变压器油击穿电压试验

变压器油击穿电压试验
变压器油击穿电压试验

变压器油耐压试验操作程序

一、概述

对变压器油均匀施加电压,当电压达到某一值时,变压器油将遭受破坏而失去电阻、伴随着电弧的产生而发生导电,这一电压叫做变压器油的击穿电压,常以kV 表示。

击穿电压和试验条件紧密相关,这些条件包括:施加电压的波形、频率、峰值因数、试验变压器的短路电流、电极的形状、电极间距离、电极表面状况、油杯容积、升压速度、试验时的温度、湿度。由于平行试验分散性大,故一般要做几次试验,取所有结果的平均值。这样,从油倒入油杯到首次击穿的时间、每次击穿的间隔期间、间隔期间内是否搅拌油样也都影响试验结果,成为必须严加控制的试验条件。

二、操作方法

(1)升压速度:2kV / 每秒。

(2)静置时间:从油注入油杯中到第一次施加电压的时间间隔为静置时间。静置的目的是等待气泡自行消失,因为电极间隙中存在游离气泡时会大大降低击穿电压。但该时间不得超过10min。

(3)击穿次数:6次,取算术平均值作为试验结果。

(4)击穿间隔:不超过5 分钟。

(5)搅拌:每次击穿后搅拌电极间隙附近的试油,避免残碳影响下次试验结果。

(6)温度:试油温度要与室温相同,以15-250C为宜,最好在200C。

(7)湿度:我国标准规定环境湿度不得大于75%。(实践证明,在高湿度环境中做试验,得到的击穿电压值往往偏低,是油吸收了空气中的水分所造成的。)安全警惕:试验结束必须先对地放电,再操作!

变压器油的击穿电压

变压器油的击穿电压 将电压施加于绝缘油时,随着电压增加,通过油的电流剧增,使之完全丧失所固有的绝缘性能而变成导体,这种现象称为绝缘油的击穿。绝缘油发生击穿时的临界电压值,称为击穿电压,此时的电场强度,称为油的绝缘强度,表明绝缘油抵抗电场的能力。击穿电压U (kV)和绝缘强度E (kV/cm)的关系为 E=U/d (2-26) 式中d-电极间距离(cm)。 纯净绝缘油与通常含有杂质的绝缘油具有不同的击穿机理。 前者的击穿是由于游离所引起,可用气体电介质击穿的机理来解释,即在高电场强度下,油分子碰撞游离成正离子和电子,进而形成了电子崩。电子崩向阳极发展,而积累的正电荷则聚集在阴极附近,最后形成一个具有高电导的通道,导致绝缘油的击穿。 通常绝缘油总是或多或少含有杂质,在这种情况下,杂质是造成绝缘油击穿的主要原因。油中水滴、纤维和其他机械杂质的介电系数ε比油的要大得多(纤维的ε=7,水的ε=80,而变压器油的ε≈2.3),因此在电场作用下,杂质将被吸引到电场强度较大的区域,在电极间构成杂质“小桥”,从而使油的击穿强度降低。如杂质足够多,则还能构成贯通电极间隙的“小桥”,流过较大的泄漏电流,使之强烈发热,并使油和水局部沸腾和气化,结果击穿就沿此“气桥”而发生。

下面分别分析影响绝缘油击穿电压的各主要因素。 (1)测量绝缘油击穿强度时采用的电极材料、电极形状和电极面积对油的绝缘强度有影响。根据试验数据得知,在同样的试验条件下,不同电极材料测量的同种油样绝缘强度的排列顺序为Fe<黄铜

变压器油的标准

变压器油的标准: 变压器绝缘油的常规试验项目(物理--化学性质的项目) 1》在20/40℃时℃比重不超过0.895(新油)。 2》在50℃时粘度(思格勒)不超过1.8(新油)。 3》闪光点(℃)不低于135(运行中的油不比新油降低5℃以上)。 4》凝固点(℃)不高于-25(在月平均最低气温不低于-10℃的地区,如无凝固点为-25℃的绝缘油时,允许使用凝固点为-10℃的油)。 5》机械混合物无。 6》游离碳无。 7》灰分不超过(%)0.005(运行中的油0.01)。 8》活性硫无。 9》酸价(KOH毫克/克油)不超过0.05(运行中的油0.4)。 10》钠试验的等级为2。 11》安定性:<1>氧化后的酸价不大于0.35。<2>氧化后沉淀物含量(%)0.1。12》电气绝缘强度(标准间隙的击穿电压)不低于(KV):<1>用于35KV及以上的变压器(40)。<2>用于6~35KV的变压器(30)。<3>用于6KV以下的变压器(25)。 13》溶解于水的酸或殓无。 14》水分无。 15》在+5℃时的透明度(盛于试管内)透明。 16》tgδ和体积电阻(如果浸油后的变压器tgδ和C2/C50值增高则应进行测量)tgδ不超过(%)在20℃时为1(运行中为2),在70℃时为4(运行中为7),体积电阻(无规定值但应与最低值进行比较)。 绝缘油和SF6 气体gb50150 20.0.1 绝缘油的试验项目及标准,应符合表20.0.1 的规定。 表20.0.1 绝缘油的试验项目及标准

行分析,其结果应符合表 20.0.1 中第8、11项的规定。混油后还应按表20.0.2 中的规定进行绝缘油的试验。 20.0.4 SF6新气到货后,充入设备前应按国家标准《工业六氟化硫》GB12022 验收,对气瓶的抽检率为10%,其他每瓶只测定含水量。 20.0.5 SF6气体在充入电气设备24h后方可进行试验。

变压器油的标准

变压器油的标准:变压器绝缘油的常规试验项目(物理--化学性质的项目) 1》在20/40℃时℃比重不超过0.895(新油)。 2》在50℃时粘度(思格勒)不超过1.8(新油)。 3》闪光点(℃)不低于135(运行中的油不比新油降低5℃以上)。 4》凝固点(℃)不高于-25(在月平均最低气温不低于-10℃的地区,如无凝固点为-25℃的绝缘油时,允许使用凝固点为-10℃的油)。 5》机械混合物无。 6》游离碳无。 7》灰分不超过(%)0.005(运行中的油0.01)。 8》活性硫无。 9》酸价(KOH毫克/克油)不超过0.05(运行中的油0.4)。 10》钠试验的等级为2。 11》安定性:<1>氧化后的酸价不大于0.35。<2>氧化后沉淀物含量(%)0.1。12》电气绝缘强度(标准间隙的击穿电压)不低于(KV):<1>用于35KV及以上的变压器(40)。<2>用于6~35KV的变压器(30)。<3>用于6KV以下的变压器(25)。13》溶解于水的酸或殓无。 14》水分无。 15》在+5℃时的透明度(盛于试管内)透明。 16》tgδ和体积电阻(如果浸油后的变压器tgδ和C2/C50值增高则应进行测量)tgδ不超过(%)在20℃时为1(运行中为2),在70℃时为4(运行中为7),体积电阻(无规定值但应与最低值进行比较)。 绝缘油和SF6 气体gb50150 20.0.1 绝缘油的试验项目及标准,应符合表20.0.1 的规定。

20.0.2 新油验收及充油电气设备的绝缘油试验分类,应符合表20.0.2 的规定。 表20.0.2 电气设备绝缘油试验分类

20.0.3 绝缘油当需要进行混合时,在混合前,应按混油的实际使用比例先取混油样进行分析,其结果应符合表 20.0.1 中第8、11项的规定。混油后还应按表20.0.2 中的规定进行绝缘油的试验。 20.0.4 SF6新气到货后,充入设备前应按国家标准《工业六氟化硫》GB12022 验收,对气瓶的抽检率为10%,其他每瓶只测定含水量。 20.0.5 SF6气体在充入电气设备24h后方可进行试验。

浅谈绝缘油击穿试验 (1)

浅谈绝缘油击穿试验 张*兰 摘要:本文从实际绝缘油击穿试验中总结出了影响试验准确性的关键因素,并分别进行分析及制定解决办法。 关键词:绝缘油;击穿;试验 绝缘油在充油电气设备中起绝缘、冷却和灭弧的作用,在运行中,绝缘油经常受到氧气、湿气、高温、阳光等作用,性能会逐渐变坏,给电气设备的安全运行造成很大的影响,致使它不能充分发挥作用。为确保绝缘油性能良好,必须定期地对绝缘油进行试验,绝缘油击穿试验是考验其电气绝缘性能优劣程度的重要方法及手段。 绝缘油击穿电压测定值受多种因素的影响,使其准确性不能得到有效保证。通过实际试验,总结出以下几个影响准确性的关键因素:油的取样是否合理完善、试验时的环境因素、人为因素。 一、取样对试验结果的影响 取样是试验的基础,正确的取样技术和样品保存对保证试验结果准确性是相当重要的。因为取样时各种影响因素非常多,稍不注意就会将灰尘和杂质落入取样瓶中,导致取样不准确。对此,试验班要求试验人员每次取样前必须将取样瓶先用洗涤剂进行清洗,再用自来水冲洗干净并晾干,取样时取样瓶至少冲洗三遍方可取样,取样时保证油流细小且延瓶壁缓慢流下,并禁止取样人员对着瓶口讲话。 二、环境因素的影响 试验时的环境因素如温度、湿度、其它电场,磁场甚至空气中的灰尘、颗粒等都可能影响试验结果,因此应该在洁净干燥的实验室进行试验。但是由于条件所限,我们实验室所处环境位于避阴处,所以我们就要想办法使它达到干燥洁净、温度适宜试验的场所,这样才能减少外界因素的干扰。对此我们采取了如下措施:1、室内放置温湿度计监视温湿度,配置空调保证温湿度。2、试验时给油杯加装防尘盖。3、试验仪器旁边或仪器内放置干燥剂。4、试验仪器单独搁置,远离其它试验设备。

当前国内电力行业测定绝缘油的击穿电压采用了几种不同的方法和标准

当前国内电力行业测定绝缘油的击穿电压采用了几种不同的方法和 标准, 各方法之间有明显的差异, 导致测定结果不同。各部门对方法和标准的认识、理解不尽统一, 对结果的解释也不尽相同。 1测试方法 1.1 标准的比较 目前关于绝缘油击穿电压测试方法的标准比较常用的有GB/ T 507 -1986 《电气用油绝缘强度测定法》和DL/ T 429 - 1991 《电力系统油质试验方法》, 其中GB/ T 507 -1986 主要参照IEC 156绝缘油电气强度测定方法制定, 与IEC 156 差别很小。GB/ T 507 1986 和DL/ T 429 1991 这两种标准的测试方法( 前者简称方法一, 后者简称方法二) 差别较大, 主要差别有两点: 一是电极形状不同, 方法一采用球形和球盖形电极,方法二的电极为平板倒角形; 二是测定油杯容量不同, 方法一规定油杯容积为300~ 500 mL, 而方法二规定油杯容积不得小于200 mL ( DL/ T 429 1991 的附录中另有小电极、小油杯、小间隙的试验方法) 。在D L/ T 429 1991 中有一条注释: 经过滤处理, 脱气和干燥后的油及电压高于220 kV以上的电力设备, 应按GB 507 电气用油绝缘强度测定法, 采用球盖形电极进行试验。这两种方法的应用在相关变压器油质量测定标准中有明显的规定: GB/ T 2536 1990 变压器油和SH0040 1991 超高压变压器油中规定击穿电压的测定采用方法一; 在GB/ T 7595 2000 运行中变压器油的质量标准中规

定击穿电压的测定采用方法一或方法二; 在GB/ T 50150 1991 电气设备安装工程电气设备交接试验标准中规定绝缘油的电气强 度试验采用方法一, 但试验电极采用平板倒角形电极。 1.2 标准的执行现状 目前国内电力行业, 尤其是供电系统和安装系统, 绝大多数采用方 法二测试绝缘油击穿电压, 即以平板倒角形电极和较小的油杯进行 测试, 但又忽略了D L/ T 429 1991中的注释, 无论是什么状态的油, 从什么电压等级的电气设备中采集的油样, 统统都用方法二进 行测试。 1.2.2 原因分析 在电力系统中基本上采用方法二测试绝缘油击穿电压, 这种状况的 形成有历史沿革的原因, 也有方法一用油量大的原因。 多年来, 各用油部门一直采用方法二进行击穿电压的测试, 相应的 试验设备( 如电极、油杯) 都为适应方法二而设计。要严格执行标准, 针对不同油样, 随时更换油杯、电极, 必须对测试设备进行更新改造, 这给试验人员增添了许多麻烦。绝大多数情况下, 试验人员就用一种电极、一种油杯测试所有油样, 若试验结果能满足不同等级要求的绝缘油击穿电压标准, 这也是一种不错的选择, 而且不会产生任何分歧, 但是, 如果测定值介于合格与不合格之间, 麻烦就出现了。例如, 需测定一台500kV 运行中变压器油的击穿电压, 采用平板倒角形 电极和小油杯, 以及相配套的升压设备等试验设备, 电极之间距离 2 5 mm, 测定的结果为46 kV,这显然不满足GB/ T 7595 2000 规

变压器油耐压试验的方法与分析

变压器油耐压试验的方法与分析 作者姓名:王晓超 作者单位:油化验班 报送单位:修试工区

变压器油耐压试验的方法与分析 【摘要】: 影响变压器油耐压试验的因素有很多,主要是试验方法的选择、环境的影响以及人为因素。在现有设备电压等级不断升高,而实验仪器更新慢的情况下,我们只有立足现有设备,保证变压器油实验结果的准确可靠。 【关键词】: 击穿电压、球形和球盖形电极、平板倒角形电极 【引言】 无论是在日常的维护或是设备新装过程中,变压 器油的耐压试验都是一项重要的质量标准,直接关系到设备 的安全运行。所以,试验结果的准确性就尤为重要。而不同 的方法和标准,导致测定结果不同。本文就试验方法及结果 的分析判断进行一些讨论。 1.试验方法 1.1.试验方法的分类 现阶段我国关于绝缘油击穿电压测试方法的标准比较 常用的有GB/T507—1986《电气用油绝缘强度测定法》和DL/T429—1991《电力系统油质试验方法》,其中GB/ T507—1986主要参照IEC156《绝缘油电气强度测定方法》制定,GB/T507—1986和DL/T429—1991这两种标 准的测试方法差别较大。

图1 试验方法的主要区别 1.2不同分类对击穿电压测定值的影响 选择1号样品油代表50~60KV的变压器油2号样品油代表40~50KV的变压器油 3号样品油代表30~40KV的变压器油 4号样品油代表20~30KV的变压器油

图2 实验数据的比较 从实验结果可以看出:使用三种不同结构形状电极测得击穿电压不论对那种油样,都以球形电极的击穿电压值为最高,球盖形次之,平板形相对较低。不同升压速度和不同间隔时间对击穿电压影响不大。 1.3 现状调查 我局在2008年以前,设备都是在220KV及以下的电压 等级。所以我们在变压器油耐压试验的方法上一直采用的是

绝缘油试验介绍

绝缘油试验介绍 绝缘油广泛应用于电力变压器、油断路器、充油电缆、电力电容器和套管等高压电气设备中,其作用有以下3个方面: 第一、绝缘作用。对变压器、电缆及电容器等固体绝缘进行浸渍和保护、填充绝缘中的气泡,防止外界空气和湿气侵入,保证绝缘可靠。 第二、冷却作用。对变压器等电气设备,热油经过散热器冷却,再回到变压器本体,使箱体内的绝缘油循环冷却,保持变压器温度在一定范围内。 第三、灭弧作用。油断路器中的绝缘油,除了具有绝缘作用外,还具有灭弧作用,促使断路器迅速可靠地切断电弧。 为了使绝缘油能够完成其本身的功能,它应具有较小的粘度、较低的凝固点、较高的闪点和耐压强度,以及有较好的稳定性。 在运行中,绝缘油经常受到氧气、湿气、高温、阳光等作用,性能会逐渐变坏,致使它不能充分发挥作用。为确保绝缘油性能良好,必须定期地对绝缘油进行试验。

表1 运行中变压器油质量标准 序号项目设备变压等级 kV 质量指标 检验方法 投入运行前的油运行油 1 外状透明、无杂质或悬浮物外观目视 2 水溶性酸 (pH值) >5.4 ≥4.2 GB/T7598 3 酸值, mgKOH/g ≤0.03 ≤0.1 GB/T7599或 GB/T 264 4 闪点(闭口),℃≥140(10号、 25号油) ≥135(45号油) 于新油原 始测定值 相比不低 于10 GB/T261 5 水分1), mg/L 330 ~ 500 220 ≤110及以下 ≤10 ≤15 ≤20 ≤15 ≤25 ≤35 GB/T7600或 GB/T7601 6 界面张力 (25℃),mN/ m ≥35 ≥19 GB/T6541 7 介质损耗因数 (90℃) 500 ≤330 ≤0.007 ≤0.010 ≤0.020 ≤0.040 GB/T5654 8 击穿电压2), kV 500 330 66 ~220 35及以下 ≥60 ≥50 ≥40 ≥35 ≥50 ≥45 ≥35 ≥30 GB/T507或 DL/T429.9 9 体积电阻率 (90℃) Ω·m 500 ≤330 ≥6×1010 ≥1×1010 ≥5×109 GB/T5654或 DL/T421 10 油中含气量,% (体积分数) 330 ~500 ≤1 ≤3 DL/T423 或DL/T450 11 油泥与沉淀物,% (质量分数) <0.02以下可忽略不计GB/T511 12 油中溶解气体 组分 含量色谱分析 按DL/T596―1996中第6、 7、9章 见附录A(标准的附录) GB/T17623 GB/T7252

变压器油的击穿电压

变压器油得击穿电压 将电压施加于绝缘油时,随着电压增加,通过油得电流剧增,使之完全丧失所固有得绝缘性能而变成导体,这种现象称为绝缘油得击穿。绝缘油发生击穿时得临界电压值,称为击穿电压,此时得电场强度,称为油得绝缘强度,表明绝缘油抵抗电场得能力。击穿电压U (kV)与绝缘强度E (kV/cm)得关系为 E=U/d (2-26) 式中d-电极间距离(cm)。 纯净绝缘油与通常含有杂质得绝缘油具有不同得击穿机理。 前者得击穿就是由于游离所引起,可用气体电介质击穿得机理来解释,即在高电场强度下,油分子碰撞游离成正离子与电子,进而形成了电子崩。电子崩向阳极发展,而积累得正电荷则聚集在阴极附近,最后形成一个具有高电导得通道,导致绝缘油得击穿。 通常绝缘油总就是或多或少含有杂质,在这种情况下,杂质就是造成绝缘油击穿得主要原因。油中水滴、纤维与其她机械杂质得介电系数ε比油得要大得多(纤维得ε=7,水得ε=80,而变压器油得ε≈2、3),因此在电场作用下,杂质将被吸引到电场强度较大得区域,在电极间构成杂质“小桥”,从而使油得击穿强度降低。如杂质足够多,则还能构成贯通电极间隙得“小桥”,流过较大得泄漏电流,使之强烈发热,并使油与水局部沸腾与气化,结果击穿就沿此“气桥”而发生。 下面分别分析影响绝缘油击穿电压得各主要因素。 (1)测量绝缘油击穿强度时采用得电极材料、电极形状与电极面积

对油得绝缘强度有影响。根据试验数据得知,在同样得试验条件下,不同电极材料测量得同种油样绝缘强度得排列顺序为Fe<黄铜

绝缘油是什么

绝缘油的作用是什么? 回答; 在高压电气设备中,有大量的充油设备(如变压器、互感器、油断路器等)。这些设备中的绝缘油主要作用如下。 (1)使充油设备有良好的热循环回路,以达到冷却散热的目的。在油浸式变压器中,就是通过油把变压器的热量传给油箱及冷却装置,再由周围空气或冷却水进行冷却的。 (2)增加相间、层间以及设备的主绝缘能力,提高设备的绝缘强度。例如油断路器同一导电回路断口之间绝缘。 (3)隔绝设备绝缘与空气接触,防止发生氧化和浸潮,保证绝缘不致降低。特别是变压器、电容器中的绝缘油,防止潮气侵入,同时还填充了固体绝缘材料中的空隙,使得设备的绝缘得到加强。 (4)在油路器中,绝缘油除作为绝缘介质之外,还作为灭弧介质,防止电弧的扩展,并促使电弧迅速熄灭。 绝缘油是什么? 回答 ; 绝缘油是人工合成的液体绝缘材料,简称合成油。由于矿物绝缘油是多种碳氢化合物的混合物,难以除净降低绝缘性能的组分,且制取工艺复杂,易燃烧,耐热性低,介电常数不高,因而人们研究、开发了多种性能优良的合成油。

针对变压器油,绝缘油都是怎么处理的? 回答 ; 变压器油的绝缘强度指的是变压器油的击穿电压。油被击穿的临界电压称为击穿电压,常以标准油杯的油耐压数值(kV)表示。由此可知,击穿电压是变压器油绝缘性能的主要指标。油的击穿电压太低,对切换开关或选择开关不能确保主通断触头在分接变换中的可靠熄弧,电弧重燃不熄导致级间短路发生,既损坏变压器级间绝缘,又可能造成OLTC烧毁或油室爆炸的重大事故;同时,导致OLTC主绝缘强度和内部绝缘强度的严重下降,若油的最小击穿电压低于绝缘应能耐受的电压,就会出现OLTC主绝缘和内部绝缘的闪络和严重短路事故。因此,对OLTC油室使用的变压器油提出绝缘强度的要求。对于不同绝缘水平的OLTC,其变压器油的击穿电压的要求有所不同。 理想纯净的油,单位体积的击穿概率呈正态分布,但运行中受过污染的变压器油,单位体积的击穿概率已不再呈正态分布。因为油中的杂质只可能使击穿电压降低,而不可能升高。当油中存在水分、游离碳和受潮的纤维等易击穿因子时,可以起“点火作用”,使油的击穿电压大大降低,出现最小击穿电压。由此可知,对于运行中的OLTC,不仅需要关注油的击穿电压,而且更应关注可能出现的最小击穿电压。 地面上的绝缘油着火,应该用什么进行灭火? 回答; 地面上的绝缘油着火,应该用干砂进行灭火。砂子可以隔绝空气,使火熄灭。通常灭火方式中水的密度比油大,会沉在油下面,且油水不溶,起不到灭

变压器油检测项目

变压器油检测项目 (1)凝固点;(2)含水量;(3)界面张力;(4)酸值;(5)水溶性酸堿度; (6)击穿电压;(7)闪点;(8)体积电阻率;(9) 介损(10) 色谱分析(11)绝缘油中糠醛含量分析 变压器油的检测项目及试验意义 1 外观:检查运行油的外观,可以发现油中不溶性油泥、纤维和脏物存在。在常规试验中,应有此项目的记载。 2 颜色:新变压器油一般是无色或淡黄色,运行中颜色会逐渐加深,但正常情况下这种变化趋势比较缓慢。若油品颜色急剧加深,则应调查是否设备有过负荷现象或过热情况出现。如其他有关特性试验项目均符合要求,可以继续运行,但应加强监视。 3 水分:水分是影响变压器设备绝缘老化的重要原因之一。变压器油和绝缘材料中含水量增加,直接导致绝缘性能下降并会促使油老化,影响设备运行的可靠性和使用寿命。对水分进行严格的监督,是保证设备安全运行必不可少的一个试验项目。 4 酸值:油中所含酸性产物会使油的导电性增高,降低油的绝缘性能,在运行温度较高时(如80℃以上)还会促使固体纤 维质绝缘材料老化和造成腐蚀,缩短设备使用寿命。由于油中酸值可反映出油质的老化情况,所以加强酸值的监督,对于采取正确的维护措施是很重要的。 5 氧化安定性:变压器油的氧化安定性试验是评价其使用寿命的一种重要手段。由于国产油氧化安定性较好,且又添加了抗氧化剂,所以通常只对新油进行此项目试验,但对于进口油,特别是不含抗氧化剂的油,除对新油进行试验外,在运行若干年后也应进行此项试验,以便采取适当的维护措施,延长使用寿命。 6 击穿电压:变压器油的击穿电压是检验变压器油耐受极限电应力情况,是一项非常重要的监督手段,通常情况下,它主要取决于被污染的程度,但当油中水分较高或含有杂质颗粒时,对击穿电压影响较大。 7 介质损耗因数:介质损耗因数对判断变压器油的老化与污染程度是很敏感的。新油中所含极性杂质少,所以介质损耗因数也甚微小,一般仅有0.01%~0.1%数量级;但由于氧化或过热而引起油质老化时,或混入其他杂质时,所生成的极性杂质和带电胶体物质逐渐增多,介质损耗因数也就会随之增加,在油的老化产物甚微,用化学方法尚不能察觉时,介质损耗因数就已能明显的分辨出来。因此介质损耗因数的测定是变压器油检验监督的常用手段,具有特殊的意义。 8 界面张力:油水之间界面张力的测定是检查油中含有因老化而产生的可溶性极性杂质的一种间接有效的方法。油在初期老化阶段,界面张力的变化是相当迅速的,到老化中期,其变化速度也就降低。而油泥生成则明显增加,因此,此方法也可对生成油泥的趋势做出可靠的判断。 9油泥:此法是检查运行油中尚处于溶解或胶体状态下在加入正庚烷时,可以从油中沉析出来的油泥沉积物。由于油泥在新油和老化油中的溶解度不同,当老化油中渗入新油时,油泥便会沉析出来,油泥的沉积将会影响设备的散热性能,同时还对固体绝缘材料和金属造成严重的腐蚀,导致绝缘性能下降,危害性较大,因此,以大于5%的比例混油时,必须进行油泥析出试验。 10 闪点:闪点对运行油的监督是必不可少的项目。闪点降低表示油中有挥发性可燃气体产生;这些可燃气体往往是由于电气设备局部过热,电弧放电造成绝缘油在高温下热裂解而产生的。通过闪点的测定可以及时发现设备的故障。同时对新充入设备及检修处理后的变压器油来说,测定闪点也可防止或发现是否混入了轻质馏份的油品,从而保障设备的安全运行。 11 油中气体组分含量:油中可燃气体一般都是由于设备的局部过热或放电分解而产生的。

(完整版)绝缘油击穿电压测定法

绝缘油击穿电压测定法 GB/T 507--2002 前言 本标准等效采用国际标准IEC 156:1995《绝缘油工频击穿电压测定法》,对GB/T507--1986《绝缘油介电强度测定法》进行修订 标准与IEC 156:1995的差异: 1.部分引用标准采用我国相应现行国家标准; 2.增加方法概要和试剂两章。 本标准与GB/T 507-1986的差异为: I.名称不同; 2.测定范围不同; 3.增加对切换系统的要求; 4.变压器和相配装置应能在电压大于15 kV时产生的最小短路电流不同; 5,电压峰值因数范围不同; 6.试样杯体积不同; 7.电极间距规定了公差; 8.原标准变压器所用交流电频率为50 Hz;本标准变压器所用交流电频率为48 H- 62 Hz; 9.两次测定之问停等时间不同; 10.断路器切断时间不同; H.增加了搅拌装置和电极制备。 本标准自实施之日起,代替GB/T 507--19860本标准由中国石油化工股份有限公司提出。本标准由中国石油化工股份有限公司石油化工科学研究院归口。 本标准起草单位:中国石油化工股份有限公司卜海高桥分公司炼油厂。 本标准主要起草人:顾贞艳、陆丽华。 本标准于1965年1月首次发布,1986年6月第一次修门。 绝缘油击穿电压测定法eqv IEC 156:1995 代替GB/ T 507 1986(91) Determination of the Insulating liquids breakdown voltageat power frequency 1范围 本标准规定了绝缘油击穿电压的测定方法。本标准适用于测定40 C粘度不大于350mm'/s的各种绝缘油,适用于未使用过的绝缘油的交接试验,也适用于设备监测和保养时对试样状况的评定。 2 引用标准 下列标准所包含的条文,通过引用而成为本标准的一部分。除非在标准中另有明确规定,下述引用标准都应是现行有效标准。 GB/7 4756 石油液体手工取样法 IEC 52 球隙(一球接地)电压测定法

IEC 60156-2018绝缘油 击穿电压测定法(中文翻译)

绝缘油击穿电压测定法 1 范围 本标准规定了绝缘油在交流击穿电压下的测定方法。本标准适用于测定40℃粘度不大于350mm2/s的各种绝缘油,适用于未使用过的绝缘油的交接试验,也适用于设备监测和保养时对试样状况的评定。 2 引用标准 下列标准所包含的条文,通过引用而成为本标准的一部分。凡是注日期的引用文件,仅引用的版本适用。凡是不注日期的引用文件,其最新版本(包括任何修正案)适用。 IEC 60475, 绝缘液体取样方法 3术语和定义 本文档中未列出任何术语和定义。 4 电气设备 4.1一般说明 电气设备由以下单元组成: 1)调压器, 2)升压变压器, 3)切换系统, 4)限流电阻, 5)测量装置。 以上两个或多个设备可在系统中以集成方式使用。 4.2 调压器

电压调节应使用自动控制系统实现测试电压的均匀升压。该设备不应引入谐波干扰(<3%),并且交流电源应无谐波。 4.3升压变压器 试验电压应是由正弦波交流电源(48 Hz-62 Hz)供电的升压变压器提供。电压值要连续增加。对电压源的控制要满足试验电压平缓均匀,有变化且无过冲或瞬变,其电压增长值(如由自耦变压器产生的)不能超过预期击穿电压的2%。变压器次级线圈中心点应接地。 4.4切换系统 如果电极之间出现持续电弧并且电极之间的电压降至低于500 V的电压,则电路应自动切断。。达到试样击穿电流时,升压变压器的初级线圈应与断路器相连,并在10 ms内断开电压。 :电流或电压感应元件的灵敏度取决于能量限制设备,只能给出近似的参考。 如本文前一版所述,如对有机硅液体进行多次击穿时需要切断时间<100μs的装置。 4.5限流电阻 为了保护设备并避免在硅油或酯油等液体击穿瞬间过度分解,应将限制击穿电流的电阻与测试系统串联插入。对于电压大于15 kV的情况,变压器及相关电路的短路电流应在10 mA ~25 mA内,这一点可通过电阻与高压变压器的初级线圈、次级线圈之一或同时相连得以实现。 4.6 测量装置 对于本标准,试验电压值定义为电压峰值除以。该电压的测量可通过将峰值电压表或其他类型的电压表与测试变压器的输人端或输出端相连,或者上述提供的专用线圈相连来测量。使用时按标准校正,该标准应达到所需侧量的全刻度。一种较满意的校正方法是变换标准法,此方法是将一种辅助测量设备置于连在高压电极间的试样杯的位置,使其具有与装有试样的试样杯相同的阻抗,辅助测量设备可按原级标准独立校正。 5 测试组件

关于变压器油击穿电压试验的几个问题

关于变压器油击穿电压试验的几个问题(图) 1测试方法 1.1标准的比较 目前关于绝缘油击穿电压测试方法的标准比较常用的有GB/T507—1986《电气用油绝缘强度测定法》和 DL/T429—1991《电力系统油质试验方法》,其中GB/T507—1986主要参照IEC156《绝缘油电气强度测定方法》制定,与IEC156差别很小。GB/T507—1986和DL/T429—1991这两种标准的测试方法(前者简称“方法一”,后者简称“方法二”)差别较大,主要差别有两点:一是电极形状不同,方法一采用球形和球盖形电极,方法二的电极为平板圆形;二是测定油杯容量不同,方法一规定油杯容积为300~500mL,而方法二规定油杯容积不得小于 200mL(DL/T429—1991的附录中另有小电极、小油杯、小间隙的试验方法)。在DL/T429—1991中有一条注释:“经过滤处理,脱气和干燥后的油及电压高于220kV以上的电力设备,应按GB507《电气用油绝缘强度测定法》,采用球盖形电极进行试验。”这两种方法的应用在相关变压器油质量测定标准中有明显的规定:GB/T2536—1990《变压器油》和SH0040—1991《超高压变压器油》中规定击穿电压的测定采用方法一;在GB/T7595—2000《运行中变压器油的质量标准》中规定击穿电压的测定采用方法一或方法二;在GB/T50150—1991《电气设备安装工程电气设备交接试验标准》中规定绝缘油的电气强度试验采用方法一,但试验电极采用平板圆形电极。 1.2.1现状 据笔者调查了解,目前国内电力行业,尤其是供电系统和安装系统,绝大多数采用方法二测试绝缘油击穿电压,即以平板倒角形电极和较小的油杯进行测试,但又忽略了DL/T429—1991中的注释,无论是什么状态的油,从什么电压等级的电气设备中采集的油样,统统都用方法二进行测试。 1.2.2原因分析 在电力系统中基本上采用方法二测试绝缘油击穿电压,这种状况的形成有历史沿革的原因,也有方法一用油量大的原因。 多年来,各用油部门一直采用方法二进行击穿电压的测试,相应的试验设备(如电极、油杯)都为适应方法二而设计。要严格执行标准,针对不同油样,随时更换油杯、电极,必须对测试设备进行更新改造,这给试验人员增添了许多麻烦。绝大多数情况下,试验人员就用一种电极、一种油杯测试所有油样,若试验结果能满足不同等级要求的绝缘油击穿电压标准,这也是一种不错的选择,而且不会产生任何分歧,但是,如果测定值介于合格与不合格之间,麻烦就出现了。例如,需测定一台500kV运行中变压器油的击穿电压,采用平板倒角形电极和小油杯,以及相配套的升压设备等试验设备,电极之间距离2.5mm,测定的结果为46 k V,这显然不满足GB/T7595—2000规定的击穿电压不小于50 kV的要求。但是此时并不能判断此油样不合格,因为按照DL/T429—1991中的注释规定,电压高于220kV的电气设备的油击穿电压试验应按方法一进行。要判断此油样是否合格,就必须再取样,用球盖形电极

变压器油耐压试验的方法与分析

变压器油耐压试验的方法与分析 摘要:近日,在对某变压器油样进行耐压试验时,出现击穿电压波动较大,但其平均击穿电压符合试验标准的情况,针对此种情况,本文就试验过程中各环节对试验结果的影响进行分析。 关键词:油样采取、击穿电压、平板倒角形电极 引言:无论是在日常的维护或是设备新装过程中,变压器油的耐压试验都是一项重要的质量标准,直接关系到设备的安全运行。所以,试验结果的准确性就尤为重要。近日,在对某变压器油样进行耐压试验时,出现击穿电压波动较大,但其平均击穿电压符合试验标准的情况,针对此种情况,本文就试验过程中各环节对试验结果的影响进行分析。 一、试验数据 此次被试品油样为运行中的220KV变压器油,试验人员按照油耐压试验标准要求对样品进行试验,试验仪器所使用的电极为平板倒角形电极,电极间隙为2.5mm,取6次击穿电压的平均值为耐压试验的结果,具体试验数据如下: 根据《电力设备预防性试验规程DLT 596-2005》标准要求,运行中的220KV变压器油耐压试验击穿电压不得小于35KV,从试验结果来看,被试样品油符合试验标准,但是其前两次的击穿电压低于35KV,针对此种现象,接下来进行分析。 二、影响试验结果的主要因素 严格地讲,不含水分、灰尘和纤维等杂质的纯净油,击穿起始于个别油分子在电场中的极化、电离,其化学组成对击穿电压影响不大,不同牌号和产地的绝缘油应该具有大致相同的击穿电压,并且同一试样平行试验结果的分散性也不大,但实际应用中的油和“纯净油”有较大的不同,即使目前世界上最先进的净化设备多次处理后的绝缘油,其含水量也往往大于2mg/kg,每100mL油中长度大于5μm的杂质颗粒不少于数千个;另外在取样测定过程中油样也不可避免地与周围大气接触,大气中的水分、飘尘会不可避免地混入油中。这些油中的杂质和溶解于油并与油分子紧密结合的水分子,在纯净的油分子远未在电极之间极化和电离之前,就沿电场强度方向排列、聚集,进而电离形成微小通路,即所谓“小桥”,小通路连接贯穿两极,导致油迅速击穿。油中杂质越多,越易形成小桥,击穿电压越低。测定绝缘油的击穿电压,实际上是在衡量绝缘油中杂质含量的多少,即判断绝缘油被污染的程度。

绝缘油介电强度测试仪标准

绝缘油介电强度测试仪标准 中华人民共和国国家标准 UDC 665.546 :543.25 GB 507-86 代替GB507-77 1绝缘油介电强度测定法 Insulating oils-Determinationof the dielectric strength 本方法适用于验收20℃时粘度不大于50毫米2/秒的各种绝缘油。例如:变压器油、电容器油、电缆油等新油或使用过的油,但主要是用于新油。 介电强度并不是用来评定绝缘油质量的一个标准,而是一项常规试验。它是用来闸明绝缘油被水和其他悬浮物质物理污染的程度以及打算注入设备前进行干燥和过滤是否适宜。 本标准是参照采用国际电工委员会标准IEC 156《绝缘油介电强度测定法》制订的。 1 方法概要 测定方法是将放在专门设备里的被测试样经受一个按一定速率连续升压的交变电场的作用直至油击穿。测量值与所用的测量设备和采用的方法有很大关系。 2 仪器 2.1 变压器 2.1.1 试验电压是从交流(50赫)的低压电源供电的一个升压变器得到的。通过手调或自动控制装置逐渐增加初级线圈电压,经升压后的次级线圈电压施加于试验油杯的电极上。该电压应是一近似正弦的波形,其峰值因数应在2±5%℃范围。 2.1.2 变压器和相配的装置应能在电压大于15千伏时产生一个20毫安的最小短路电源。 2.2 保护装置

2.2.1 装置应良好接地。 2.2.2 进行试验时尽可能防止产生高频振荡。 2.2.3 为了保护设备和避免试油在击穿瞬间的分解,可与试验油杯串联一个电阻,以限止击穿电流。 2.2.4 高压变压器的初级电路上接一个断路器,这个断路器能在试样击穿后不超过0.02秒的时间内因试样的击穿电流作用而动作。断路器接一个无电压释放线圈以保护设备。 2.3 电压调节 2.3.1 电压调节可用下列设备之一来实现? 2.3.1.1 变比自耦变压器。 2.3.1.2 电阻分压器。 2.3.1.3 发电机磁场调节。 2.3.1.4 感应调节器。 2.3.2 电压调节最好采用自动升压系统,因为手控调节不是得到要求的匀速升压。 2.4 试验电压的测量 试验电压值是电压有效值,即电压峰值除以2。电压可以用峰值电压表或其他类型的测量电压表连接到试验变压器的输入端或输出端来测量。使用的测量仪器须用球隙校正到希望用它测量的全电压。从球隙得到的电压与辅助仪器所指示的电压的比与试验油杯或球隙是否接入有关,因此在校正过程中应将试验油杯接在电路里。如果知道球隙的接入对电压比的影响可忽略,那未在测量过程中可不接球隙。 2.5 试验油杯 2.5.1 试验油杯由杯体与电极两部分组成,两种类型的试验油杯见图1和图2。

变压器油的击穿电压

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 变压器油的击穿电压 将电压施加于绝缘油时,随着电压增加,通过油的电流剧增,使之完全丧失所固有的绝缘性能而变成导体,这种现象称为绝缘油的击穿。绝缘油发生击穿时的临界电压值,称为击穿电压,此时的电场强度,称为油的绝缘强度,表明绝缘油抵抗电场的能力。击穿电压U (kV)和绝缘强度E (kV/cm)的关系为 E=U/d (2-26) 式中d-电极间距离(cm)。 纯净绝缘油与通常含有杂质的绝缘油具有不同的击穿机理。 前者的击穿是由于游离所引起,可用气体电介质击穿的机理来解释,即在高电场强度下,油分子碰撞游离成正离子和电子,进而形成了电子崩。电子崩向阳极发展,而积累的正电荷则聚集在阴极附近,最后形成一个具有高电导的通道,导致绝缘油的击穿。

通常绝缘油总是或多或少含有杂质,在这种情况下,杂质是造成绝缘油击穿的主要原因。油中水滴、纤维和其他机械杂质的介电系数ε比油的要大得多(纤维的ε=7,水的ε=80,而变压器油的ε≈2.3),因此在电场作用下,杂质将被吸引到电场强度较大的区域,在电极间构成杂质“小桥”,从而使油的击穿强度降低。如杂质足够多,则还能构成贯通电极间隙的“小桥”,流过较大的泄漏电流,使之强烈发热,并使油和水局部沸腾和气化,结果击穿就沿此“气桥”而发生。 下面分别分析影响绝缘油击穿电压的各主要因素。 (1)测量绝缘油击穿强度时采用的电极材料、电极形状和电极面积对油的绝缘强度有影响。根据试验数据得知,在同样的试验条件下,不同电极材料测量的同种油样绝缘强度的排列顺序为Fe<黄铜

507绝缘油击穿电压测定法

中华人民共和国国家标准 绝缘油击穿电压测定法 前言 本标准等效采用国际标准IEC; 156:1995(绝缘油工频击穿电压测定法》,对GB/T 507一19861绝缘 油介电强度测定法》进行修订。 本标准与IEC 156:1995的差异: I.部分引用标准采用我国相应现行国家标准; 2.增加方法概要和试剂两章。 本标准与GB/ T 507一1986的差异为: I.名称不同; 2.测定范围不同; 3.增加对切换系统的要求; 4.变压器和相配装置应能在电压大于15 kV时产生的最小短路电流不同; 5.电压峰值因数范围不同; 6.试样杯体积不同; 7.电极间距规定了公差; 8.原标准变压器所用交流电频率为50 Hz;本标准变压器所用交流电频率为48 Hz-52 Hz; 9.两次测定之间停等时间不同; 10.断路器切断时间不同; 11.增加了搅拌装置和电极制备。 本标准自实施之日起,代替GB/T 507一19肠。 本标准由中国石油化工股份有限公司提出。 本标准由中国石油化工股份有限公司石油化工科学研究院归口。 本标准起草单位:中国石油化工股份有限公司上海高桥分公司炼油厂。 本标准主要起草人:顾贞艳、陆丽华。 本标准于1965年1月首次发布,1986年6月第一次修订。 1范围 本标准规定了绝缘油击穿电压的测定方法。本标准适用于测定WC粘度不大于350 mm z/S。的各种绝缘油,适用于未使用过的绝缘油的交接试验,也适用于设备监测和保养时对试样状况的评定。 2引用标准 下列标准所包含的条文,通过引用而成为本标准的一部分。除非在标准中另有明确规定,下述引用标准都应是现行有效标准。 GB/T 4756石油液休手工取样法 IEC 52球隙(一球接地)电压测定法 IEC 60高压实验技术 3方法概要 向置于规定设备中的被测试样上施加按一定速率连续升压的交变电场,直至试样被击穿。 4试剂 4.1丙酮:分析纯。 4.2石油醚:分析纯,60'C一90.C。

变压器油的考核指标

变压器油的考核指标及性质 A.2.1 性质指标分类 A.2.1.1 通常(按检测方法)分类 a)物理性能:如外观、密度、粘度、闪点、倾点、界面张力等;b)化学性能:如氧化安定性、酸值、硫含量、水含量等; c)电气性能:如击穿电压、介质损耗因数、电阻率等。 A.2.1.2 IEC 60296—2003 分类方法 a)功能特性:与绝缘和冷却功能相关的性质。包括粘度、密度、倾点、水含量、击穿电压、介质损耗因数。 b)精制与稳定性:受原油的类型、精制的质量及添加剂影响的性质。包括外观、界面张力、硫含量、酸值、腐蚀性硫、抗氧化剂、2-糠醛含量。 c)运行性能:油的长期运行条件和(或)对高电场应力和温度的反应相关的性能。包括氧化安定性、析气性等。 d)健康、安全和环境因素:与人体健康、安全运行和环境保护相关的性质。包括闪点、密度、PCA(多环芳香烃)、PCB(多氯联苯)。 A.2.2 性质指标及其意义 A.2.2.1 功能特性 A.2.2.1.1 粘度 液体流动时内摩擦力的量度,粘度随温度的升高而降低。标准规定在指定温度下用运动粘度评价变压器油,单位是mm2/s。用粘度的上限值作为对冷却效果的保证。随着温度升高油粘度下降,下降的速率取

决于油的化学组分。通常,用粘度指数来表示油品粘度随温度变化的特性,粘度指数高表明油品的粘度随温度变化较小。在变压器正常的工作温度下,环烷基油的粘度指数VI(Viscosity Index)低于石蜡基油,用环烷基油比用石蜡基油更有利于变压器的冷却。 A.2.2.1.2 倾点(和凝点)倾点:在规定条件下,被冷却的试样能流动的最低温度,单位为℃。凝点:试样在规定条件下冷却至停止流动的最高温度,单位为℃。理论上,对同一油品两者是一致的,而实际上由于测定方法和条件不同两者之间有一定的差别,还因油品的组分和性能不同,其差值也有所不同,一般约差2℃~3℃。显然油的凝点不是一般意义上的物理常数,其值与油的化学组分有关。石蜡基油的凝点高于环烷基油,这往往是由石蜡结晶引起的。凝点高的油不宜在寒冷地区使用,不宜采用添加抗凝剂降低变压器油的凝点。 A.2.2.1.3 含水量 存在于油品中的水分含量。水在油中的溶解度随温度的升高而增大(采用真空热油循环干燥变压器的原理),油中溶解水的能力还随芳香烃含量的增加而增加,这也是芳香烃含量过高的油的水分含量很难被处理到规定值的原因。油中游离水的存在或在有溶解水的同时遇到有纤维杂质时,将会降低油的电气强度。将油中含水量控制在较低值,一方面是防止温度降低时油中游离水的形成,另外也有利于控制 纤维绝缘中的含水量,还可降低油纸绝缘的老化速率。 A.2.2.1.4 击穿电压 在规定的试验条件下,绝缘体或试样发生击穿时的电压。通常标准规

相关文档
最新文档