轴承套圈热处理过程中如何有效控制淬火变形

轴承套圈热处理过程中如何有效控制淬火变形
轴承套圈热处理过程中如何有效控制淬火变形

主题《轴承套圈热处理过程中如何有效控制淬火变形》

刘美东

轴承套圈热处理变形影响因素有哪些?请大家从材料、锻造/钢管、退火、车削、热处理这些方面进行思考。

其实热处理变形大家都不陌生。只是大家平时很难抽出时间来整理。今天我们大家共同探讨。让群内的朋友整理在一起,以便供大家今后工作中运用。

我个人认为:影响轴承变形的影响有材料锻造(锻造的压缩比)会对我们的热处理变形有影响。锻造后的退火质量好与坏也会对轴承套圈热处理变形有影响。其材料的偏析譬如严重的网状和带状,会影响热处理的组织和变形。球化组织当然有要求了按照我们JB/T1255-2015标准按照第一级别图,2~4级合格。

现在很多锻造厂的退火质量把控不是很严格。有些锻造厂的退火使用推盘炉退火,每盘的装的产品质量不大一样。我去过一家退火厂和他们车间主任交流得知他们的每盘质量为450±50Kg,大家可以想象一下,设备加热功率是一样的,那么一筐套圈400Kg,一筐是500Kg,的话那么出来的产品的质量是一样的吗?

球化退火我们希望什么样的组织呢?轴承钢GCr15而言,我们希望得到的是均匀的球状珠光体。那么这个珠光体越圆越好。均匀,圆润,。不希望出现片状、链状,总的来讲我们希望得到均匀一致的球状组织。这样的话对于我们的热处理过程控制来讲不容易出现过热和欠热。

(浙江-张春宝)

针对热处理一个工序而言,我们希望球的直径适当的大一些,当球适当的大时,热处理过程中不容易造成过热,热处理的应力也相对会小一些。

浙江刘美东

球大的时候对产品的寿命是有影响的,但是对热处理质量控制是有益的

特别是大型轴承,加热时间比较长的。球化组织颗粒稍微大一些的话,渗碳体的溶解就会好一些,淬火后的残留碳化物就会更明显一些。这样的既保证淬火后马氏体的含碳量也保证一定量的残留碳化物。锻件的球化退火我就简单的介绍到这里。

大家可以一起讨论一下。

浙江刘美冬

轴承钢的球化率和加热温度和保温时间,冷却速度有很大的关系。

淬火前这个退火组织有检测么?不合格的怎么处理?

宁海正信

换句话说热处理工艺中哪些因素影响球化等级?高铁上面是国产轴承吗?

轴承钢的球化率和加热温度和保温时间,冷却速度有很大的关系。这句话非常认可

如果加热温度不够,或球孕育的能量和时间不够的话球化率很定有影响的。

杭州母光:美东,你们球化炉怎么上料的答:球化装炉是套圈装进料框内,然后进炉子

上海-陈剛

@浙江刘美冬轴承钢的球化率和加热温度和保温时间,冷却速度有很大的关系。我看到资料,球化均匀性与冷却有很大关系。

新昌李秋霜

我觉得球化率跟冷却速度关系不大主要影响球的大小及退火硬度。在温度和时间确定后,就可以保证球化率冷却速度仅仅决定了球形

宁海正信一小张:同种材料同种工艺同个设备,轴承的尺寸,特别的直径高度比、产品的有效壁厚与淬火后的胀缩有没有规律可循?也就是其它条件不变,产品自身的尺寸效应与胀缩有没有直接关系?

浙江-张春宝

@宁海正信一小张对热处理而言,没有条件不变的情况存在,即使是同一个炉批次的钢材,个体之间也会存在一些差异,更不用说不同炉批次的钢材之间成分含量的变差等造成的差别。也就是说哪些典型形状淬火出来呈胀大哪些呈缩小浙江-张春宝

@宁海正信一小张即使材料牌号、设备、工艺参数都相同,由于化学成分含量上下限、热处理温度上下限、保温时间上下限不同,热处理后的组织和质量也会不同。即使化学成分含量上下限、热处理温度上下限、保温时间上下限都相同,由于热处理前期的冷热加工的工艺、质量、组织等不同,热处理后的组织和质量也同样会不同。

宁海正信一小

也就是说哪些典型形状淬火出来呈胀大哪些呈缩

小此问目的在于:提前知道变形规律可以通过机加工留出余量,防止批量废品产生

下面我讲以下淬火过过程中如何有效的控制淬火变形

轴承套圈常规马氏体淬火,大家可能使用或见过很多热处理设备。

常规的网带炉(托辊式网带炉、马弗炉)、辊棒炉、箱式炉等。热处理变形:椭圆、锥度、涨缩、翘曲等。其变形主要是应力所导致。在加热的过程中由于产品几何形状的限制导致产品局部受热不均匀。产生热应力。这个时候奥氏体的含碳量也不一样。在淬火过程中由于几何形状限制,局部奥氏体含碳量不一样,淬火时C曲线所对应不同含碳量的奥氏体的曲线位置是有变化的。

这样的话淬火从微观上讲,淬火时有时间差,从而生产组织应力。都是涨大的,不管是朝外涨、还是朝里涨,只要是涨量一直都是可以很据前工序进行调整余量的。对于涨大量来讲我们希望他涨大是有规律的。苏州吴江:一般来讲,套圈淬火后,内,外径缩小,高度增加。

最怕出现一批产品既有涨大2‰,也有缩小2‰的。那么以外径100的套圈,热处理后外径的极差值就有0.4mm。这样的话是我们最不愿意看到的,也是我们最难解决的一种变形之一。

新昌李秋

含碳量高低与C曲线怎么个情况?另外在实际生产中,有些如205-01返工大圈会出现余量不够也就是缩小是咋回事?变形也很大?

苏州吴舍碳量高时,缩小

宁海正信一小张:淬透的零件与淬不透的零件,哪种胀多哪种缩多

杭州黄顺荪:这里边跟油温也有关糸,油温越高涨量越大,不知你们碰到沒有?宁海正信一小张比如:同样80mm大,一个厚3mm,一个厚20mm。都淬快油和都淬慢油结果应该不一样吧?

杭州黄顺:跟油温高低没关系?

美东:涨大缩小个人认为和材料有关系。譬如:GCr15和GCr15SiMn。这两种材料做统一尺寸外径300mm的轴承的话GCr15SiMn材质做的肯定是缩小的。统一种材料一般情况热处理后的基本上都是一致的,我淬火前后对应做过实验的大家看看这个数据(见下页),外径150MM的外圈。

其热处理涨大量基本上在1.45~2.1‰以内

。我认为这个就是可控制的。

轴承套圈椭圆变形大家可以考虑装炉均匀性。炉温均匀性,冷却均匀性。高低温冷却速度的控制。一般我做热处理工艺基本上遵循低温慢速加热,这样的话变形量就稍微会小一些。

宁海正信一小张

我认为还是组织应力与热应力的一场拉力赛,谁胜变形变会倒向谁,需要大量的数据采集。

冷却介质我一般会考虑蒸汽膜相对较短,沸腾(最大冷却速度)快,对流温度尽量提高。然后对流速度一般控制慢一点,这样的话热处理变形还是很好控制的。

2015-6-16

轴承套圈工艺改进技术专题报告1

目录 引言: (1) 一.轴承零部件加工过程中的防锈 (2) (一)轴承零部件加工中的防锈 (2) (二) 轴承零部件工序间的防锈 ................................... 3 (三)常用的中间库(制品库)的防锈方法 . (4) 二.防锈包装前的处理 (5) (一)清洗的对象 (5) (二)清洗用的介质 (6) (三)清洗工艺 (6) (四)清洁度检测与标准 (6) (五)清洗后的干燥 (7) 三.暂时性保护(封存防锈)材料 (7) (一)防锈油品 (7) (二)气相防锈材料 (7) 四.轴承润滑油 (8) 五、轴承成品防锈包装 (9) 六、轴承工厂的防锈管理 (10) 结束语 (11) 参考文献: (12)

深沟球轴承轴承内外圈磨加工工艺过程改进 作者:刘圣斌指导老师:余军合 宁波大学科学技术学院 摘要:通过改进轴承内外圈磨工工艺过程和使用的设备,可以使产品磨加工工艺过程和在制 品周转更加合理,解决了冷却水、精研油、清洗煤油交叉相混现象,降低了生产成本,降低社会劳动生产时间的同时提高了社会劳动生产率和产品质量。进一步扩大了轴承产品的竞争优势。 关键字:深沟球轴承;内圈、外圈、磨削、工艺 一、轴承介绍: 轴承是一种精度高、互换性很强的标准零件,因此,为获得高的生产效率和产品质量,常采用专用加工设备。达克公司公司专业化生产深沟球轴承,对内外圈的磨加工工艺过程进行了多次改进,提高了工效和产品质量。 1原设备及工艺存在的问题 原内、外圈磨超工艺如下: 外圈:磨端面(MB7480)→退磁、清洗→磨外径(M1080,MG10200)→支外径磨外沟道(3MZ146)→退磁、清洗→支外径超精外沟道(四轴超精机)。 内圈:磨端面(MB7480)→退磁、清洗→磨内圈挡边(M1050,MGT1050)→支内沟道磨内沟道

热处理变形的原因

热处理变形的原因 在实际生产中,热处理变形给后续工序,特别是机械加工增加了很多困难,影响了生产效率,因变形过大而导致报废,增加了成本。变形是热处理比较难以解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。 一、热处理变形产生的原因 钢在热处理的加热、冷却过程中可能会产生变形,甚至开裂,其原因是由于淬火应力的存在。淬火应力分为热应力和组织应力两种。由于热应力和组织应力作用,使热处理后零件产生不同残留应力,可能引起变形。当应力大于材料的屈服强度时变形就会产生,因此,淬火变形还与钢的屈服强度有关,材料塑性变形抗力越大,其变形程度越小。 1.热应力 在加热和冷却时由于零件表里有温差存在造成热胀冷缩的不一致而产生热应力。零件由高温冷却时表面散热快,温度低于心部,因此表面比心部有更大的体积收缩倾向,但受心部阻碍而使表面受拉应力,而心部则受压应力。表里温差增大应力也增大。 2.组织应力 组织应力是因为奥氏体与其转变产物的比容不同,零件的表面和心部或零件各部分之间的组织转变时间不同而产生的。由于奥氏体比容最小,淬火冷却时必然发生体积增加。淬火时表面先开始马氏体转变,体积增大,心部仍为奥氏体体积不变。由于心部阻碍表面体积增大,表面产生压应力,心部产生拉应力。 二、减少和控制热处理变形的方法 1.合理选材和提高硬度要求 对于形状复杂,截面尺寸相差较大而又要求变形较小的零件,应选择淬透性较好的材料,以便使用较缓和的淬火冷却介质淬火。对于薄板状精密零件,应选用双向轧制板材,使零件纤维方向对称。对零件的硬度要求,在满足使用要求前提下,尽量选择下限硬度。 2.正确设计零件 零件外形应尽量简单、均匀、结构对称,以免因冷却不均匀,使变形开裂倾向增大。尽量避免截面尺寸突然变化,减少沟槽和薄边,不要有尖锐棱角。避免较深的不通孔。长形零件避免截面呈横梯形。 3.合理安排生产路线,协调冷热加工与热处理的关系

金属材料热处理变形及开裂问题探讨

金属材料热处理变形及开裂问题探讨 摘要变形和开裂是热处理较难解决的问题,目前热处理变形的复杂规律尚未被彻底认识和掌握。本文简要分析了热处理变形的开裂原因、影响变形的因素以及减小热处理变形防止开裂的具体措施。而影响变形和开裂的因素及防止变形和开裂的方法有很多。 关键词热处理变形;开裂;热应力;组织应力 1 热处理变形开裂的原因 工件的变形包括尺寸变化和形状变化两种,无论哪种变形,主要都是由于热处理时工件内部产生的应力所造成的。根据内应力形成的原因不同,可以分为热应力和组织应力。工件变形是这两种应力综合影响的结果,当应力大于屈服极限就会永久变形,大于材料的强度工件就会开裂。 1.1 热处理引起的变形和开裂的原因 钢件在加热和冷却过程中,将产生热胀冷缩的体积变化,零件加热到淬火温度时,屈服强度明显降低,塑性则提高,当应力超过屈服强度时,就会产生塑性变形。如果造成应力集中并超过了材料的强度极限,就会使零件淬裂。导热性很差的高碳合金钢,如合金模具钢Gr12MoV,高速钢W18GrV之类的工具钢,淬火温度很高,如不采用多次预热和缓慢加热,不但会造成零件变形而且会导致零件开裂而报废,所以在对高速钢淬火时,首先在860±10℃的盐浴炉中进行等温预热,对于较细或较粗的零件应在预热前,在550℃炉进行2小时以上的回火,这样就会减小热处理变形,冷却时,由于温差大,热应力是造成零件变形的主要原因。 1.2 组织应力引起的变形 组织应力有两个特点[1]:(1)工件表面受拉应力,心部压应力。(2)靠近表面层,切向拉应力大于轴向拉应力。组织应力引起工件变形的特点与热应力相反,使平面变凹,直角变锐角,长的方向变长,短的方向变短。 淬火零件的变形时热应力和组织应力综合作用的结果,除内应力外,零件的变形还要看材料成分、工件的形状和介质、冷却速度的影响,实际情况要复杂很多,因此在解决实际问题时,要全面分析是热应力还是组织应力起主导作用,以便判断变形的趋势或裂纹产生可能性,并采取各种措施予以控制或防止。 2 影响变形及开裂的因素 在生产实际中,影响热处理变形的因素很多,其主要包括:钢的化学成分、冷却过程、钢的几何形状尺寸、淬火介质的选择等。

热处理应力及其影响

热处理应力及其影响热处理残余力是指工件经热处理后最终残存下来的应力,对工件的形状, ;尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时, ;便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变有害为有利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。 一、钢的热处理应力工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀, ;工件各部位先后相变,造成体积长大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压

应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。实践证明,任何工件在热处理过程中, ;只要有相变,热应力和组织应力都会发生。 ;只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果, ;就是工件中实际存在的应力。这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。 ;组织应力占主导地位时的作用结果是工件心部受压表面受拉。 二、热处理应力对淬火裂纹的影响存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内( ;尤其是在最大拉应力下)才会表现出来,;若在压应力场内并无促裂作用。淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。为了达到淬火的目的,通常必须加速零件在高温段内的冷却速度,并使之超过钢的临界淬火冷却速度才能得到马氏体组织。就残余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件表面上的拉应力而达到抑

轴承套圈冷处理工艺

轴承零件的热处理质量控制在整个机械行业是最为严格的。轴承热处理在过去的20来年里取得了很大的进步,主要表现在以下几个方面:热处理基础理论的研究;热处理工艺及应用技术的研究;新型热处理装备及相关技术的开发。 1.高碳铬轴承钢的退火:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。传统的球化退火工艺是在略高于Ac1的温度(如GCr15为780~810℃)保温后随炉缓慢冷却(25℃/h)至650℃以下出炉空冷。该工艺热处理时间长(20h以上),且退火后碳化物的颗粒不均匀,影响以后的冷加工及最终的淬回火组织和性能。之后,根据过冷奥氏体的转变特点,开发等温球化退火工艺:在加热后快冷至Ar1以下某一温度范围内(690~720℃)进行等温,在等温过程中完成奥氏体向铁素体和碳化物的转变,转变完成后可直接出炉空冷。该工艺的优点是节省热处理时间(整个工艺约12~18h),;处理后的组织中碳化物细小均匀。另一种节省时间的工艺是重复球化退火:第一次加热到810℃后冷却至650℃,再加热到790℃后冷却到650℃出炉空冷。该工艺虽可节省一定的时间,但工艺操作较繁。 2.高碳铬轴承钢的马氏体淬回火: 2.1常规马氏体淬回火的组织与性能.近20年来,常规的高碳铬轴承钢的马氏体淬回火工艺的发展主要分两个方面:一方面是开展淬回火工艺参数对组织和性能的影响,如淬回火过程中的组织转变、残余奥氏体的分解、淬回火后的韧性与疲劳性能等;另一方面是淬回火的工艺性能,如淬火条件对尺寸和变形的影响、尺寸稳定性等。常规马氏体淬火后的组织为马氏体、残余奥氏体和未溶(残留)碳化物组成。其中,马氏体的组织形态又可分为两类:在金相显微镜下(放大倍数一般低于1000倍),马氏体可分为板条状马氏体和片状马氏体两类典型组织,一般淬火后为板条和片状马氏体的混合组织,或称介于二者之间的中间形态—枣核状马氏体(轴承行业上所谓的隐晶马氏体、结晶马氏体);在高倍电镜下,其亚结构可分为位错缠结和孪晶。其具体的组织形态主要取决于基体的碳含量,奥氏体温度越高,原始组织越不稳定,则奥氏体基体的碳含量越高,淬后组织中残余奥氏体越多,片状马氏体越多,尺寸越大,亚结构中孪晶的比例越大,且易形成淬火显微裂纹。一般,基体碳含量低于0.3%时,马氏体主要是位错亚结构为主的板条马氏体;基体碳含量高于0.6%时,马氏体是位错和孪晶混合亚结构的片状马氏体;基体碳含量为0.75%时,出现带有明显中脊面的大片状马氏体,且片状马氏体生长时相互撞击处带有显微裂纹。与此同时,随奥氏体化温度的提高,淬后硬度提高,韧性下降,但奥氏体化温度过高则因淬后残余奥氏体过多而导致硬度下降。常规马氏体淬火后的组织中残余奥氏体的含量一般为6~15%,残余奥氏体为软的亚稳定相,在一定的条件下(如回火、自然时效或零件的使用过程中),其失稳发生分解为马氏体或贝氏体。分解带来的后果是零件的硬度提高,韧性下降,尺寸发生变化而影响零件的尺寸精度甚至正常工作。对尺寸精度要求较高的轴承零件,一般希望残余奥氏体越少越好,如淬火后进行补充水冷或深冷处理,采用较高温度的回火等。但残余奥氏体可提高韧性和裂纹扩展抗力,一定的条件下,工件表层的残余奥氏体还可降低接触应力集中,提高轴承的接触疲劳寿命,这种情况下在工艺和材料的成分上采取一定的措施来保留一定量的残余奥氏体并提高其稳定性,如加入奥氏体稳定化元素Si、Mn,;进行稳定化处理等。 2.2常规马氏体淬回火工艺常规高碳铬轴承钢马氏体淬回火为:把轴承零件加热到830~860℃保温后,在油中进行淬火,之后进行低温回火。淬回火后的力学性能除淬前的原始组织、淬火工艺有关外,还很大程度上取决于回火温度及时间。随回火温度升高和保温时间的延长,

热处理变形与裂纹

热处理变形与裂纹 工件热处理后常产生变形和开裂,其结果不是报废,也要花大量工时进行修整。 工件变形和开裂是由于在冷、热加工中产生的应力所引起的。当应力超过弹性极限时,工件产生变形;应力大于强度极限时,工件产生裂纹。 热处理中热应力和组织应力是怎样产生的只有不断认识这个问题,才能采用各种工艺方法来减小和近控制这两种应力。 在加热和冷却时,由于工件热胀冷缩而产生的热应力和组织转变产生的组织应力是造成变形和开裂的主要原因,而原材料缺陷、工件结构形状等因素也促使裂纹的产生和发展。 后面主要叙述热处理操作中的变形和开裂产生原因及一般防止方法,也讨论原材料质量、结构形状等对变形和开裂的影响。 一、钢的缺陷类型 1、缩孔:钢锭和铸件在最后凝固过程中,由于体积的收缩,得不到钢液填充,心部形 成管状、喇叭状或分散的孔洞,称为缩孔。缩孔将显著降低钢的机械性能。 2、气泡:钢锭在凝固过程中会析出大量的气体,有一部分残留在处于塑性状态的金属 中,形成了气孔,称为气泡。这种内壁光滑的孔洞,在轧制过程中沿轧制方向延伸,在钢材横截面的酸浸试样上则是圆形的,也叫针孔和小孔眼。气泡将影响钢的机械 性能,减小金属的截面,在热处理中有扩大纹的倾向。 3、疏松:钢锭和铸件在凝固过程中,因部分的液体最后凝固和放出气体,形成许多细 小孔隙而造成钢的一种不致密现象,称为疏松。疏松将降低钢的机械性能,影响机 械加工的光洁度。 4、偏析:钢中由于某些因素的影响,而形成的化学成份不均匀现象,称为偏析。如碳 化物偏析是钢在凝固过程中,合金元素分别与碳元素结合,形成了碳化物。碳化物 (共晶碳化物)是一种非常坚硬的脆性物质,它的颗粒大小和形状不同,以网状、 带状或堆集不均匀地分布于钢的基体中。根据碳化物颗粒大小、分布情况、几何形 状、数量多少将它分为八级。一级的颗粒最小,分布最均匀且无方向性。二级其次,八级最差。碳化物偏析严重将显著降低钢的机械性能。这种又常常出现于铸造状态 的合金具钢和高速钢中。对热处理工艺影响很大,如果有大块碳化物堆集或严重带 状分布,聚集处含碳量较高,当较高温度淬火时,工件容易因过热而产生裂纹。但 为了避免产生裂纹,而降低淬火温度,结果又会使硬度和红硬性降低。碳化物偏析 严重将直接影响产品质量,降低使用寿命或过早报废。 5、非金属夹杂物:钢在冶炼、浇铸和冷凝等过程中,渗杂有不溶解的非金属元素的化 合物,如氧化物、氮化物、硫化物和硅酸盐等、总称为非金属夹杂物。钢中非金属 夹杂物存在将破坏基体金属的连续性,影响钢的机械性能、物理性能、化学性能及 工艺性能。在热处理操作中降低塑性和强度而且夹杂物处易形成裂纹。在使用过程 中也容易造成局部应力集中,降低工件使用寿命。夹杂物的存在还降低钢的耐腐蚀 性能。 6、白点:钢经热加工后,在纵向断口上,发现有细小的裂纹,其形状为圆形或椭圆形 的,呈银亮晶状斑点。在横向热酸宏观试样上呈细长的发裂,显微观察裂缝穿过晶 粒,裂缝附近不发现塑性变形,裂缝处无氧化与脱碳现象。这种缺陷称为白点。白 点将显著降低横向塑性与韧性,在热处理中易形成开裂。 7、氧化与脱碳:钢铁在空气或氧化物气氛中加热时,表面形成一层松脆的氧化皮,称

金属材料热处理变形的影响因素及控制策略 林祥峰

金属材料热处理变形的影响因素及控制策略林祥峰 发表时间:2019-01-11T15:27:45.960Z 来源:《新材料·新装饰》2018年7月上作者:林祥峰[导读] 在进行零部件加工中,由于有的情况下要对金属材料进行热加工处理,以此来提升金属材料的性能。在我国的金属材料加工中,是制造业发展的一个表现青海瑞合铝箔有限公司青海省西宁市 810000摘要:在进行零部件加工中,由于有的情况下要对金属材料进行热加工处理,以此来提升金属材料的性能。在我国的金属材料加工中,是制造业 发展的一个表现,对机械设备的需要也在不断增加,在这样的条件下,要保证好机械材料的质量问题,就要对金属材料进行热加工处理。关键词:金属材料;热处理变形;影响因素;控制策略 1影响金属材料热处理变形的因素在对金属材料进行热加工环节中,由于金属材料自身结构问题,在受到外部环境变化,主要是受不等时间内冷和热的不均匀,就会有变形的可能。在对金属这些热处理过程中,金属本身温度会受到明显的变化,这样的温度变化,会对金属的内部结构形成影响,这样的影响在加剧的时候,就会引起金属外部形状的变化,这种变化就叫住内应力塑型变形。在内应力变形中,对金属外部特征的改变较多,而且这样的改变还会随着对金属材料的热加工频率而发生改变,也就讲,在对金属热加工的次数越高,变形的可能性就越大。在正常的情况下,金属材料的内应力主要分层两种,一种是热应力,另一种是组织应力变形。在对金属材料进行等同的热效应和冷效应后,在对这样的操作过程中,就可以获得热应力变形。然而在组织应力形状变形中,金属本身的性能、形状、还有就是对金属材料的加入和冷却方式都有着直接的关系。在对金属材料热加工过程中,我们可以了解到,要提高金属材料的使用性能,对这个提高的过程是繁琐和复杂的,而在操作中还要考虑金属材料的种类,以及操作规范都要进行合理的调整,同时收集参数内容。由于受到我国技术加工的局限性,在加工过程中对温度的控制和监测的精度都难以进行有效的把控,在这样的环境中进行热加工处理,是非常容易出现对温度控制的准确性,使金属材料的变形。 2在金属材料热处理过程中减少变形的控制原则 2.1遵循易操作性的原则一般而言,金属材料热处理企业遍布在城市近郊,但由于工艺操作的地域条件的控制,所以能达到金属材料热处理变形控制所要求的科学精细操作,为了化解这种局面,就应该在热处理变形解决方案和相关工艺的试用期间就保持更高一些的方案容错率,尽可能的减少外部环境对热处理变形控制的影响。 2.2遵循实用性的原则由于金属材料是一种不可再生资源,为了资源的可持续发展,我们应切实考虑资源的浪费问题。减少资源的浪费最为关键的就是需要减少金属热处理时材料的变形,实现资源的有效利用。在热处理过程中,我们务必采取科学有效的方法,确保加工过程的实用性,同时确保金属材料的充分利用。 2.3遵守科学性的原则为了减少热处理中的变形,就必须采取科学的管理方案。在工作上,我们金属材料加工的技师要秉持着科学的精神,运用科学的方法,即便在目前技术设备不够完善的状况下,也要确保技术材料的热处理不会有变形情况的出现,即便是有,也要限制在合理的范围内。 3金属材料热处理减少变形的途径和方法 3.1做好热处理工艺前的预处理工作金属热处理时的正火和退火对变形量也有影响。正火时若温度偏高,容易造成材料内部变形加大,所以应在热处理前进行温度控制。实践表明,正火处理后采用等温淬火处理手段可使材料内部结构更为均匀。另外,为提高材料正火处理的成效,结合材料自身结构特点采取适当的退火,可以缩小材料所受温度梯度,在热处理期间控制变形,提高材料热处理的质量和水平。 3.2金属材料热处理淬火工艺的科学运用这对金属材料热加工过程中,淬火工艺是金属材料热加工的核心技术,在这样的技术中,对金属热加工温度的稍微把握不准确,就会造成对金属材料的内应力变形,因此在加工中,要使用好淬火介质,有对介质合理有效的利用,保证金属内部不会有失调的现象发生,从而保证好金属变形。因此在淬火介质的使用中我们要采用科学合理的使用方法,要在工作中不断创新,要不断提高介质的使用,这是一个经验积累的过程,在工作中,要求金属加工工艺师要不断发现问题,然后解决问题,在解决问题中创造出新的工艺方法,从而在根本上解决金属材料在热加工中变形问题。 在对金属冷却过程中是金属变形的关键步骤,因此,金属加工工艺师要严格按照工作流程来完成,要使用科学的冷却方法,在冷却中要把握好速度,这样就能有效的保证好金属材料的质量,而且还能金属变形的增量。在淬火工艺中,淬火的常用介质一般是水和油,在保证好放入的速度时,还要保证好水的温度,介质水温一般要求在55度到65度。如果使用油作为淬火介质,要求油温保持在60度到80度,关键技术还是在放入的速度把控中,质量和变形就看冷却的效果。这里对科学方法使用的强调,其最终的目的就是要保证好金属的变形问题,和质量性能问题。 3.3金属材料在热加工中冷却方法的科学化选择在现阶段的我国技术热处理加工中,对金属冷却的方法主要有双液淬火方式和单液淬火方等多种方式。所谓的双液淬火冷却方式主要是指,在对金属加入中,包金属先放入到一种液体介质中,使金属温度迅速降到300度,然后在把技术放入温度更低的介质中进行有效的冷却,这里还是要把握好两次放入的的速度问题,把握好速度才能把握好金属材料的质量。在单液淬火工艺中,需然能够提高在淬火中的工作效率,但是,却在淬火速度的控制中很难把控科学的方法。在对这两种淬火工艺的选择中,可以根据实际需要,来对金属淬火的质量与水平的把握。 3.4科学的选择装夹方式和夹具在对金属加热和冷却的过程中,对金属加工装夹的使用方式不同,被加工的金属材料的现状也就不同,在这里就要根据金属的实际现状来选择装夹工具,在合适的装夹工具中,才能保证技术材料的受热均匀,同时才能保证材料在加工过程中不会变形。而且在实际的工作中,。可以根据加工金属形状的改变,灵活采用装夹工具。结论

轴承淬火回火工艺

轴承由轴承内套、外套、滚动体和保护器四部分组成。轴承内外套圈作为其中的重要组成部分,要求具有高的抗疲劳性和耐磨性以及尺寸稳定性。由于,齿圈要具备这些性能,所以对齿圈的淬火和回火是必不可少的。今天,就告诉大家轴承内外套圈的淬火和回火热处理工艺。 套圈的热处理加热设备有许多类,如连续式网带炉、振底炉和推杆炉等,采用的保护气氛为单组分气体如氮气等,劳动效率高,其基本程序为上料一清洗一烘于一加热一冷却一清洗一回火等,零件通过升降机进入加热炉和回火炉。也可采用周期性的箱式炉、盐浴炉和中频感应加热炉等。这里以盐浴炉为例编制热处理工艺。轴承钢经过加热淬火后获得了高的硬度和耐磨性,具备高的接触疲劳强度和可靠性,高的尺寸稳定性等。 1.预热,其预热温度为550~600℃,其目的是将零件烘干,同时可部分消除机械加工应力和减少淬火时的挠曲及变形,缩短加热保温时间,减少氧化与脱碳的倾问,一般为加热时间的2~3倍。 2.淬火加热是在盐浴炉中进行,加热温度能确保在该温度,使钢中的奥氏体中含有过多的含碳量,并能溶解锰、钼和铬等大量合金元素分布于晶粒内。不允许有晶粒粗大和过热组织。加热时间为升温、均温和保温时间的总和,它与加热温度密切相关,两者呈反比关系。保温的作用是使合金渗碳体(Fe,Cr)3C能充分向奥氏体中溶解,并使奥氏体成分均匀化。根据不同的热处理工艺温度、炉型、加热介质有较大的差别,其基本标准是固溶体中的含碳量为0.5%一0.6%、铬含量在1%、未溶解的碳化物占6%~9%时,为最佳加热时间。 3.淬火介质和冷却方法针对铬轴承钢而言,选用冷却介质应满足以下两个要求; 1)确保零件有足够的冷却速度,即大于临界冷却速度; 2)在Ms~Mf区间内冷却速度应缓慢,达到减少组织应力和防止变形和开裂的目的。考虑到轴承钢的淬透性好,可根据零件的大小选择淬火介质。通常使用普通淬火油、快速淬火油、光亮淬火油、真空淬火油和分级淬火油等。 淬火后的套圈硬度在63HRC以上,金相组织为隐晶马氏体十细小结晶马氏体十残留合金渗碳体十残余奥氏体。 4.套圈的回火套圈回火的目的是消除残余应力,防止零件开裂,并使亚稳定组织转变为相对稳定的组织,能起到稳定尺寸、提高韧性、获得良好的综合力

热处理淬火及变形

热处理工艺、操作与变形关系 一、预处理 淬火前通过对工件进行消除应力、改善组织的预备热处理,对减少淬火变形是非常有利的。预处理一般包括球化退火、消除应力退火,有些还采用调质或正火处理。 ①消除应力退火:在机械加工过程中,工件表层在加工方法、背吃刀量、切削速度等的影响下,会产生一定的残余应力,由于其分布的不均衡,导致了工件在淬火时产生了变形。为了消除这些应力的影响,淬火前将工件进行一次消除应力的退火是必要的。消除应力退火的温度一般为500-700 ℃,在空气介质中加热时,为防止工件产生氧化脱碳可采用500-550 ℃进行退火,保温时间一般为2-3h。工件装炉时要注意可能因自重引起的变形,其他操作同一般退火操作。 ②以改善组织为目的的预热处理:这种预处理包括球化退火、调质及正火等。 ——球化退火:球化球退火是碳素工具钢及合金工具钢在热处理过程中必不可少的工序,球化退火后所获得的组织对淬火变形趋势影响很大。所以可以通过调整退火后的组织来减少某些工件有规律的淬火变形。 ——其他预处理:为减少淬火变形所采用的预处理方法有很多种,如调质处理、正火处理等。针对工件产生淬火变形的原因及工件所用材料,合理地选用正火、调质等预处理对减少淬火变形是有效的。但应对正火后引起的残余应力及硬度提高对机加工的不利影响应给予注意,同时调质处理对含W Mn 等钢可减少淬火时胀大,而对GCr15等钢种的减少变形作用不大。 在实际生产中要注意分清淬火变形产生的原因,即要分清淬火变形是由残余应力引起的还是由组织不佳引起的,只有这样才能对症处理。若是由残余应力引起的淬火变形则应进行消除应力退火而不用类似调质等改变组织的预处理,反之亦然。只有这样,才能达到减少淬火变形的目的,才能降低成本,保证质量。 以上各种预处理的具体操作同其他相应操作,此处不赘述。

钢板淬火变形的原因及研究现状

钢板淬火变形的原因及研究现状 工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,导致体积膨胀和收缩不均而产生热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部,而使心部受压;当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压,心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀。工件各部位先后相变,造成体积变化不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力心部受压应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。热应力在组织转变以前就已经产生,而组织应力则是在组织转变过程中产生的。在整个冷却过程中,热应力与组织应力综合作用的结果,就是工件中实际存在的应力。这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用相反时二者抵消,作用相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。组织应力占主导地位时的作用结果是工件心部受压表面受拉。在薄板淬火中,钢板冷却引起翘曲变形的诱导因素是不均匀冷却,而影响冷却均匀性的原因很多,在采用同一种冷却方式的前提下,诸如钢板冷却前的板形和表面质量、冷却区长度、上下喷孔水量比、喷孔分布间距、喷孔与板的间距等都对钢板的变形产生不同程度的影响。 国内中厚板淬火主要是针对普通钢板,采用进口的辊式淬火机。 根据淬火钢板规格和种类的不同,淬火可分为两种方式:连续通过淬火或高压低压段间歇式。武钢采用连续式,宝钢采用连续式和间歇式,浦钢采用间歇式。淬火机组需配套建设供水和水处理系统,要求水质纯净、实现自循环,这样钢板淬火均匀。辊式淬火机由上下两组辊道组成,上下两排喷嘴位于辊道之间,钢板高速出炉,连续通过炉后的辊式淬火机组,实现运动中淬火。目前国内武钢、宝钢、舞钢的调质线均由德国LOI热工工程有限公司提供,包括1座辐射管加热无氧化辊底式炉和1台辊压式连续淬火机,可进行钢板的淬火。浦钢采用原美国DREVER公司设备,鞍钢系引进日本住友二手设备。中厚板淬火机德国LOI公司处于技术领先地位。 目前中厚板淬火处理后的平面度在ZOmm/mZ以上,用此设备无约束淬火处理薄板(4mm以下),,由于水量、喷淬角度等原因会造成淬透性好的装甲板变形剧烈,难以或无法校平。 国内对于低于3mm厚度的钢板淬火,多采用人工出料、淹没冷却方式,淬火变形量最大达到50mm/mZ,淬火后在矫直机上整形,生产效率低,易出现废品,热处理工艺达不到批量生产的要求。

减小和控制热处理变形的有效措施(1)

热处理变形产生的原因及控制方法 学院:化学化工学院班级:09材料化学姓名:张怡群学号:090908050 摘要:热处理变形是热处理过程中的主要缺陷之一,对于一些精密零件和工具、模具,常常会因为热处理变形超差而报废。为此,本文对热处理变形产生的原因进行了阐述,并总结了减少和控制热处理变形的几种方法。 关键词:热处理变形、产生原因、控制方法 前言:金属热处理是将金属工件在适当的温度下通过加热、保温和冷却等过程,使金属工件内部组织结构发生改变,从而改善材料力学、物理、化学性能的工艺。热处理是改善金属工件性能的一种重要手段。在工件制造中选取合适的材料后,为了达到工艺要求而经常采用热处理工艺,但是热处理除了具有积极作用外,在处理过程中也不可避免地会产生形变。在实际生产中,热处理产生的变形,对后续工序的影响是至关重要的,有些贵重材料和一些机器中的重要零部件,因变形过大而导致报废。钢件在热处理过程中由于钢中组织转变时比容变化所造成的体积膨胀,以及热处理所引起的塑性变形,使钢件体积及形状发生不同程度改变。变形是热处理较难解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。 正文:1热处理变形的原因在生产实际中,热处理变形的表现形式多种多样,有体积和尺寸的增大和收缩变形,也有弯曲、歪扭、翘曲等变形,就其产生的根源来说, 可分为内应力造成的应力塑性变形和比容变化引起的体积变形两大类。 (1) 内应力塑性变形 热处理过程中加热冷却的不均匀和相变的不等时性, 都会产生内应力, 在一定塑性条件的配合下, 就会产生内应力塑性变形。在加热和冷却过程中, 零件的内外层加热和冷却速度不同造成各处温度不一致,致使热胀冷缩的程度不同, 这样产生的应力变形叫热应力塑性变形。在加热和冷却过程中, 零件的内部组织转变而发生的时间不同, 这样产生的应力变形叫组织应力变形塑性变形。 (2) 比容变形在热处理过程中, 各种相结构的组织比容不同,在相变时发生的体积和尺寸变化为比容变形。比容变形一般只与奥氏体中碳和金元素的含量、游离相碳化物、铁素体的多少、淬火前后组织比容变化差和残余奥氏体的多少和钢的

热处理工艺淬火

热处理工艺-淬火 淬火工艺是将钢加热到AC3或AC1点以上某一温度,保持一定时间,然后以适当速度冷却获得马氏体和(或)贝氏体组织的热处理工艺。 淬火的目的是提高硬度、强度、耐磨性以满足零件的使用性能。淬火工艺应用最为广泛,如工具、量具、模具、轴承、弹簧和汽车、拖拉机、柴油机、切削加工机床、气动工具、钻探机械、农机具、石油机械、化工机械、纺织机械、飞机等零件都在使用淬火工艺。 (1)淬火加热温度 淬火加热温度根据钢的成分、组织和不同的性能要求来确定。亚共析钢是AC3 (30~50℃);共析钢和过共析钢是AC1 (30~50℃)。 亚共析钢淬火加热温度若选用低于AC3的温度,则此时钢尚未完全奥氏体化,存在有部分未转变的铁素体,淬火后铁素体仍保留在淬火组织中。铁素体的硬度较低,从而使淬火后的硬度达不到要求,同时也会影响其他力学性能。若将亚共析钢加热到远高于AC3温度淬火,则奥氏体晶粒回显著粗大,而破坏淬火后的性能。所以亚共析钢淬火加热温度选用AC3 (30~50℃),这样既保证充分奥氏体化,又保持奥氏体晶粒的细小。 过共析钢的淬火加热温度一般推荐为AC1 (30~50℃)。在实际生产中还根据情况适当提高20℃左右。在此温度范围内加热,其组织为细小晶粒的奥氏体和部分细小均匀分布的未溶碳化物。淬火后除极少数残余奥氏体外,其组织为片状马氏体基体上均匀分布的细小的碳化物质点。这样的组织硬度高、耐磨性号,并且脆性相对较少。 过共析钢的淬火加热温度不能低于AC1,因为此时钢材尚未奥氏体化。若加热到略高于AC1温度时,珠光体完全转变承奥氏体,并又少量的渗碳体溶入奥氏体。此时奥氏体晶粒细小,且其碳的质量分数已稍高与共析成分。如果继续升高温度,则二次渗碳体不断溶入奥氏体,致使奥氏体晶粒不断长大,其碳浓度不断升高,会导致淬火变形倾向增大、淬火组织显微裂纹增多及脆性增大。同时由于奥氏体含碳量过高,使淬火后残余奥氏体数量增多,降低工件的硬度和耐磨性。因此过共析钢的淬火加热温度高于AC1太多是不合适的,加热到完全奥氏体化的ACm或以上温度就更不合适。 在生产实践中选择工件的淬火加热温度时,除了遵守上述一般原则外,还要考虑工件的化学成分、技术要求、尺寸形状、原始组织以及加热设备、冷却介质等诸多因素的影响,对加热温度予以适当调整。如合金钢零件,通常取上限,对于形状复杂零件取下限。

钢板淬火变形的原因及现状

钢板淬火变形的原因及现状 工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,导致体积膨胀和收缩不均而产生热应力。 在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部,而使心部受压;当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压,心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。 这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀。工件各部位先后相变,造成体积变化不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力心部受压应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。 热应力在组织转变以前就已经产生,而组织应力则是在组织转变过程中产生的。在整个冷却过程中,热应力与组织应力综合作用的结果,就是工件中实际存在的应力。这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用相反时二者抵消,作用相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。 组织应力占主导地位时的作用结果是工件心部受压表面受拉。在薄板淬火中,钢板冷却引起翘曲变形的诱导因素是不均匀冷却,而影响冷却均匀性的原因很多,在采用同一种冷却方式的前提下,诸如钢板冷却前的板形和表面质量、冷却区长度、上下喷孔水量比、喷孔分布间距、喷孔与板的间距等都对钢板的变形产生不同程度的影响。 国内中厚板淬火主要是针对普通钢板,采用进口的辊式淬火机。 根据淬火钢板规格和种类的不同,淬火可分为两种方式:连续通过淬火或高压低压段间歇式。武钢采用连续式,宝钢采用连续式和间歇式,浦钢采用间歇式。淬火机组需配套建设供水和水处理系统,要求水质纯净、实现自循环,这样钢板淬火均匀。辊式淬火机由上下两组辊道组成,上下两排喷嘴位于辊道之间,钢板高速出炉,连续通过炉后的辊式淬火机组,实现运动中淬火。目前国内武钢、宝钢、舞钢的调质线均由德国LOI热工工程有限公司提供,包括1座辐射管加热无氧化辊底式炉和1台辊压式连续淬火机,可进行钢板的淬火。浦钢采用原美国DREVER公司设备,鞍钢系引进日本住友二手设备。中厚板淬火机德国LOI公司处于技术领先地位。 目前中厚板淬火处理后的平面度在ZOmm/mZ以上,用此设备无约束淬火处理薄板(4mm 以下),,由于水量、喷淬角度等原因会造成淬透性好的装甲板变形剧烈,难以或无法校平。 国内对于低于3mm厚度的钢板淬火,多采用人工出料、淹没冷却方式,淬火变形量最大达到50mm/mZ,淬火后在矫直机上整形,生产效率低,易出现废品,热处理工艺达不到批量生产的要求。

影响淬火热处理变形的原因

影响淬火热处理变形的原因 淬火是将钢件加热到临界温度以上,保温适当的时间,然后以大于临界冷却速度冷却,获得马氏体或贝氏体组织的热处理工艺,它是强化钢材的最重要的热处理方法。大量重要的机器零件及各类刀具、刃具、量具等都离不开淬火处理。需要淬火的工件,经过加热后,便放到一定的淬火介质中快速冷却。但冷却过快,工件的体积收缩及组织转变都很剧烈,从而不可避免地引起很大的内应力,容易造成工件变形及开裂。由于淬火变形影响因素非常复杂,导致变形控制十分棘手。而采用校直办法纠正变形或通过加大磨削加工余量,都会增加成本,因此研究钢件淬火热处理变形的影响因素,提出防止变形的措施是提高产品质量、延长零部件使用寿命、提高经济效益的重要课题。 零件热处理变形原因分析 1 热应力引起的变形 钢件在加热和冷却过程中,将发生热胀冷缩的体积变化以及因组织转变时新旧相比容差而产生的体积改变。零件加热到淬火温度时,屈服强度明显降低,塑性则大大提高。当应力超过屈服强度时,就会产生塑性变形,如果造成应力集中,并超过了材料的强度极限,就会使零件淬裂。导热性很差的高碳合金钢,如合金模具钢Cr12MoV、高速钢W18Cr4V之类的工具钢,淬火加热温度很高,如不采用多次预热和缓慢加热,不但会造成零件变形,而且会导致零件开裂而报废。此外,铸钢件和锻件毛坯,如果表层存在着一层脱碳层,由于表层和心部导热性能不同,在淬火加热较快时,也会产生热应力而引起变形。冷却时由于温差大,热应力是造成零件变形的主要原因。 2 组织应力引起的变形 体积的变化往往与加热和冷却有关,因为它和钢的膨胀系数相关。比容的变化导致零件尺寸和形状的变化。组织应力的产生起源于体积的收缩和膨胀,没有体积的膨胀,就没有组织转变的不等时性,也就没有组织应力引起的变形,导致热处理变形的内应力是热应力和组织应力共同作用形成的复合应力,热应力和组织应力综合作用的结果是不定的,可能因冷却条件及淬火温度的不同而产生不同情况,淬火应力是由急冷急热应力及由组织转变不同时所引起的应力综合构成的。 影响淬火热处理变形的主要因素 在实际生产中,影响淬火热处理变形的因素有很多,其中主要包括钢的原始组织、含碳量、零件尺寸和形状、淬火介质的选择、淬火工艺、钢的淬透性等。 1 钢中的含碳量对零件淬火热处理变形的影响 形成显微裂纹敏感度随马氏体中碳含量增高增大。当钢中碳含量大于1.4%时,形成显微裂纹敏感度反而减小。因为钢中碳含量大于 1.4%时马氏体的形态改变了,片变得厚而短,马氏体片之间的夹角变小,撞击机会和应力都有所减小。

轴承套圈热处理过程中如何有效控制淬火变形

主题《轴承套圈热处理过程中如何有效控制淬火变形》 刘美东 轴承套圈热处理变形影响因素有哪些?请大家从材料、锻造/钢管、退火、车削、热处理这些方面进行思考。 其实热处理变形大家都不陌生。只是大家平时很难抽出时间来整理。今天我们大家共同探讨。让群内的朋友整理在一起,以便供大家今后工作中运用。 我个人认为:影响轴承变形的影响有材料锻造(锻造的压缩比)会对我们的热处理变形有影响。锻造后的退火质量好与坏也会对轴承套圈热处理变形有影响。其材料的偏析譬如严重的网状和带状,会影响热处理的组织和变形。球化组织当然有要求了按照我们JB/T1255-2015标准按照第一级别图,2~4级合格。 现在很多锻造厂的退火质量把控不是很严格。有些锻造厂的退火使用推盘炉退火,每盘的装的产品质量不大一样。我去过一家退火厂和他们车间主任交流得知他们的每盘质量为450±50Kg,大家可以想象一下,设备加热功率是一样的,那么一筐套圈400Kg,一筐是500Kg,的话那么出来的产品的质量是一样的吗? 球化退火我们希望什么样的组织呢?轴承钢GCr15而言,我们希望得到的是均匀的球状珠光体。那么这个珠光体越圆越好。均匀,圆润,。不希望出现片状、链状,总的来讲我们希望得到均匀一致的球状组织。这样的话对于我们的热处理过程控制来讲不容易出现过热和欠热。 (浙江-张春宝) 针对热处理一个工序而言,我们希望球的直径适当的大一些,当球适当的大时,热处理过程中不容易造成过热,热处理的应力也相对会小一些。 浙江刘美东 球大的时候对产品的寿命是有影响的,但是对热处理质量控制是有益的 特别是大型轴承,加热时间比较长的。球化组织颗粒稍微大一些的话,渗碳体的溶解就会好一些,淬火后的残留碳化物就会更明显一些。这样的既保证淬火后马氏体的含碳量也保证一定量的残留碳化物。锻件的球化退火我就简单的介绍到这里。 大家可以一起讨论一下。 浙江刘美冬 轴承钢的球化率和加热温度和保温时间,冷却速度有很大的关系。 淬火前这个退火组织有检测么?不合格的怎么处理? 宁海正信 换句话说热处理工艺中哪些因素影响球化等级?高铁上面是国产轴承吗? 轴承钢的球化率和加热温度和保温时间,冷却速度有很大的关系。这句话非常认可 如果加热温度不够,或球孕育的能量和时间不够的话球化率很定有影响的。

热处理变形

热处理变形: 一:钢的内应力及应力变形: 1.热应力:冷却初期表面为拉应力,心部为压应力.冷却最终则是表面为压应力,心部为拉应力. 组织应力:冷却初期表面为压应力,心部为拉应力.冷却最终则是表面为拉应力,心部为压应力. 附加应力:因表面和心部组织结构的不均匀性及钢件内部的弹塑性变形不一致形成的内应力. 局部淬火或表面淬火:表层呈现压应力,中心呈现拉应力. 渗碳件淬火:冷却初期表面为拉应力,心部为压应力.冷却最终则是表面为压应力,心部为拉应力.(最大的压应力不在渗碳层的最外层,而存在于渗碳层表面以里约50-60%的深度处,此处碳浓度低于0.5%). 2.影响钢的内应力的因素: 1)钢的化学成分的影响: 在全淬透的情况下,试样表层和中心显现压应力,中间层显现拉应力,故表层的应力分布以热应力为主,而内部则以组织应力主.随着含碳量的增加,热应力减弱,组织应力逐渐增强,因此表层的压应力减小,中间层的拉应力略有下降,心部的压应力则增大,且中间层的拉应力最大值随含碳量的增加而移向表层.因切向应力较大,故对高碳钢极易产生纵向裂纹. 在未淬透的情况下,钢件表层为压应力,心部为拉应力.淬透性愈小,表层压应力愈大. Ms点温度较高的钢,热应力作用较强烈,残余拉应力最大值移向中心,表层显现压应力. 2)淬火工艺的影响: 淬火加热温度愈高,产生的淬火应力愈大,但径向应力变化较小,切向和轴向应力变化较大.加热温度高,还易于造成钢的过热,即组织粗大化而导致脆性增大,易引起开裂. a:水淬钢全部淬透时,其应力分布为表面和心部呈压应力,中间区域呈拉应力,即属于热应力和组织应力重叠型的分布规律.当中心未淬透时,表面被淬火部分受压应力,中心受拉应力作用. b:油中全淬透时,表层具有拉应力,心部为压应力,即属于单一的组织应力分布规律.未淬透时,表层具有压应力,心间为拉应力,但应力变化较缓和. c:在穿透淬火时,水淬钢的最大拉应力值显现在钢件表面附近,油淬钢的拉应力显现在钢的表面.这种表面附近的拉应力是形成淬火裂纹的主要危险.这时切向应力大于轴向应力,易形成纵向裂纹. 3)钢件尺寸大小和形状的影响: 内孔直径很小的圆套筒的淬火应力是内孔的表面和外表面具有压应力,中间层为拉应力.内孔直径稍大时,随壁厚的减小热应力的影响急剧减小,从而其残余应力的分布是内表面和外表面具有拉应力,中间层具有压应力.在淬火效果差时,内表面产生的拉应力将很大,故内径小的高碳钢套筒内壁易产生淬火裂纹.内径进一步增大,壁厚进一步减小时,组织应力的影响增强,热应力分布减弱,则总的淬火应力趋于降低. 4)钢件表面脱碳的影响:脱碳使得钢伯的脱碳层具有拉应力. 脱碳层浓度不同,其应力分布也有差别:随脱碳层浓度的增加,表面的切向应力由压应力转变为拉应力.轴向应力则随脱碳层浓度的增加,开始为拉应力而后转为压应力.

相关文档
最新文档