高二物理3-2知识点

高二物理3-2知识点
高二物理3-2知识点

高二物理3-2知识点

【篇一:高二物理3-2知识点】

电磁感应现象愣次定律一、电磁感应 1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。

产生的电流叫做感应电流. 2.产生感应电流的条件:闭合回路中磁通量发生变化 3. 磁通量变化的常见情况 ( 改变的方式) :①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致其实质也是 b 不变而 s增大或减小②线圈在磁场中转动导致变化。线圈面积与磁感应强度二者之间夹角发生变化。

如匀强磁场中转动的矩形线圈就是典型。

③磁感应强度随时间(或位置) 变化, 磁感应强度是时间的函数;或闭合回路变化导致变化 ( 改变的结果) : 磁通量改变的最直接的结果是产生感应电动势, 若线圈或线框是闭合的. 则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化. 4. 产生感应电动势的条件: 无论回路是否闭合, 只要穿过线圈的磁通量发生变化, 线圈中就有感应电动势产生, 产生感应电动势的那部分导体相当于电源. 电磁感应现象的实质是产生感应电动势, 如果回路闭合, 则有感应电流, 如果回路不闭合,则只能出现感应电动势,而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化二、感应电流方向的判定 1. 右手定则: 伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即为感应电流方向(电源) . 用右手定则时应注意:①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定,②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直.③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向.④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势.⑤因电而动用左手定则.因动而电用右手定则.⑥应用时要特别注意:四指指向是电源内部电流的方向(负正) .因而也是电势升高的方向;即:四指指向正极。

导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右

手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中

切割磁感线而产生感应电流方向的判定用右手定则更为简便. 2. 楞

次定律 (1) 楞次定律(判断感应电流方向) :感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化. (感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的) 变化原因产生

结果;结果阻碍原因。

(定语) 主语 (状语) 谓语 (补语) 宾语 (2) 对阻碍的理解注意阻碍不

是阻止,这里是阻而未止。

阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用) ;磁通量减少时,阻碍减少(感应电流

的磁场和原磁场方向一致,起补偿作用) ,简称增反减同. (3) 楞

次定律另一种表达:感应电流的效果总是要阻碍..(.或反抗...).产生感应电流的原因. (f 安方向就起到阻碍的效果作用) 即由电磁感应现象而引起的一些受力、相对运动、磁场变化等都有

阻碍原磁通量变化的趋势。

①阻碍原磁通量的变化或原磁场的变化;②阻碍相对运动,可理解

为来拒去留;③使线圈面积有扩大或缩小的趋势;有时应用这些

推论解题比用楞次定律本身更方便④阻碍原电流的变化.楞次定律

磁通量的变化表述:感应电流具有这样的方向,就是感应电流的磁

场总要阻碍引起感应电流的磁通量的变化。

能量守恒表述:①从磁通量变化的角度: i 感的磁场效果总要反抗

产生感应电流的原因②从导体和磁场的相对运动:感应电流的磁场

总是阻碍引起感应电流的磁通量的变化。

③从感应电流的磁场和原磁场:导体和磁体发生相对运动时, 感应电流的磁场总是阻碍相对运动。

④楞次定律的特例——右手定则:感应电流的磁场总是阻碍原磁场

的变化。

(增反、减同) 楞次定律的多种表述、应用中常见的两种情况:一磁

场不变, 导体回路相对磁场运动;二导体回路不动,磁场发生变化。

磁通量的变化与相对运动具有等效性:相当于导体回路与磁场接近,相当于导体回路与磁场远离。

(4) 楞次定律判定感应电流方向的一般步骤基本思路可归结为:一原、二感、三电流,①明确闭合回路中引起感应电流的原磁场方

向如何;②确定原磁场穿过闭合回路中的磁通量如何变化(是增还是减) ③根据楞次定律确定感应电流磁场的方向.④再利用安培定则,根据感应电流磁场的方向来确定感应电流方向.判断闭合电路(或

电路中可动部分导体)相对运动类问题的分析策略在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭

合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受

到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动. 对其运动趋势的分析判断可有两种思路方法:①常规法:据原

磁场(b 原方向及情况)??左手定则 ????????????楞次定律确定感

应磁场(b 感方向)????????????安培定则判断感应电流(i 感方向)??????????导体受力及运动趋势. ②效果法:由楞次定律可知,感应电流的效果总是阻碍引起感应电流的原因,深刻理解阻碍的含义. 据阻碍原则,可直接对运动趋势作出判断,更简捷、迅速. (如 f 安方向阻碍相对运动或阻碍相对运动的趋势) b 感和 i 感的方向

判定:楞次定律(右手) 深刻理解阻碍两字的含义(i 感的 b 是阻碍产

生 i 感的原因) b 原方向?; b 原?变化(原方向是增还是减) ; i 感方向?才能阻碍变化;再由 i 感方向确定 b 感方向。

楞次定律的理解与应用理解楞次定律要注意四个层次: ①谁阻碍谁?

是感应电流的磁通量阻碍原磁通量; ②阻碍什么?阻碍的是磁通量的

变化而不是磁通量本身; ③如何阻碍?当磁通量增加时, 感应电流的磁

场方向与原磁场方向相反, 当磁通量减小时, 感应电流的磁场方向与

原磁场方向相同, 即增反减同 ; ④结果如何?阻碍不是阻止, 只是延缓了磁通量变化的快慢, 结果是增加的还是增加, 减少的还是减少. 另外

①阻碍表示了能量的转化关系, 正因为存在阻碍作用, 才能将其它形

式的能量转化为电能; ②感应电流的磁场总是阻碍引起感应电流的相对运动. 电磁感应现象中的动态分析:就是分析导体的受力和运动情

况之间的动态关系。

一般可归纳为:导体组成的闭合电路中磁通量发生变化?? 导体中产

生感应电流?? 导体受安培力作用 ?? 导体所受合力随之变化?? 导

体的加速度变化?? 其速度随之变化?? 感应电流也随之变化周而复

始地循环,最后加速度小致零(速度将达到最大) 导体将以此最大速

度做匀速直线运动阻碍和变化的含义原因产生结果;结果阻碍原因。

感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,而不是

阻碍引起感应电流的磁场。

因此,不能认为感应电流的磁场的方向和引起感应电流的磁场方向

相反。

磁通量变化感应电流产生产生感应电流的磁场法拉第电磁感应定律、自感一、法拉第电磁感应定律 (1) 定律内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.发生电磁感

应现象的这部分电路就相当于电源,在电源的内部电流的方向是从

低电势流向高电势。

(即:由负到正) ①表达

式:??????t????????t??????????sbnsbntne?? =?(普适公式) t ??????(法拉第电磁感应定律) 感应电动势取决于磁通量变化的快

慢t?????? (即磁通量变化率) 和线圈匝数 n. b/ t 是磁场变化率 (2) 另一种特殊情况:回路中的一部分导体做切割磁感线运动时, 且导体

运动方向跟磁场方向垂直。

② e=blv (垂直平动切割) (v 为磁场与导体的相对切割速度......) (b 不动而导体动;导体不动而 b运动) ③e=

nbs sin( t+ ) ; em=nbs (线圈与 b 的轴匀速转动切割) n 是线圈匝

数④e=bl2 /2 (直导体绕一端转动切割) ⑤*自感tiltne??????????????自iet??????自(电流变化快慢) (自感) 二、感应电量的计算感应电量rnttrntretiq???????????????????????????? 如图所示,磁铁

快插与慢插两情况通过电阻 r 的电量一样,但两情况下电流做功及

做功功率不一样.三. 自感现象 1. 自感现象:由于导体本身电流发

生变化而产生的电磁感应现象. 2. 自感电动势:自感现象中产生的

感应电动势叫自感电动势.自感电动势: e=lti???? ( l 是自感系数): a. l 跟线圈的形状、长短、匝数等因素有关系.线圈越粗,越长、匝数越密,它的自感系数越大,另外有铁芯的线圈自感系数

比没有铁芯时大得多. 3毫亨=10b.自感系数的单位是亨利,国际符号是 l, 1 亨=106 微亨 3. 关于自感现象的说明①如图所示,当

合上开关后又断开开关瞬间,电灯l 为什么会更亮,当合上开关后,由于线圈的电阻比灯泡的电阻小,因而过线圈的电流 i2较过灯泡的

电流 i1大,当开关断开后,过线圈的电流将由 i2变小,从而线圈

会产生一个自感电动势,于是电流由 c b a d 流动,此电流虽然比

i2小但比 i1还要大.因而灯泡会更亮.假若线圈的电阻比灯泡的

电阻大,则 i2<i1,那么开关断开后瞬间灯泡是不会更亮的.②开

关断开后线圈是电源,因而 c 点电势最高, d 点电势最低阻碍③

过线圈电流方向与开关闭合时一样,不过开关闭合时, j 点电势高

于 c 点电势,当断开开关后瞬间则相反, c 点电势高于 j 点电

势.④过灯泡的电流方向与开关闭合时的电流方向相反, a、 b 两

点电势,开关闭合时 ua>ub,开关断开后瞬间 ua<ub. 4. 镇流

器是一个带铁芯的线圈,起动时产生瞬间高电压点燃日光灯,目光

灯发光以后,线圈中的自感电动势阻碍电流变化,正常发光后起着

降压限流作用,保证日光灯正常工作.线圈作用:起动时产生瞬间

高电压,正常发光后起着降压限流作用。

电磁感应与力学综合又分为两种情况:一、与运动学与动力学结合

的题目(电磁感应力学问题中,要抓好受力情况和运动情况的动态

分析), (1) 动力学与运动学结合的动态分析,思考方法是:导体

受力运动产生 e 感 i 感通电导线受安培力合外力变化 a 变化 v 变化

e 感变化周而复始地循环。

循环结束时, a=0,导体达到稳定状态.抓住 a=0 时,速度 v 达

最大值的特点. 例:如图所示,足够长的光滑导轨上有一质量为m,长为 l,电阻为 r 的金属棒 ab,由静止沿导轨运动,则 ab 的最大

速度为多少(导轨电阻不计,导轨与水平面间夹角为,磁感应强度

b 与斜面垂直)金属棒 ab 的运动过程就是上述我们谈到的变化过程,当 ab 达到最大速度时: bll=mgsin ① i= e /r ② e =blv ③ 2l由

①②③得: v=mgrsin /b2。

(2) 电磁感应与力学综合方法:从运动和力的关系着手,运用牛顿

第二定律①基本思路: 受力分析运动分析变化趋向确定运动过程和

最终的稳定状态由牛顿第二定律列方程求解.②) 注意安培力的特点:③纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一

个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化,在分析问题时要注意上述联系.电磁感应中的动力学问题解题关键:在于通过运动状态的分析

来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条

件等,基本思路方法是:确定电源(e, r)①用法拉第电磁感应

定律和楞次定律求感应电动势的大小和方向. ②求回路中电流强度.

③分析研究导体受力情况(包含安培力,用左手定则确定其方向) . 导体运动 v 感应电动势 e 闭合电路感应电流 i 安培力 f 磁场对电流

的作用电磁感应阻碍欧姆定律f=bil临界状态 v 与 a 方向关系运动状态的分析 a 变化情况f=ma 合外力运动导体所受的安培力感应电

流 rrei???? ④列动力学方程或平衡方程求解. ab 沿导轨下滑过程中

受四个力作用,即重力 mg,支持力 fn 、摩擦力 ff和安培力 f安,如图所示, ab 由静止开始下滑后,将是??????????????????afiev安( ?? 为增大符号),所以这是

个变加速过程,当加速度减到 a=0 时,其速度即增到最大 v=vm,

此时必将处于平衡状态,以后将以 vm匀速下

滑????22cossinlbrmgvm?????? ???? (1) 电磁感应定律与能量

转化在物理学研究的问题中,能量是一个非常重要的课题,能量守

恒是自然界的一个普遍的、重要的规律.在电磁感应现象时,由磁

生电并不是创造了电能,而只是机械能转化为电能而已,在力学中:功是能量转化的量度.那么在机械能转化为电能的电磁感应现象时,是什么力在做功呢?是安培力在做功。

在电学中,安培力做正功(电势差 u) 将电能?? 机械能(如电动机) ,

安培力做负功(电动势 e) 将机械能?? 电能,必须明确在发生电磁感

应现象时,是安培力做功导致能量的转化.功能关系:电磁感应现

象的实质是不同形式能量的转化过程。

因此从功和能的观点入手,分析清楚电磁感应过程中能量转化关系,往往是解决电磁感应问题的关健,也是处理此类题目的捷径之一。

导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应

电流,机械能或其他形式能量便转化为电能,具有感应电流的导体

在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能

或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量

转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或

匀速转动),对应的受力特点是合外力为零,能量转化过程常常是

机械能转化为内能,解决电磁感应能量转化问题的基本方法是: ①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. ②画

出等效电路,求出回路中电阻消耗电功率表达式. ③分析导体机械能

的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改

变所满足的方程. (2) 电磁感应与动量、能量的综合方法: (1) 从受

力角度着手,运用牛顿运动定律及运动学公式变化过程是:导体受

力做切割 b 运动?? 产生 e 感?? i果) ?? 导线做 a 的变加速直线运

动(运动过程中 v 变, e 感=blv 也变, f 安=bll 亦变) ?? 当 f 安=f 外时, a=0,此时物体就达到最大速度.感(出现与外力方向相反的安

培力体现阻碍效导线受力做切割磁力线运动, 从而产生感应电动势,

继而产生感应电流, 这样就出现与外力方向相反的安培力作用, 于是

导线做加速度越来越小的变加速直线运动, 运动过程中速度 v 变, 电

动势 blv 也变, 安培力bil 亦变, 当安培力与外力大小相等时, 加速度为零, 此时物体就达到最大速度. (2) 从动量角度着手,运用动量定理或动量守恒定律①应用动量定理可以由动量变化来求解变力的冲量,如在非匀变速运动问题应用动量定理可以解决牛顿运动定律不易解答的问题.②在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒.解决此类问题往往要应用动量守恒定律. (3) 从能量转化和守恒着手,运用动能定律或能量守恒定律①基本思路:受力分析弄清哪些力做功,正功还是负功明确有哪些形式的能量参与转化,哪增哪减由动能定理或能量守恒定律列方程求解.②能量转化特点:其它能(如:机械

能) ???????????? ??安培力做负功电能 ???????? ?? ??电流做功内能(焦耳热) (3) 电磁感应与电路综合分析要将电磁感应、电路的知识,甚至和力学知识综合起来应用。

在电磁感应中切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流,因此电磁感应问题又往往跟电路问题联系起来,解决这类问题,一方面要考虑电磁学中的有关规律:如右手定则、楞次定律和法拉第电磁感应定律等;另一方面又要考虑电路中的有关规律:如欧姆定律,串并联电路的性质等。

解决电磁感应与电路综合问题的基本思路是: (1) 确定电源.明确哪部分相当于电源(产生感应电流或感应电动势的那部分电路) 就相当于电源,切割磁感线的导体或磁通量发生变化的回路利用法拉第电磁感应定律?? e 大小,利用楞次定律?? e 的正负极 (及 i 感方向) 需要强调的是:在电源内部电流是由负极流向正极的,在外部从正极流向外电路,并由负极流入电源.如无感应电流,则可以假设电流如果存在时的流向. (2) 分析电路结构,画出等效电路图. (3) 利用电路规律求解.主要闭合电路欧姆定律、串并联电路性质特点、电功、电热的公式.求解未知物理量. (4) 图象问题电磁感应中常涉及磁感应强度 b、磁通量、感应电动势 e 或 e 和感应电流 i 随时间t 变化的图线,即 b t 图线、一 t 图线、 e 一 t 图线和 i 一 t 图线。

对于切割产生应电动势和感应电流的情况,还常涉及感应电动势 e 和感应电流 i 随位移 x 变化的图线,即 e x 图线和 i x 图线。

这些图象问题大体上可分为两类:①由给定的电磁感应过程选出或

画出正确的图象,②或由给定的有关图象分析电磁感应过程,求解

相应的物理量,不管是何种类型,电磁感应中的图象常需利用右手

定则、楞次定律和法拉第电磁感应定律等规律分析解决感应电流的

方向和感应电流的大小。

电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,

从而推知感应电动势(电流)大小是否恒定. 用楞次定律判断出感应

电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围. 另外,要正确解决图像问题,必须能根据图像的意义把图像反映的

规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图

像中去,最终根据实际过程的物理规律进行判断. 棒平动切割 b 时

达到的最大速度问题;及电路中产生的热量 q;通过导体棒的电量

问题①22lbrfvm合外?? (合外f为导体棒在匀速运动时所受到的

合外力)。

求最大速度问题,尽管达最大速度前运动为变速运动,感应电流(电动势) 都在变化,但达最大速度之后,感应电流及安培力均恒定,

计算热量运用能量观点处理,运算过程得以简捷。

②q=wf -wf-2m21mv (wf 为外力所做的功; wf-为克服外界阻力做

的功);感应电量rnttrntretiq???????????????????????????? (一)电磁感应

中的双杆问题电磁感应中双杆问题是学科内部综合的问题,涉及

到电磁感应、安培力、牛顿运动定律和动量定理、 v v bvl a c d b

a a/

b b/ dd/

c c/ e f g 串联。

h 动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之

间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对双杆类问题进行分类例析 1、双杆向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。

2. 双杆同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向

3. 双杆中两杆都做同方向上的加速运动。双杆中的一杆在外力作用下做加速运动,另一杆在安培力作用下做

加速运动,最终两杆以同样加速度做匀加速直线运动。

如【例 3】(2003 年全国理综卷) 4.双杆在不等宽导轨上同向运动。

双杆在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,

所以不能利用动量守恒定律解题。如【例4】(2004 年全国理综卷)(二)电磁感应中的一个重要推论安培力的冲量公式rblblqtblitf?????????????? 感应电流通过直导线时,直导线在

磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小

为f=bli。

在时间△t 内安培力的冲量rblblqtblitf??????????????,式中 q

是通过导体截面的电量。

利用该公式解答问题十分简便,交流电的产生及变化规律一.交流

电大小和方向都随时间作周期性变化的电流,叫做交变电流。

其中按正弦规律变化的交变电流叫正弦式电流,正弦式电流产生于

在匀强电场中,绕垂直于磁场方向的轴匀速转动的线圈里,线圈每

转动一周,感应电流的方向改变两次。

二.正弦交流电的变化规律线框在匀强磁场中匀速转动. 1.当从

图 12 2 即中性面...位置开始在匀强磁场中匀速转动时,线圈

中产生的感应电动势随时间而变的函数是正弦函数:即 e= msin t,

i=imsin t ( t 是从该位置经 t 时间线框转过的角度; t 也是线速度 v 与磁感应强度 b 的夹角; t 是线框面与中性面的夹角) 2.当从图 12 1 位置开始计时:则: e= mcos t, i=imcos t. 3.对于单匝矩

形线圈来说 em=2blv=bs ;对于 n 匝面积为 s 的线圈来说

em=nbs , 对于总电阻为 r 的闭合电路来说reimm?? 三.几个物理

量 1.中性面:如图 12 2 所示的位置为中性面,对它进行以下说明: (1) 此位置过线框的磁通量最多. (2) 此位置磁通量的变化率为零.所以 e= msin t=0, i=imsin t=0 (3) 此位置是电流方向发生变

化的位置,具体对应图 12-3 中的 t2, t4时刻,因而交流电完成

一次全变化中线框两次过中性面,电流的方向改变两次,频率为

50hz 的交流电每秒方向改变 100 次. 2.交流电的最大值: m=b s 当为 n 匝时 m=nb s (1) 是匀速转动的角速度,其单位一定为弧

度/秒, nad/s (2) 最大值对应的位置与中性面垂直, 即线框面与磁

感应强度 b 在同一直线上. (3) 最大值对应图 12-3 中的 t1、 t2时刻,每周中出现两次. 3.瞬时值 e= msin t, i=imsin t 代入时

间即可求出.不过写瞬时值时,不要忘记写单位,如 m=2202 v,

=100 , 则 e=2202 sin100 tv, 不可忘记写伏,电流同样如此. 4.有

效值:为了度量交流电做功情况人们引入有效值,它是根据电流的

热效应而定的.就是分别用交流电,直流电通过相同阻值的电阻,

在相同时间内产生的热量相同,则直流电的值为交流电的有效

值. (1) 有效值跟最大值的关系 m= 2 u 有效, im= 2 i有效 (2) 伏特表与安培表读数为有效值. (3) 用电器铭牌上标明的电压、电流值

是指有效值. 5.周期与频率:交流电完成一次全变化的时间为周期;每秒钟完成全变化的次数叫交流电的频率.单位1/秒为赫兹(hz).四、最大值、平均值和有效值的应用 1、正弦交变电流

的电动势、电压和电流都有最大值、有效值、瞬时值和平均值的区别。

以电动势为例:最大值用 em表示,有效值用 e 表示,瞬时值用 e 表示,平均值用 e 表示。

它们的关系为e=em/ 2 , e=emsin t。

平均值不常用,必要时要用法拉第电磁感应定律直接求:tne????????。

切记122eee????。

特别要注意:有效值和平均值是不同的两个物理量................,有效值是对能的

平均结果,平均值是对时间的平均值。

在一个周期内的前半个周期内感应电动势的平均值为最大值的2/ 倍,而一个周期内的平均感应电动势为零。

2、我们求交流电做功时用有效值,求通过某一电阻电量时一定要

用电流的平均值交流电,在不同时间内平均感应电动势,平均电流

不同.考虑电容器的耐压值时则要用最大值。

3、交变电流的有效值是根据电流的热效应规定的....................:让交

流和直流通过相同阻值的电阻,如果它们在相同的时间内产生的热

量相等,就把这一直流的数值叫做这一交流的有效值。

⑴只有正弦交变电流......的有效值才一定是最大值的⑵

通常所说的交变电流的电流、电压; 交流电表的读数; 交流电器的额

定电压、额定电流; 保险丝的熔断2/2 倍。

(3) 生活中用的市电电压为..........220v压即时

值的表达式为.........u.=311sin314 ....,其最大值为......220..........t.v.。...2v=311v......(有时写

为.....310v....),频率

为.....50h...z.,所以其电.....2、理想

变压器的基本关系理想变压器:磁通量全部集中在铁芯中(没有漏磁)变压器本身不损耗能量。

对于理想变压器,物理量之间的依存关系:(1)理想变压器的输

入功率等于输出功率,且输入功率受输出功率控制。

(2)当原、副线圈、一定时,输出电压由决定,与负载无关。

且有。

(3)当原、副线圈、一定时,输入电流由输出电流决定,且有关系,而与所接负载的大小有关。

(4)当有若干个副线圈时,其总的约束关系为各线圈的电压关系

与初级线圈电压的关系跟线圈匝数关系不变。

各线圈中电流的关系为(5)变压器的负载越大,是指并接在副线

圈上用电器越多,即负载电阻越小。

3、远距离输电应注意的问题(1)远距离输电要解决的关键问题是减少输电线上的电能损耗,根据,具体方法有:其一是减少输电线

的电阻,用电阻率小的材料或加大导线的横截面积。

实际分析表明其作用十分有限。

其二是提高输电电压,减小输电电流,这是一种有效的方法。

(2)要能画出远距离输电电路,能帮助自己进行分析问题,电路

如图。

(3)善于以变压器为界划分好各个回路,对各个回路独立运用欧

姆定律、焦耳定律和电功、电功率进行分析计算。

(4)抓住各回路之间的物理量的联系,如变压器两侧的功率关系,电流、电压与匝数的关系;导线上的电能损耗,导线上的电压损失为。

(p 为输送的总功率)于远距离输电电路来说,属于非纯电阻电路(有电感),电功和电热是不相等的,计算时要引起注意;此外,

输电电线有两条,计算时要计算两条电线的电阻为整个输电线的总

电阻。

4、三相交流电(1)三相交流电的产生:三相交流电是由三个互

成 1200 角的线圈,同时绕垂直磁场中轴共同转动,线圈中产生三

个交变电动势,输出的电流是三相电流;这三个电动势大小相相等,周期相同,依次相差个周期达到最大值。

(2)三相交流电的连接方法:发电机三个线圈可发采用 y 接法,

也可以采用接法,具体接法要根据电路要求;同样用电负载的接法

也有用 y 接法和接法,具体根据用电器的接法要求而定。

但要注意 y接法和接法不是以往的串、并联。

(3)相电压、线电压均为交流电的有效值,目前我国民用电采用三相四线制供电,可提供有效值为220v(一相与地间之间的电压), 380v(两根相线之间的电压)两种电压。

他们的最大值分别是v,v。

但要注意:与的关系是不同的。

【篇二:高二物理3-2知识点】

第四章电磁感应

1 划时代的发现

2 探究电磁感应的产生条件

3 楞次定律

4 法拉第电磁感应定律

5 电磁感应规律的应用

6 互感和自感

7 涡流电磁阻尼和电磁驱动

第五章交谈电流

1 交变电流

2 描述交变电流的理量

3 电感和电容对交变电流的影响

4 变压器

5 电能的输送

第六章传感器

1 传感器及其工作原理

2 传感器的应用(一)

3 传感器的应用(二)

4 传感器的应用实验

附一些元器件的原理和使用要点课题研究怎样把交流变成直流

物理必修二 知识点归纳

2017—2018学年度下学期高一物理组 主备教师:夏春青 第五章曲线运动 一、教学目标 使学生在理解曲线运动的基础上,进一步学习曲线运动中的两种特殊运动,抛体运动以及圆周运动,进而学习向心加速度并在牛顿第二定律的基础上推导出向心力,结合生活中的实际问题对曲线运动进一步加深理解。 二、教学内容 1.曲线运动及速度的方向; 2.合运动、分运动的概念; 3.知道合运动和分运动是同时发生的,并且互不影响; 4.运动的合成和分解; 5.理解运动的合成和分解遵循平行四边形定则; 6.知道平抛运动的特点,理解平抛运动是匀变速运动,会用平抛运动的规律解答有关问题; 7.知道什么是匀速圆周运动; 8.理解什么是线速度、角速度和周期; 9.理解各参量之间的关系;10.能够用匀速圆周运动的有关公式分析和解决有关问题;11.知道匀速圆周运动是变速运动,存在加速度。12.理解匀速圆周运动的加速度指向圆心,所以叫做向心加速度;13.知道向心加速度和线速度、角速度的关系;14.能够运用向心加速度公式求解有关问题;15.理解向心力的概念,知道向心力大小与哪些因素有关.理解公式的确切含义,并能用来计算;会根据向心力和牛顿第二定律的知识分析和讨论与圆周运动相关的物理现象; 16.培养学生的分析能力、综合能力和推理能力,明确解决实际问题的思路和方法。 三、知识要点

涉及的公式: §5-1 曲线运动 & 运动的合成与分解 一、曲线运动 1.定义:物体运动轨迹是曲线的运动。 2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。 3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。 ②运动类型:变速运动(速度方向不断变化)。 ③F 合≠0,一定有加速度a 。 ④F 合方向一定指向曲线凹侧。 ⑤F 合可以分解成水平和竖直的两个力。 4.运动描述——蜡块运动 二、运动的合成与分解 1.合运动 与分运动的关系: 等时性、独立性、等效性、矢量性。 2.互成角度的两个分运动的合运动的判断: ①两个匀速直线运动的合运动仍然是匀速直线运动。 ②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。 ③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。

上海市高中物理知识点总结完整版

直线运动 知识点拨: 1. 质点 用一个只有质量没有形状的几何点来代替物体。这个点叫质点。一个实际的物体能否看作质点处理的两个基本原则:(1)做平动的物体。(2)物体的几何尺寸相对研究的距离可以忽略不计。 2. 位置、路程和位移 (1) 位置:质点在空间所对应的点。 (2) 路程:质点运动轨迹的长度。它是标量。 (3) 位移:质点运动位置的变化,即运动质点从初位置指向末位置的有 向线段。它是矢量。 3. 时刻和时间 (1) 时刻:是时间轴上的一个确定的点。如“3秒末”和“4秒初”就 属于同一时刻。 (2) 时间:是时间轴上的一段间隔,即是时间轴上两个不同的时刻之差。 21t t t =- 4. 平均速度、速度和速率 (1) 平均速度(v ):质点在一段时间内的位移与时间的比值,即v = s t ?? 。它是矢量,它的方向与Δs 的方向相同。在S - t 图中是割线的斜率。 (2) 瞬时速度(v ):当平均速度中的Δt →0时,s t ??趋近一个确定的值。 它是矢量,它的方向就是运动方向。在S - t 图中是切线的斜率。 (3) 速率:速度的大小。它是标量。 5. 加速度 描写速度变化的快慢。它是速度的变化量与变化所用的时间之比值,即:

a =t v ??。 它是矢量,它的方向与Δv 的方向相同。当加速度方向与速度 方向一致时,质点作加速运动;当加速度方向与速度方向相反时,质点作减速运动。 6. 匀变速直线运动规律(特点:加速度是一个恒量) (1)基本公式: S = t + 12 a t2 = v0 + a t (2)导出公式: ① 2 - v02 = 2 ② S t - a t2 ③ v == 2 t v v + ④ 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数: S Ⅱ-S Ⅰ=2 (a 一匀变速直线运动的加速度 T 可导出: - =(M -N) ⑤ A B 段中间时刻的即时速度⑥ 段位移中点的即时速度注:无论是匀加速还是匀减速直线运动均有: 2 < 2 ⑦ 初速为零的匀加速直线运动, 在第1s 内、第 2s 内、第3s 内……第内的位移之比为: S Ⅰ:S Ⅱ:S Ⅲ:……: = 1:3:5……:(21); 1、 2、3、…… ⑧ 初速为零的匀加速直线运动,在第1米内、第2米内、第3米内……第n 米内的时间之比为: t Ⅰ:t Ⅱ:t Ⅲ:…:=1:( )21-:()23-……(n n --1); 1、2、3、 7. 匀减速直线运动至停止:

高二物理下学期知识点

高二物理下学期知识点 高二物理下学期知识点1 电场 1.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=?m2/C2,Q1、 Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 2.两种电荷、电荷守恒定律、元电荷:(e=);带电体电荷量等于元电荷的整数倍 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 6.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 7.电势与电势差:UAB=B,UAB=WAB/q=-EAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电场力做功与电势能变化EAB=-WAB=-qUAB(电势能的

增量等于电场力做功的负值) 10.电势能:EA=qA{EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)} 11.电势能的变化EAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值} 12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=S/4kd(S:两极板正对面积,d:两极板间的垂直距离,:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=EK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动 d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

高二下册物理复习知识点

高二下册物理复习知识点 【篇一】高二下册物理复习知识点 太阳耀斑是发生在太阳大气局部区域的一种最剧烈的爆发现象,在短时间内释放大量能量,引起局部区域瞬时加热,向外发射各种电磁辐射,并伴随粒子辐射突然增强。 1、影响 耀斑对地球空间环境造成很大影响。太阳色球层中一声爆炸,地球大气层即刻出现缭绕余音。耀斑爆发时,发出大量的高能粒子到达地球轨道附近时,将会严重危及宇宙飞行器内的宇航员和仪器的安全。当耀斑辐射来到地球附近时,与大气分子发生剧烈碰撞,破坏电离层,使它失去反射无线电电波的功能。无线电通信尤其是短波通信,以及电视台、电台广播,会受到干扰甚至中断。耀斑发射的高能带电粒子流与地球高层大气作用,产生极光,并干扰地球磁场而引起磁暴。 此外,耀斑对气象和水文等方面也有着不同程度的直接或间接影响。正因为如此,人们对耀斑爆发的探测和预报的关切程度与日俱增,正在努力揭开耀斑迷宫的奥秘。 2、耀斑的成因 太阳大气中充满着磁场,磁场结构越复杂,越容易储存更多的磁能。 当储存在磁场中的磁能过多时,会通过太阳爆发活动释放能量,太阳耀斑即是太阳爆发活动的一种形式。

长期的观测发现,大多数耀斑都发生在黑子群的上空,且黑子群的结构和磁场极性越复杂,发生大耀斑的几率越高。平均而言,一个正常发展的黑子群几乎几小时就会产生一个耀斑,不过真正对地球有强烈影响的耀斑则很少。【篇二】高二下册物理复习知识点 氧化物由两种元素组成,其中一种元素是氧元素的化合物。能和氧气反应产生的物质叫做氧化物。根据化学性质不同,氧化物可分为酸性氧化物和碱性氧化物两大类。 1、酸碱性 根据酸碱特性,氧化物可分成4类:酸性的、碱性的、两性的和中性的。 (1)酸性氧化物。溶于水呈酸性溶液或同碱发生的氧化物是酸性氧化物。例如: P4O10+6H2O→4H3PO4 Sb2O5+2NaOH+5H2O→2Na[Sb(OH)6] 大多数非金属共价型氧化物和某些电正性较弱的高氧化态金属的氧化物都是酸性的。 (2)碱性氧化物。溶于水呈碱性溶液或同酸发生的氧化物是碱性氧化物。例如: CaO+H2O→Ca(OH)2 Fe2O3+6HCl→2FeCl3+3H2O 大多数电正性元素的氧化物是碱性的。 (3)两性氧化物。同强酸作用呈碱性,又同强碱作用呈

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高二下册物理知识点归纳(一)

1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电=9.0×109Nm2/C2,Q1、Q2:两点电荷的(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A 点的电势(V)} 10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2, Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

2017高中物理会考知识点归纳

高中物理学业水平考试要点解读 第一章 运动的描述 第二章 匀变速直线运动的描述 要点解读 一、质点 1.定义:用来代替物体而具有质量的点。 2.实际物体看作质点的条件:当物体的大小和形状相对于所要研究的问题可以忽略不计时,物体可看作质点。 二、描述质点运动的物理量 1.时间:时间在时间轴上对应为一线段,时刻在时间轴上对应于一点。与时间对应的物理量为过程量,与时刻对应的物理量为状态量。 2.位移:用来描述物体位置变化的物理量,是矢量,用由初位置指向末位置的有向线段表示。路程是标量,它是物体实际运动轨迹的长度。只有当物体作单方向直线运动时,物体位移的大小才与路程相等。 3.速度:用来描述物体位置变化快慢的物理量,是矢量。 (1)平均速度:运动物体的位移与时间的比值,方向和位移的方向相同。 (2)瞬时速度:运动物体在某时刻或位置的速度。瞬时速度的大小叫做速率。 (3)速度的测量(实验) ①原理:t x v ??=。当所取的时间间隔越短,物体的平均速度v 越接近某点的瞬时速度v 。然而时间间隔取得过小,造成两点距离过小则测量误差增大,所以应根据实际情况选取两个测量点。 ②仪器:电磁式打点计时器(使用4∽6V 低压交流电,纸带受到的阻力较大)或者电火花计时器(使用220V 交流电,纸带受到的阻力较小)。若使用50Hz 的交流电,打点的时间间隔为0.02s 。还可以利用光电门或闪光照相来测量。 4.加速度 (1)意义:用来描述物体速度变化快慢的物理量,是矢量。 (2)定义:t v a ??=,其方向与Δv 的方向相同或与物体受到的合力方向相同。 (3)当a 与v 0同向时,物体做加速直线运动;当a 与v 0反向时,物体做减速直线运动。加速度与速度没有必然的联系。 三、匀变速直线运动的规律 1.匀变速直线运动 (1)定义:在任意相等的时间内速度的变化量相等的直线运动。 (2)特点:轨迹是直线,加速度a 恒定。当a 与v 0方向相同时,物体做匀加速直线运动;反之,物体做匀减速直线运动。 2.匀变速直线运动的规律

高二物理下册知识点归纳5篇

高二物理下册知识点归纳5篇 高二是承上启下的一年,是成绩分化的分水岭,成绩往往形成两极分化:行则扶摇直上,不行则每况愈下。下面是我给大家带来的高二物理下册知识点总结,希望能帮助到大家! 高二物理下册知识点总结1 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量 (C),t:时间(s)} 2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P 总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比) 电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+ 电流关系I总=I1=I2=I3I并=I1+I2+I3+ 电压关系U总=U1+U2+U3+U总=U1=U2=U3 功率分配P总=P1+P2+P3+P总=P1+P2+P3+ 高二物理下册知识点总结2 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电=9.0×109Nm2/C2,Q1、Q2:两点电荷的(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),

高二物理知识点总结

电场 库仑定律、电场强度、电势能、电势、电势差、电场中的导体、导体 知识要点: 1、电荷及电荷守恒定律 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间 的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷 e =?-1610 19 .C 。 ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带 电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 2、库仑定律 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距 离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =122 , 其中比例常数K 叫静电力常量,K =?90109.N m C 22·。 库仑定律的适用条件是(a)真空,(b)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时, 可以使用库仑定律,否则不能使用。例如半径均为r 的金属球如 图9—1所示放置,使两球边缘相距为r ,今使两球带上等量的异种电荷Q ,设两电荷Q 间的库仑力大小为F ,比较F 与K Q r 22 3() 的大小关系,显然,如果电荷 能全部集中在球心处,则两者相等。依题设条件,球心间距离3r 不是远大于r ,故不能把两带电体当作点电荷处理。实际上,由于异种电荷的相互吸引,使电荷分布在两球较靠近的球面处,这样电荷间距离小于3r ,故F K Q r >22 3() 。同理, 若两球带同种电荷Q ,则F K Q r <22 3() 。 3、电场强度 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力 F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是E F q = ,场强 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。 由场强度E 的大小,方向是由电场本身决定的,是客观存在的,与放不放检

高二物理知识点归纳总结五篇精选

高二物理知识点归纳总结五篇精选 高中学习容量大,不但要掌握目前的知识,还要把高中的知识与初中的知识溶为一体才能学好。在读书、听课、研习、总结这四个环节都比初中的学习有更高的要求。下面就是给大家带来的高二物理知识点总结,希望能帮助到大家! 高二物理知识点总结1 一、功:功等于力和物体沿力的方向的位移的乘积; 1、计算公式:w=Fs; 2、推论:w=Fscosθ,θ为力和位移间的夹角; 3、功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功; 二、功率:是表示物体做功快慢的物理量; 1、求平均功率:P=W/t; 2、求瞬时功率:p=Fv,当v是平均速度时,可求平均功率; 3、功、功率是标量;

三、功和能间的关系:功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化; 四、动能定理:合外力做的功等于物体动能的变化。 1、数学表达式:w合=mvt2/2-mv02/2 2、适用范围:既可求恒力的功亦可求变力的功; 3、应用动能定理解题的优点:只考虑物体的初、末态,不管其中间的运动过程; 4、应用动能定理解题的步骤: (1)对物体进行正确的受力分析,求出合外力及其做的功; (2)确定物体的初态和末态,表示出初、末态的动能; (3)应用动能定理建立方程、求解 五、重力势能:物体的重力势能等于物体的重量和它的速度的乘积。 1、重力势能用EP来表示; 2、重力势能的数学表达式:EP=mgh; 3、重力势能是标量,其国际单位是焦耳; 4、重力势能具有相对性:其大小和所选参考系有关;

5、重力做功与重力势能间的关系 (1)物体被举高,重力做负功,重力势能增加; (2)物体下落,重力做正功,重力势能减小; (3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关 六、机械能守恒定律:在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。 1、机械能守恒定律的适用条件:只有重力或弹簧弹力做功; 2、机械能守恒定律的数学表达式: 3、在只有重力或弹簧弹力做功时,物体的机械能处处相等; 4、应用机械能守恒定律的解题思路 (1)确定研究对象,和研究过程; (2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律; (3)恰当选择参考平面,表示出初、末状态的机械能; (4)应用机械能守恒定律,立方程、求解;

高一物理下标准知识点

高一物理必修2知识点复习 一、 曲线运动 1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。 2、物体做直线或曲线运动的条件: (已知当物体受到合外力F 作用下,在F 方向上便产生加速度a ) (1)若F (或a )的方向与物体速度v 的方向相同,则物体做直线运动; (2)若F (或a )的方向与物体速度v 的方向不同,则物体做曲线运动。 3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。 4、平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。 两分运动说明: (1)在水平方向上由于不受力,将做匀速直线运动; (2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。 5、以抛点为坐标原点,水平方向为x 轴(正方向和初速度的方向相同),竖直方向为y 轴,正方向向下,则物体在任意时刻t 的位置坐标为: 2021,gt y t v x == 6、①水平分速度:0v v x =②竖直分速度:gt v y = ③t 秒末的合速度::22y x v v v += ④任意时刻的运动方向可用该点速度方向与x 轴的正方向的夹角θ表示:x y v v =θtan 二、圆周运动 1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。 2、描述匀速圆周运动快慢的物理量 (1)线速度v :质点通过的弧长和通过该弧长所用时间的比值,即v =s/t ,单位m/s ;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上 **匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。 (2)角速度ω:ω=φ/t(φ指转过的角度,转一圈φ为π2),单位 rad/s 或1/s ;对某一确定的匀速圆周运动而言,角速度是恒定的 (3)周期T ,频率f =1/T (4)线速度、角速度及周期之间的关系: r v T r v T ωππω=== ,2,2 3、向心力:r m F 2ω=,或者r v m F 2=,r T m F 2)2(π= 向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。 5、向心加速度:2a r ω=,或2v a r =或r T a 2)2(π= 描述线速度变化快慢,方向与向心力的方向相同, 6,注意的结论: (1)由于a 向方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。 (2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。 (3)做匀速圆周运动的物体受到的合外力就是向心力。 7、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。 三、万有引力定律及其应用

高二下册物理磁现象及磁场的知识点归纳:高二磁场知识点

高二下册物理磁现象及磁场的知识点归纳:高二磁 场知识点 1、磁现象: 磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。 磁体:具有磁性的物体,叫做磁体。 磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体; ②来源:天然磁体(磁铁矿石)、人造磁体; ③保持磁性的时间长短:硬磁体(永磁体)、软磁体。 磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。 磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。 磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。 无论磁体被摔碎成几块,每一块都有两个磁极。 磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。 2、磁场: 磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。

磁场的基本性质:对放入其中的磁体产生磁力的作用。 磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。 磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识: ①磁感线是假想的曲线,本身并不存在; ②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向; ③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密; 3、地磁场: 地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。 指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。 地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。(《梦溪笔谈》)

高二物理选修知识点总结

高二物理选修3-1知识点总结 知识要点: 1.电荷 电荷守恒定律 点电荷 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用 力就是通过电场发生的。电荷的多少叫电量。基本电荷e =?-161019.C 。带电体电荷量等于元电荷的整数倍(Q=ne ) ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。 2.库仑定律 (1)公式 F K Q Q r =1 22 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =1 22,其中比例常数K 叫静电力常量,K =?90109.N m C 22·。(F:点电荷间的作用力(N), Q 1、Q 2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) (2)库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场 电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 4.电场强度 点电荷的电场 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是q F E =,E 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q :检验电荷的电量(C)) 电场强度E 的大小,方向是由电场本身决定的,是客观存在的,与检验电荷无关。与放

高二物理必修三知识点总结分享

高二物理必修三知识点总结分享 高二是承上启下的一年,是成绩分化的分水岭,成绩往往形成两极分化:行则扶摇直上,不行则每况愈下。下面就是给大家带来的高二物理必修三知识点,希望能帮助到大家! 高二物理必修三知识点1 1.万有引力定律:引力常量g=6.67×n?m2/kg2 2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点) 3.万有引力定律的应用:(中心天体质量m,天体半径r,天体表面重力加速度g) (1)万有引力=向心力(一个天体绕另一个天体作圆周运动时) (2)重力=万有引力 地面物体的重力加速度:mg=gg=g≈9.8m/s2 高空物体的重力加速度:mg=gg=g9.8m/s2

4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是的。 由mg=mv2/r或由==7.9km/s 5.开普勒三大定律 6.利用万有引力定律计算天体质量 7.通过万有引力定律和向心力公式计算环绕速度 8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义) 高二物理必修三知识点2 一、静电的利用 1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有: 静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。 2、利用高压静电产生的电场,应用有: 静电保鲜、静电灭菌、作物种子处理等。 3、利用静电放电产生的臭氧、无菌消毒等

雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。 二、静电的防止 静电的主要危害是放电火花,如油罐车运油时,因为油与金属的振荡摩擦,会产生静电的积累,达到一定程度产生火花放电,容易引爆燃油,引起事故,所以要用一根铁链拖到地上,以导走产生的静电。 另外,静电的吸附性会使印染行业的染色出现偏差,也要注意防止。 2、防止静电的主要途径: (1)避免产生静电。如在可能情况下选用不容易产生静电的材料。 (2)避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。 高二物理必修三知识点3 一、电容器与电容 1、电容器、电容 (1)电容器:两个彼此又互相的导体都可构成电容器。

高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结 高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍;

五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质 六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)3、该公式适用于一切电场;4、点电荷的电场强度公式:E=kQ/r2 七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强; 八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。1、电场线不是客观存在的线;2、电场线的形状:电场线起于正电荷终于负电荷;G:\用锯木屑观测电场线.DAT(1)只有一个正电荷:电场线起于正电荷终于无穷 远;(2)只有一个负电荷:起于无穷远,终于负电荷;(3)既有正电荷又有负电荷:起于正电荷终于负电荷;3、电场线的作用:1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;4、电场线的特点:1、电场线不是封闭曲线;2、同一电场中的电场线不向交; 九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;1、匀强电场的电场线是一簇等间距的平行线;2、平行板电容器间的电是匀强电场;场

相关文档
最新文档