损如何?这一切,都需要有一个衡量和界定的标准。这个标准,就是“震级”“烈度”和“灾度”。“震级”指的是地震的强度,它跟地震释放的能量有关。一次地震,只有一个震级。释放能量相同的地震,它们的震级相同。释放的能量越大,震级也越大。震级是根据台、站地震图上记录的最大振幅的地动位移及与之相应的周期,并考虑到地震波按震中距离而产生的衰减,按一定公式计算出来的。地震与所释放的地震波能量有固定的函数关系。震级每增大1级,其释放能量约增30~32倍。按震级定义和计算公式,震级没有上限。不过,到目前为止,世界上有记录可查的最大地震,是1933年3月2日的日本大地震和1960年5月22日的智利大地震,其震级为8.9级。[!--empirenews.page--]“烈度”是用来反映地震中地面受到的影响和破坏程度的一个概念。是用以表达地震强度的一种方式,是衡量地震在一定地域产生或可能造成的破坏程度的一种“尺度”。烈度的大小,主要是根据在一定地点地震对地面建筑物和地形的破坏程度,以及人的直觉反应等等来界定的。我国和世界上多数国家都把地震烈度划为12度:1度最轻,12度最强烈。●小于3度:人无感受,仅仪器能记录到;●3度:夜深人静时人有感受;●4~5度:睡觉的人惊醒,吊灯摆动;●6度:器皿倾倒、房屋轻微损坏;●6~8度:房屋破坏,地面裂缝;●9~10度:房倒屋塌,地面破坏严重;●10~12度:毁灭性的破坏。一次地震,震级只能是一个,但烈度则会因地而异。因为烈度不仅与震级的强弱有关,而且还与震源的深浅、距离震中的远近,以及地震波通过地段的“介质条件”等有关。一般地说,如果震级相同,震源浅的地震往往要比震源深的地震对地表的破坏程度大,烈度也高。“灾度”是指地震区所受到的灾害严重程度。不仅包括地表形态和地貌的被扭曲、断裂、陷落和崩塌程度,同时也包括各种建筑物、人员及经济的损害程度。灾度的大小不仅取决于震级的大小和烈度的高低,而且还与发震区的人口密度和经济发达程度密切相关。此外,与地震发生的时刻(白昼和黑夜),以及防灾救灾的具体措施是否得当等,也有很大的关系。

地震采集数字检波器与模拟检波器差异分析

地震采集数字检波器与模拟检波器差异分析 发表时间:2008-12-16T16:04:18.780Z 来源:《中小企业管理与科技》供稿作者:石影君刘绍新樊立新 [导读] 摘要:地震勘探中,新型数字检波器具有频宽、动态范围大特点。与模拟检波器对比,剖面信噪比和层间信息均好于模拟检波器,而全频和扫描记录上数字检波器信噪比略低;主要由于数字检波器采用单只接收,环境噪音的压制不好限制了动态范围的发挥。关键词:数字检波器模拟检波器地震采集方法 摘要:地震勘探中,新型数字检波器具有频宽、动态范围大特点。与模拟检波器对比,剖面信噪比和层间信息均好于模拟检波器,而全频和扫描记录上数字检波器信噪比略低;主要由于数字检波器采用单只接收,环境噪音的压制不好限制了动态范围的发挥。 关键词:数字检波器模拟检波器地震采集方法 目前地震采集应用的模拟检波器性能滞后于地震仪的发展,动态范围相差很大,检波器动态范围一般60dB,仪器可达到120dB以上。二者动态范围不匹配严重制约着地震资料品质的提升。近年来,新型数字检波器开发成功,提供了较大动态范围记录工具,随着应用方法的探索必将得到广泛应用。 1、数字检波器与常规检波器参数对比数字检波器是利用MEMS技术的加速度传感器;与此对应的称为常规或模拟检波器。 模拟检波器性能指标主要指标有自然频率、阻尼系数、灵敏度、谐波失真、假频等;参数有直流电阻、阻抗、噪声、漏电、极性;其它物理参数还有悬体质量、线圈最大位移、允许倾斜角度等。检波器幅频响应是高通的。数字检波器陡度比动圈式增加了6dB,其高频补偿作用优于动圈式检波器。 检波器自然频率有10、14、28、40、60和100Hz等;灵敏度一般在0.3-0.6v/cm/s;谐波失真一般为0.2%或0.1%,而超级检波器失真系数达0.02%;假频对有效频带有效波产生影响时使地震信号产生畸变。目前检波器假频已从150Hz扩展到250-350Hz左右。谐波失真影响接收动态范围。检波器谐波失真(0.2%)远大于仪器谐波失真(0.0003%)。一般以检波器谐波失真为主要标准。 数字检波器与常规检波器相比有如下特点: (1)频带宽度:频率响应上数字检波器从高到低几乎是一直线,是线性的。高频端可达到500HZ以上,在500-800HZ之间也可以得到满意的响应,只是指标略有降低,而常规检波器只有350HZ以内,超过350HZ产生寄生震荡,不能记录比较真实的地震信号。 在低频端,数字检波器在3HZ以上都有较好的响应,而常规检波器在自然频率以下,以每倍频程12dB进行压制。按此标准数字检波器的低频端有更好的响应。 (2)相位特性:数字检波器基本上为一直线,相位延迟很小,常规检波器都会有相位延迟,而且随着频率的增大而增加,这对于高频成份记录不利。 (3)动态范围:界定主要依据谐波畸变大小。通常是指记录信号变化能力。数字检波器总的动态范围为90dB,而常规检波器畸变指标一般为0.2%(54dB)。 数字检波器的上述指标均优于模拟检波器。 2、数字检波器与常规检波器参数实测参数对比 (1)谐波畸变:模拟检波器畸变理论值为54dB左右,数字检波器为90dB。理论动态范围以外的数据不再准确,不能反映真实情况,可以认为可记录总的动态范围是由仪器决定的。 模拟检波器的畸变一般小于0.1%,动态范围一般60-74dB之间。从这一数字看出,模拟检波器大部分应该高于理论动态范围。但比数字检波器动态范围低。 (2)总动态范围:为考察检波器总动态范围,采用样点值计算方法,选取记录中最大值和最小值进行比较。两种检波器最大值、最小值基本接近,与仪器给定参数接近。说明总动态范围更多受仪器制约。 (3)瞬时态范围:瞬时动态范围指同一样点记录最大信号和最小信号的比值。数字检波器对弱信号反应能力比常规略强。 通过上述分析可以得到如下结论:数字检波器在参数特性方面优于模拟检波器,实测结果支持这一结论,这些参数更多体现在对震动更加真实地记录上。动态范围与畸变有关,较大的动态范围对于提高高频弱小信号能量是非常重要的。 3、数字检波器与常规检波器单炮资料对比 (1)单炮资料分析:分析环境噪音情况,数字检波器干扰明显强,但数字检波器对保护高频信息有利。全频记录上,各层层次都较好,前者干扰相对较强。BP(70,140)Hz扫描常规检波器较好,T2层能量强,连续性好,数字检波器T2层能量较弱,连续性较差。BP(50 100)Hz、BP(60 120)Hz和BP(80 160)Hz扫描结果相近。还可以看出数字检波器抗50Hz干扰能力强。 扫描记录上,模拟检波器组合略好,有效波信噪比高。考察数字检波器好坏不仅要考虑更高的频率段,而要考虑施工方法进一步更新,同时进行单炮和剖面处理综合分析,处理过程中注意保护高频成份。 (2)频谱分析:随机干扰分析:模拟检波器的频谱50Hz干扰较强,数字表现出明显的抗50Hz干扰能力。面波分析:面波频谱对比主频基本一致。目的层(T1)频谱:在BP(90 180)Hz频带内数字检波器单只接收比模拟检波器串组(9只)主要目的层上信噪比弱,低大约 10Hz,但从频谱分析看,在高频段与主频段能级差大约40dB,在高于100Hz频带内,高频信息能量大于环境噪音0-20dB。 频谱分析结论:从整道频谱看数字检波器较好。各层主频基本相近。频带宽度:数字检波器宽。在低频段:0-10Hz之间相近;从10Hz到主频段,数字检波器相对能量好于模拟检波器。在高频段:高频能量数字比模拟高。综合分析,数字检波器总的频带宽度较模拟检波器宽。 通过单炮分析,全频记录模拟检波器信噪比较高,层次清晰,数字检波器层次虽较清晰,但干扰比较强。扫描记录:模拟检波器相对较好。数字检波器记录虽然频率高,但扫描记录信噪比较低。频率分析:数字频带宽。抗50Hz干扰:常规检波器没有此能力。 基于以上分析,从信噪比看模拟检波器特性好于数字检波器;频率分析方面数字检波器好于模拟检波器。单炮记录分析由于存在组合的影响使得在压制干扰方面二者产生不同。因此单炮扫描分析存在着信噪比问题,而不是纯粹频率问题。分析数字和模拟检波器不能只看单炮,而应该结合剖面一起分析。 4、数字检波器与常规检波器剖面对比分析 剖面对比分析:深层信噪比由低向高排列顺序为:模拟检波器组合,数字检波器,模拟检波器团放。中浅层信噪比(T2以上)由低向高顺

地震检波器与其发展趋势

地震检波器及其发展趋势 一、概念 地震检波器(Seismometer)是用于地质勘探和工程测量的专用传感器,是一种将地面振动转变为电信号的传感器,或者说是将机械能转化为电能的能量转换装置,核心作用是采集地震数据。 二、分类 常规地震检波器有磁电、涡流、压电、压阻式; 新型的有:MEMS(微电子机械系统)式得数字检波器、FBG检波器。 后者与常规的相比具有高频响应好、动态围宽、抗电磁干扰,灵敏度高的特点,因此是未来检波器发展的主流。 三、特性参数 阻尼;失真度;灵敏度;自然频率;线圈电阻;带宽。 考虑到地震信号具有:动态围大,频率围宽,速度变化快,背景噪音多等特点。因此就要求地震检波器具有:分辨视角广,频率响应好,线性度高,抗干扰能力强等属性。 四、常规检波器 1.磁电检波器:目前陆上地震勘探普遍使用电动式检波器。

(1)原理:电磁感应原理 利用上、下两个线圈绕制在铝制线圈架上,组成一个惯性体,由弹簧片悬挂在永久磁铁产生的磁场中,永久磁铁与检波器外壳固定在一起。当检波器外壳随地面震动时,引起线圈相对于永久磁铁运动,两线圈产生感应电动势,随着检波器外壳振动的大小变化,感应电动势也随之变化,速度越大,感应电势也大,检波器震动时,在检波器的输出端输出相应的电信号,传输给地震仪器。 (2)两个线圈的接法应满足:在绕制线圈时,一个线圈正绕另一线圈反绕,并把上线圈的终端与下线圈的起端联在一起(反向连接),把上下线圈的另外两个端头做为输出端。当线圈相对磁钢运动时,由于两线圈的磁场方向相反,所以连接的两线圈的感应电势是同向相加的。对于外界磁场干扰,反向连接的两线圈的感应电势是反向抵消的,这样就提高了抗干扰能力。 (3)优缺点:永磁体由于受温度、地磁影响大、易氧化且磁场不稳定,地震检波器的灵敏度低、稳定性及重复性差。现场工作量大,自然频率选择较多、需要大量的检波器组合,排列复杂,强度大。实际的探测工作中,地质勘探人员需要携带大量的测量器材,特别是布设探测器阵列时,沉重的电缆和众多的

第二章 地震检波器

1 第二章 地震检波器 地震检波器是把传输到地面或水中的地震波转换成电信号的机电转换装置,它是野外地震数据采集的关键部件。 第一节 电动式地震检波器 工作原理:当地震波到达地面引起机械振动时,线圈对磁铁作相对运动而切割磁力线,根据电磁感应原理,线圈中产生感生电动势,且感生电动势的大小与线圈和磁铁的相对运动速度成正比。 图2-2 检波器内各部分的运动关系 图2-2 检波器内各部分的运动关系 图2-1(a )电动式检波器基本结构 图2-1(b )电动式检波器外形

2 一、运动方程的建立 运动方程反应的是检波器线圈运动与地面运动的关系。 规定: z ——地面产生的向上位移 y ——线圈框架(惯性体)的向上位移 x ——线圈相对磁铁的向下位移(x <0) ,并且: y z x =+ 1.弹簧克服惯性体重力后的拉力K F K F k x =- (2-1) 2. 线圈受到的电磁阻尼力 根据法拉第电磁感应定律,线圈两端输出的电动势为 dt dx s dt dx dx d n dt d n e ?=?==φφ dx d n s φ =称为机电转换系数,也叫空载灵敏度。线圈中的感应电流为:c o e e i R R R = =+ 式中c R 是线圈内阻,o R 是线圈负载电阻。感应电流受到的电磁力L F : dt dx R s R e s i dx d n F L ?-=?-=?-=2φ (2-2) 3. 铝制线圈框架受到的电磁阻尼力 当圆筒形铝制线圈框架在磁场中运动时,线圈框架内将产生涡电流。涡电流产生涡旋磁场,此涡旋磁场与永久磁场相互作用的结果也是阻止线圈框架的运

地震检波器及其发展趋势

地震检波器及其发展趋势

————————————————————————————————作者:————————————————————————————————日期:

地震检波器及其发展趋势 一、概念 地震检波器(Seismometer)是用于地质勘探和工程测量的专用传感器,是一种将地面振动转变为电信号的传感器,或者说是将机械能转化为电能的能量转换装置,核心作用是采集地震数据。 二、分类 常规地震检波器有磁电、涡流、压电、压阻式; 新型的有:MEMS(微电子机械系统)式得数字检波器、FBG检波器。 后者与常规的相比具有高频响应好、动态范围宽、抗电磁干扰,灵敏度高的特点,因此是未来检波器发展的主流。 三、特性参数 阻尼;失真度;灵敏度;自然频率;线圈电阻;带宽。 考虑到地震信号具有:动态范围大,频率范围宽,速度变化快,背景噪音多等特点。因此就要求地震检波器具有:分辨视角广,频率响应好,线性度高,抗干扰能力强等属性。? 四、常规检波器 1.磁电检波器:目前陆上地震勘探普遍使用电动式检波器。 (1)原理:电磁感应原理 利用上、下两个线圈绕制在铝制线圈架上,组成一个惯性体,由弹簧片悬挂在永久磁铁产生的磁场中,永久磁铁与检波器外壳固定在一起。当检 波器外壳随地面震动时,引起线圈相对于永久磁铁运动,两线圈产生感应 电动势,随着检波器外壳振动的大小变化,感应电动势也随之变化,速度越 大,感应电势也大,检波器震动时,在检波器的输出端输出相应的电信号,传输给地震仪器。

(2)两个线圈的接法应满足:在绕制线圈时,一个线圈正绕另一线圈反绕,并把上线圈的终端与下线圈的起端联在一起(反向连接),把上下线圈的另外两个端头做为输出端。当线圈相对磁钢运动时,由于两线圈的磁场方向相反,所以连接的两线圈的感应电势是同向相加的。对于外界磁场干扰,反向连接的两线圈的感应电势是反向抵消的,这样就提高了抗干扰能力。 (3)优缺点:永磁体由于受温度、地磁影响大、易氧化且磁场不稳定,地震检波器的灵敏度低、稳定性及重复性差。现场工作量大,自然频率选择较多、需要大量的检波器组合,排列复杂,强度大。实际的探测工作中,地质勘探人员需要携带大量的测量器材,特别是布设探测器阵列时,沉重的电缆和众多的探测器令人不堪负荷。而探测地点又常在深山大林之中,工作量大,同时,检波器电缆易受外界电磁场的干扰,影响数据的可靠性。 2.涡流检波器 (1)原理:涡流检波器内部结构与普通电动式检波器不同,是一种加速度检波器,当地震反射波到达地面时,检波器外壳被机械振动所驱动,活动铜环相对永久磁铁便产生相对运动,在活动铜环内产生涡流,涡流又产生次生的涡旋磁场,它使固定的线圈产生感生电动势和电流。 (2)优缺点:活动的惯性体与输出端没有电连接,可以大大提高检波器的可靠性,并且感应电动势随频率的增加按6dB/oct斜率上升,这种特性可以部分补偿地震信号因大地吸收衰减而造成的高频损失,有利于高频信号。涡流检波器虽然能提升高频信号,但它的灵敏度与常规检波器的灵敏度相比较太低,且成本较高,在实际工作中不常使用。 3.压电式检波器?

地震体验平台设计方案(新)(汇编)

地震体验台设计方案

四川民盛机电工程有限责任公司 目录 一、系统概述 ....................................................................................... - 2 - 1.1设计目的及宗旨................................................................................................ - 2 - 1.2设计依据及原则................................................................................................ - 2 - 1.3系统的优点及特点............................................................................................ - 2 - 1.4系统的主要技术参数........................................................................................ - 3 - 二、系统概述 .......................................................................................................... - 3 - 2.1系统组成............................................................................................................ - 3 - 2.2机械系统............................................................................................................ - 3 - 2.3液压系统............................................................................................................ - 4 - 2.4控制系统............................................................................................................ - 5 - 2.5多媒体系统........................................................................................................ - 5 - 2.6特效系统............................................................................................................ - 6 - 三、详细方案 .......................................................................................................... - 9 - 3.1流程讲解............................................................................................................ - 9 - 3.2三维效果图........................................................................................................ - 9 - 3.3实景参考图........................................................................................................ - 9 - 3.4设备安装.......................................................................................................... - 10 - 3.5系统供电及控制室要求.................................................................................. - 11 - 3.6工程进度表...................................................................................................... - 11 - 四、系统维护与保养 ............................................................................................ - 11 - 4.1操作人员培训.................................................................................................. - 11 -

地震模拟实验报告

地震模拟实验报告 一、实验目的 感受地震灾害发生时带来的感受,了解地震灾害发生时的现象,明白地震的成因、带来的危害及防灾自救措施。 二、实验内容 观看介绍地震相关知识的影片,到地震屋感受模拟地震,观看地震知识展板,聆听老师讲解地震知识。 三、实验原理阐述 (一)地震的分类及其成因 根据地震的成因,可分为构造地震、火山地震、塌陷地震、人工地震、诱发地震五类。其中,构造地震、火山地震和塌陷地震是由自然原因引起的地震,称为天然地震。而人工地震和诱发地震则是由人类活动引起的地震,称为人为地震。 1、构造地震 构造地震是由于地下深处岩层张裂、扩大而造成的地震。这类地震发生的次数最多,破坏力也最大,约占全世界地震总数的90%以上。在众多构造地震形成机制的解释中,断层说是最受认可、最重要的一种解释,它较为合理科学地解释了构造地震的形成机制。 2、火山地震 火山地震是由于火山作用,如岩浆活动、气体爆炸等引起的地震。火山地震在火山喷发前后都会发生。在火山喷发前,地下岩浆的冲击或热力膨胀的作用会使岩层断裂造成地震。在火山喷发后,由于大量岩浆喷出地表,地壳内部压力减小,造成岩层断裂错动而发生地震。火山地震只可能发生在火山活动区。这类地震发生次数不多,仅占全世界地震总数的7%左右。 3、塌陷地震 塌陷地震是由地下岩洞或矿井顶部塌陷而引起的地震。这类地震的规模比较小,发生的次数也很少。如果发生,往往发生在溶洞密布的石灰岩地区或大规模地下开采的矿区。 4、人工地震 人工地震是指由地下核爆炸、炸药爆破等人为活动引起的地面震动。人工地震是由人为活动引起的地震,如工业爆破、地下核爆炸造成的震动;在深井中进行高压注水以及大水库蓄水后增加了地壳的压力,有时也会诱发地震。 5、诱发地震 诱发地震是由于水库蓄水、油田注水等人类活动引发的地震。这类地震仅发生在特定的水库库区或油田地区。 图一构造地震图二火山、塌陷、人工、诱发地震

相关文档
最新文档