磁化率测定-学生用

磁化率测定-学生用
磁化率测定-学生用

物理化学实验—磁化率测定

一 实验目的

1. 测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。

2. 掌握古埃(Gouy)磁天平测定磁化率的原理和方法。

二 实验原理

1. 摩尔磁化率和分子磁矩

物质在外磁场作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场,则物质内部的磁感应强度等于

B = B 0 + B′ = μ0H + B′ (1)

式中B 0为外磁场的磁感应强度;为B′ 为物质磁化产生的附加磁感应强;μ0为真空磁导率,其数值等于4π×10-7 N·A -2。

物质被磁化的程度用体积磁化率χ表示,它为无因次量,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。与附加磁场强度和外磁场强度的比值有关:

B′ = χμ0H (2)

化学上常用质量磁化率m χ和摩尔磁化率M χ来表示物质的磁性质,它与χ 的关系为

ρ

χχ=m (3) ρχχχ?=?=M M m M (4)

式中 M 、ρ 分别为物质的摩尔质量与密度。m χ的单位是m 3?kg -1,M χ的单位是m 3?mol -1。

物质的原子、分子或离子在外磁场作用下的磁化现象有三种情况。

第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩 μm = 0,物质本身并不呈现磁性。但由于它内部的电子轨道运动,在外磁场作用下会产生拉摩进动,感应出一个与外磁场方向相反的感应磁矩(诱导磁矩),其磁化强度与外磁场强度成正比,并随外磁场的消失而消失,这类物质称为反(或逆)磁性物质,其M χ<0,如 Hg 、Cu 、Bi 等。

第二种,物质的原子、离子或分子中存在自旋未成对的电子,具有永久磁矩

m μ≠ 0。但由于热运动,永久磁矩的指向各个方向的机会相同,所以该磁矩的统计值为零。但在外磁场作用下一方面永久磁矩会顺着外磁场方向排列,其磁化方与外磁场方向相同,其磁化强度与外磁场强度成正比;另一方面物质内部的电子轨道运动也会产生拉摩进动,感应出一个与外磁场方向相反的感应磁矩。因此这类物质在外磁场下表现的附加磁场是上述两者作用的总结果,我们称具有永久磁矩的物质为顺磁性物质,如Mn 、Cr 、Pt 等。此类物质的摩尔磁化率M χ是摩尔顺磁磁化率μχ与摩尔反磁磁化率0χ之和

0χχχμ+=M (5)

因χ μ比|χ 0|大约1~3个数量级,所以这类物质总表现出顺磁性,可认为μM χχ=,其值大于零。

第三种情况是物质被磁化的强度与外磁场强度之间不存在正比关系,而是随外磁场强度的增加而剧烈增强,并且在外磁场消失后其磁性并不消失,呈现出滞后的现象。这种物质称为铁磁性物质。

对于顺磁性物质而言,假定分子之间无相互作用,应用统计力学的方法,可以到出导出摩尔顺磁磁化率μχ与分子永久磁矩m μ之间的关系:

T

C kT N m A ==302μμχμ (6) 式中N A 为Avogadro 常数(6.022×1023 mol -1),k 为Boltzmann 常数(1.3806×10?23 J·K ?1),μ0为真空磁导率(4π×10?7 N·A ?2),T 为热力学温度。物质的摩尔顺磁磁化率和热力学温度成反比这一关系,是居里(P. Curie )在实验中首先发现达到,所以该式称为居里定律,C 称为居里常数。

分子的摩尔反磁磁化率0χ是由诱导磁矩产生的,它与温度的依赖关系很小。所以只要测定不同温度下的M χ对1/T 作图,截矩即为0χ,由斜率可求m μ。在不很精确的测量中可忽略0χ,作近似处理后,具有永久磁矩的物质的摩尔磁化率与磁矩间的关系为

kT

N kT N m A m A M 3302020μμμμχχ≈+= (7) 该式将物质的宏观物理性质(M χ)和其微观性质(m μ)联系起来,因此只要实

验测得M χ,代入上式就可算出永久磁矩m μ。该关系式可作为由实验测定磁化率来研究物质微观结构的依据。

物质的顺磁性来自与电子的自旋相联系的磁矩。电子有两个自旋状态。如果原子、分子或离子中两个自旋状态的电子数不相同,则该物质在外磁场中就呈现顺磁性。这是由于每一个轨道上不能存在两个自旋状态相同的电子(保里原理),因而各个轨道上成对电子自旋所产生的磁矩是相互抵消的,所以只有存在未成对电子的物质才具有永久磁矩,它在外磁场中表现出顺磁性。

物质的永久磁矩磁矩m μ和它所包含的未成对电子数n 关系如下:

B m n n μμ?+=)2( (8)

式中μB 称为玻尔(Bohr )磁子,是磁矩的自然单位,其物理意义是单个自由电子自旋所产生的磁矩

2410274.94-?==

e B m eh πμ A·m 2(或J·T ?1) (9) 式中h 为普郎克常数,m e 为电子质量,T 为磁感应强度的单位,即特斯拉。

求得n 值后对进一步判断有关配合物分子的配键类型是有意义的。例如,Fe 2+离子在自由离子状态下的外层电子结构为3d 64s 04p 0。如以它作为中心离子与6个H 2O 配位体形成[Fe(H 2O)6]2+配离子,是电价配合物。其中Fe 2+离子仍然保持原自由离子状态下的电子层结构,此时n = 4。见图2所示:

图 1 Fe 2+ 在自由离子状态下的外层电子结构

如果Fe 2+离子与6个CN ?离子配位体形成[Fe(CN)6]4?配离子,则是共价配合物。这时其中Fe 2+离子的外电子层结构发生变化,n = 0。见图2所示:

图 2 Fe 2+

外层电子结构的重排 显然,其中6个空轨道形成 d 2sp 3的6个杂化轨道,它们能接受6个CN ?离子中的6对孤对电子,形成共价配键。

2. 摩尔磁化率的测定

测定磁化率有多种方法,本实验用古埃磁天平测定物质的摩尔磁化率M χ,此法通过测定物质在不均匀磁场中受到作用力而引起质量的变化,从而间接求出物质的磁化率,求得永久磁距和未成对电子数。测定原理如图3所示。

图 3 古埃磁天平法测定原理

将质量为m 的样品装入一个截面积为A 的样品管中,装样高度为h ,然后悬挂于一电子天平下方并放入非均匀磁场中。样品管底部位于磁场强度最大之处,即磁极中心线上,此处磁场强度为H ,单位为A·m -1。H 0为样品最高处磁场强度,通常认为是当地的地磁场强度,约为40A·m -1,一般忽略不计。沿样品轴心方向,即z 方向,存在一磁场强度梯度?H/?z ,故样品沿z 方向受到磁力的大小为:

dz Z

H H A F H H ??-=?→0)0(00)(μχχ (10) 0χ为空气的体积磁化率,这样作用于样品的力为:

200)(2

1H A F μχχ-= (11) 以式(4)代入式(11),并考虑到hA

m =ρ,而0χ很小,相应的项可以忽略,可得 Mh

H m F M 2

021μχ= (12) 在古埃磁天平中用精度为0.1mg 的电子天平测量装有被测样品的样品管和不装样品的空样品管在有外加磁场和无外加磁场时的质量变化,则有

Δm = m 磁场- m 无磁场 (13)

这样,某一不均匀磁场作用于样品的力可由下式计算:

F = (Δm 样品+空管- Δm 空管)g (14)

式中g 为重力加速度(9.81m·s -2)。将式(14)代入式式(12)则有

20(2H m M

h g m m M ???????=+μχ)-空管空管样 (15)

磁场强度H 可由高斯计直接测量或用已知磁化率的标准物质进行标定。应注意高斯计测量的实际上是磁感应强度B ,单位T (特斯拉),单位1T=10-4高斯。磁场强度H 和B 可由关系式B =μ0H 换算,H 的单位为A ?m -1。本实验用莫尔氏

盐(NH 4)2SO 4·FeSO 4·6H 2O 来标定,莫尔氏盐的摩尔磁化率M χ与热力学温度T 的关系为:

)m (101

95004139--???+?

=mol M T M πχ (16) 式中M 为莫尔氏盐的摩尔质量(kg ?mol -1)

三 试剂与仪器

试剂:莫尔氏盐 (NH 4)2SO 4·FeSO 4·6H 2O (A.R.),K 4[Fe(CN)6·3H 2O (A.R.),K 3Fe(CN)6(A.R.),CuSO 4·5H 2O (A.R.)。

仪器:古埃磁天平(包括磁极、励磁电源、电子天平等),CT5 型高斯计,软质玻璃样品管,装样品工具(包括研钵、角匙、小漏斗等)。

四 实验步骤

1、 用已知磁化率的莫尔氏盐标定对应于特定励磁电流值的磁场强度。逐步调节励磁电流由小变大,再由大变小。

具体操作如下: (1) 打开励磁电流开关,使稳压器预热5min 。在励磁电流I=0时,取一支清洁、干燥的空样品管,悬挂在天平一端的挂钩上,使样品管的底部在磁极中心连线上,注意样品管不要与磁极相触,准确称量空样品管的质量。再将励磁电流缓缓增大到 5.0A ,再准确称量此时的空样品管质量。然后减小电流,将励磁电流降为零时,再称量一次空样品管,这样反复测定三次。

(2)取下空样品管,将事先研磨细的莫尔氏盐通过小漏斗装入样品管,边装边在橡皮垫上碰击,使样品均匀填实,装样高度h 约12cm 左右,继续碰击至样品高度不变为止,用直尺准确测量样品高度h (精确至mm)。再将装有莫尔氏盐的样品管置于古埃磁天平中,按照上述方法和步骤测量,记录数据。

2、同法依次测定CuSO 4·5H 2O ,K 4Fe(CN)6·3H 2O 和K 3Fe(CN)6等样品在加励磁电流前后质量的变化量。

五 数据处理

1. 由莫尔氏盐的磁化率和实验数据,计算特定励磁电流相应的磁场强度值。

2. 由式(15)求出所测样品的摩尔磁化率,并判断是顺磁物质还是反磁性物质。

3. 若是顺磁性物质,由式(7)和(8)进一步求出样品的磁距μm以及未成对电子数n。

4.讨论(NH4)2SO4·FeSO4·6H2O和K4Fe(CN)6·3H2O的配键类型。

六思考题

1.简述用古埃磁天平法测定磁化率的基本原理。

2.本实验计算公式做了哪些近似?

3.从理论上讲,不同的励磁电流下测定的样品摩尔磁化率是否相同?为什么?

3. 在相同励磁电流下,前后三次测量的结果有无差异?取平均的目的是什么?

七进一步讨论

1. 影响磁化率测定的因素,除样品的纯度及堆积密度均匀外,保持励磁电流的稳定十分重要。为此,需选用稳定性好的电源,还要防止电流通过电磁线圈后引起发热,因发热会使线圈的电阻增大,导致电流与磁场强度发生变化,而使天平称量的值难以重现。当室温较高时,线圈散热尤要注意。

2. 励磁电流的选择应根据待测物质的磁化率而定。低磁化率的试样选择较大的励磁电流,高磁化率的试样选择较小的励磁电流。但过小的电流往往稳定性不好,且直接造成称量的误差。

3. 对于液体试样的磁化率测定,常用新鲜的二次重蒸水作为参比物来标定磁场强度。

实验注意事项

1.固体样品应事先研细,保持干燥。

2.空样品管需干燥洁净,装样时应先使加入的样品填实后,再接着加,使样品在管内均匀。样品在管中的堆积密度和高度尽量一致。

3.防止杂质尤其是铁磁性杂质的混入。

4.FD-FM-A 特斯拉计在接通或关闭电源前都必须将电流调节器左旋至最小(即电流为零),严禁在负载时突然切断电源。

5.励磁电流的变化应平稳、缓慢,调节电流时不宜用力过大。

6.称量时,样品管正好在两磁极之间,其底部应正好与磁极中心线齐平,勿使悬挂样品管的悬线与任何物体相接触;加外磁场后,应检查样品管是否与磁极相碰。

7.测试样品时,应关闭玻璃门,避免气流扰动对测量的影响。

8.样品倒回回收瓶时,要注意标签,切忌倒错瓶子

实验讲义:磁化率的测定

络合物的磁化率测定 1.实验目的及要求 1)掌握古埃(Gouy)法测定磁化率的原理和方法。 2)通过测定一些络合物的磁化率,求算未成对电子数和判断这些分子的配键类型。 2.实验原理 2.1 物质的磁性 根据物质在磁场下的作用情况,即物质对磁场的影响(磁性),可将物质分为抗磁性(逆磁性)和顺磁性(以及铁磁性、反铁磁性、亚铁磁性、超顺磁性和其它类型)等。简单说,抗磁性就是指物质在磁场作用下会产生对磁场的一定的微弱作用力,而顺磁性是指物质在磁场作用下会产生一个与磁场方向相同的作用力。关于顺磁性的一种解释是顺磁性物质可以被看作是由许多微小的磁棒组成的,这些磁棒可以旋转,但是无法移动。这样的物质受到外部磁场的影响后其磁棒主要顺磁力线方向排列,但是这些磁棒互相之间不影响。热振动不断地使得磁棒的方向重新排列,因此磁棒指向不排列比排列的可能性高。因此磁力线的强度越强顺磁性物质内磁棒的排列性就越强。抗磁性的成因,是当物质处在外加磁场中,外加磁场使得物质电子轨道运动产生改变的连带效应。当施加一外源磁场B 时,会对运动中的电子(电荷q)产生了磁力F:F = q v ×B。此力改变了电子所受的向心力,使得电子轨道运动或是加速,或是减慢。电子速度因此受到改变,而连带改变了其与外加磁场相反方向上的轨道磁矩。所有物质都会对外加磁场作出不同程度的抗磁性反应;但是对于同时拥有其他磁性性质的材料来说(如铁磁性和顺磁性),抗磁性可以完全忽略不计。在无外加磁场时,分子内的各种微磁矩随机排列,故不显示磁性。 2.2 磁化率 物质在外磁场作用下,物质会被磁化产生一附加磁场。物质的磁感应强度等 于: '' 00 B B B H B μ =+=+ (1) 式中B0为外磁场的磁感应强度;B′为附加磁感应强度;H为外磁场强度;μ0为真空磁导率,其数值等于4π×10-7N/A2。 物质的磁化可用磁化强度M来描述,M也是矢量,它与磁场强度成正比。

磁化率的测定实验报告

磁化率的测定 1.实验目的 1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。 1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。 2.实验原理 2.1摩尔磁化率和分子磁矩 物质在外磁场H作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。物质0被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关: χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。化学上常用摩尔磁化率χ表示磁化程度,它与χ的关系为m 。·mol -13 M、ρ分别为物质的摩尔质量与密度。χ的单位为m式中m物质在外磁场作用下的磁化现象有三种:。当它受到=0第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,μm,相应产生一种与外磁场方向相反的感应磁矩。如同线”外磁场作用时,内部会产生感应的“分子电流圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。这种物质称为反磁性物质,如表示,且χ<0。χCuHg,,Bi等。它的χ称为反磁磁化率,用m反反第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分。这些杂乱取向的分子磁矩μ≠0子磁矩m Cr,其方向总是趋向于与外磁场同方向,在受到外磁场作用时,这种物质称为顺磁性物质,如Mn, 表示。Pt等,表现出的顺磁磁化率用χ顺χχ但它在外磁场作用下也会产生反向的感应磁矩,因此它的是顺磁磁化率χ。与反磁磁化率m顺之和。因|χ|?|χ|,所以对于顺磁性物质,可以认为χ=χ,其值大于零,即χ>0。mm顺顺反反第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。这种物质称为铁磁性物质。 对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩μ关系可由居里-郎之万公式表示:m 为真空,J·Kμ×10)mol10),、k为玻尔兹曼常数(1.3806×式中L为阿伏加德罗常数(6.022 --1231-23 0--27可作为由实验测定磁化率来研究物质内部结构,T为热力学温度。式磁导率(4π× 10((2-136)N·A 的依据。分子磁矩由分子内未配对电子数n决定,其关系如下:

磁化率测定

磁化率测定 Ⅰ、目の要求 1、测定物质の摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键の类型。 2、掌握古埃(Gouy)磁天平测定磁化率の原理和方法。 Ⅱ、仪器与试剂 Ⅲ、实验原理 1、摩尔磁化率和分子磁矩 物质在外磁场H0作用下,由于电子等带电体の运动,会被磁化而感应出一个附加磁场H'。物质被磁化の程度用磁化率χ表示,它与附加磁场强度和外磁场强度の比值有关: χ为无因次量,称为物质の体积磁化率,简称磁化率,表示单位体积内磁场强度の变化,反映了物质被磁化の难易程度。化学上常用摩尔磁化率χm表示磁化程度,它与χの关系为 式中M、ρ分别为物质の摩尔质量与密度。χmの单位为m3·mol -1。 物质在外磁场作用下の磁化现象有三种: 第一种,物质の原子、离子或分子中没有自旋未成对の电子,即它の分子磁矩,μm=0。当它受到外磁场作用时,内部会产生感应の“分子电流”,相应产生一种与外磁场方向相反の感应磁矩。如同线圈在磁场中产生感生电流,这一电流の附加磁场方向与外磁场相反。这种物质称为反磁性物质,如Hg,Cu,Bi等。 它のχm称为反磁磁化率,用χ 反表示,且χ 反 <0。 第二种,物质の原子、离子或分子中存在自旋未成对の电子,它の电子角动量总和不等于零,分子磁矩μm≠0。这些杂乱取向の分子磁矩 在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn,Cr,Pt等,表现出の顺磁磁化率用χ 顺 表示。 但它在外磁场作用下也会产生反向の感应磁矩,因此它のχm是顺磁磁化率χ顺。与反磁磁化率χ反之和。因|χ顺|?|χ反|,所以对于顺磁性物质,可以认为χm =χ 顺 ,其值大于零,即χm>0。 第三种,物质被磁化の强度随着外磁场强度の增加而剧烈增强,而且在外磁场消失后其磁性并不消失。这种物质称为铁磁性物质。

磁化率的测定

华南师范大学实验报告学生姓名学号 专业化学(师范)年级班级 课程名称结构化学实验实验项目磁化率的测定 实验类型□验证□设计√综合实验时间2013年10月29日 实验指导老师彭彬实验评分 【实验目的】 1.掌握古埃(Gouy)磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d电子的排布情况和配位体场的强弱。 【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A·m-1)的作用下,产生附加磁场。这时该物质内部的磁感应强度B为: B=H+4πI= H+4πκH(1) 式中,I称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H称为物质的体积磁化率。I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=ΚM/ρ称为摩尔磁化率(M是物质的摩尔质量)。这些数据可以从实验中测得。在顺磁、反磁性研究中常用到χ和χm,铁磁性研究中常用到I、σ。 不少文献中按宏观磁性质,把物质分成反磁性物质、顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质几类。其中,χm<o,这类物质称为反磁性物质。χm>o,这类物质称为顺磁性物质。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则

在磁场为零处。 样品在磁场中受到一个作用力。 df=κHAdH 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称重,必须考虑空气修正,即 dF=(κ-κ0)HAdH κ 0表示空气的体积磁化率,整个样品的受力是积分问题: F= )()(2 1d )(202000 H H A H HA H H --= -? κκκκ (2) 因H 0<<H,且可忽略κ0,则 F= 22 1 AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F=g )m -m (空样? (4) 式中,样m ?为样品管加样品在有磁场和无磁场时的质量差;空m ?为空样品管在有磁场和无磁场时的质量差;g 为重力加速度。 则有,2 2AH F = κ 而 ρκχM = m ,h m A 样品 =ρ,h 为样品高度,A 为样品管截面积,m 样品为样品质量。 ()2 2m m gh m -m 2m 2H M M AH F M 样品空 样样品??= ==ρκχ (5) 只要测量样品重量的变化。磁场强度H 以及样品高度h ,即可根据式(5)计算样品的摩尔磁化率。 其中,莫氏盐的磁化率符合公式: 4-10*1 T 1938 .1m ∧+=χ (6) (3)简单络合物的磁性与未成对电子

配合物磁化率的测定

配合物磁化率的测定 实验目的: 1. 掌握古埃法磁天平测定物质磁化率的基本原理和实验方法。 2. 用古埃磁天平测定FeSO4·7H2O、K4Fe(CN)6·3H2O这两种配合物的磁化率,推算其不成对电子数,从而判断其分子的配键类型。 实验原理: (1)在外磁场的作用下,物质会被磁化产生附加磁感应强度,则物质内部的磁感应强度 B=B0+B‘=μ0+B’(1) 式中:B0为外磁场的磁感应强度;B‘为物质磁化产生的附加磁感应强度;H为外磁场强度;μ0为真空磁导率,其数值等于4π*10^(-7)N*A-2。 物质的磁化可用磁化强度M来描述,M也是一个矢量,它与磁场强度成正比 M=χ*H (2) 式中:χ称为物质的体积磁化率,是物质的一种宏观磁性质。B‘与M的关系为 B‘=μ0M=χμ0H (3) 将式(3)代入式(1)得 B=(1+χ)μ0H=μμ0H (4) 式中μ称为物质的(相对)磁导率。 化学上常用单位质量磁化率χm或摩尔磁化率χM来表示物质的磁性质,它们的定义为χm=χ/ρ(5) χM=M*χm=M*χ/ρ(6) 式中:ρ为物质密度;M为物质的摩尔质量。 (2)物质的原子、分子或离子在外磁场作用下的三种磁化现象 第一情况是物质本身不呈现磁性,但由于其内部的电子轨道运动,在外磁场作用下会产生拉摩进动,感应出一个诱导磁矩来,表现为一个附加磁场,磁矩的方向与外磁场相反,其磁化强度与外磁场强度成正比,并随着外磁场的消失而消失,这类物质称为逆磁性物质,其μ<1,χM<0。 第二种情况是物质的原子、分子或离子本身具有永久磁矩μm,由于热运动,永久磁矩指向各个方向的机会相同,所以该磁矩的统计值等于零。但在外磁场作用下,永久磁矩会顺着外磁场方向排列,其磁化方向与外磁场相同,其磁化强度与外磁场强度成正比,此外物质内部的电子轨道运动也会产生拉摩进动,其磁化方向与外磁场相反。我们称具有永久磁矩的物质为顺磁性物质。显然,此类物质的摩尔磁化率χM是摩尔顺磁化率χμ和摩尔逆磁化率χ0之和 χM=χμ+χ0 (7) 但由于χμ>>|χ0|,故有 χM≈χμ(8) 顺磁性物质的μ>1,χM>0。 第三种情况是物质被磁化的强度与外磁场强度之间不存在正比关系,而是随外磁场强度的增加呈剧烈增加,而外磁场消失后,这种物质的磁性并不消失,呈现出滞后的现象,这类磁性物质称为铁磁性物质。这类物质不在本实验的讨论范围。

实验一磁化率的测定

磁化率的测定实验报告 1. 实验目的 1.1 掌握古埃(Gouy)法测定磁化率的原理和方法。 1.2 测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 2. 实验原理 2.1 磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度 H ′ 与外磁场强度 H 之和称为该物质的磁感应强度 B ,即 B = H + H′ (1) H ′与H 方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H ′比H 大得多(H ′ / H )高达10 4,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。 物质的磁化可用磁化强度I 来描述,H ′ =4πI 。对于非铁磁性物质,I 与外磁场强度H 成正比 I = KH (2) 式中,K 为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用 单位质量磁化率m χ或摩尔磁化率M χ表示物质的磁性质,它的定义是 ρχ/m K = (3) ρχ/MK M = (4) 式中,ρ和M 分别是物质的密度和摩尔质量。由于K 是无量纲的量,所以m χ和M χ的单位分别是cm 3?g -1和cm 3?mol -1 。 磁感应强度 SI 单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G 。 2.2 分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其M χ就等于反磁化率反χ,且 M χ< 0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩

络合物的磁化率的测定

络合物的磁化率的测定 班级:2012级化学(1)班 学号:20125051163 姓名:冯亚威 成绩: 一、实验目的 1.掌握古埃(Gouy)法测定磁化率的原理和方法。 2.测定两种络合物的磁化率,求算未成对电子数,判断其配键类型。 二、实验原理 1、在外磁场的作用下,物质会被磁化产生附加磁感应强度,则物质内部的磁感应强度等于 B =B 0 +B ,=μ0H +B , ① 式中B 0为外磁场的感应强度;B ,为物质磁化产生的附加磁感应强度;H 为外磁场的强度;0μ为真空磁导率,其数值等于27104--??A N π。 物质的磁化可用磁化强度M 来描述,M 也是一个矢量;它与磁场强度成正比 M=χH ② 式中χ称为物质的体积磁化率,是物质的一种宏观磁性质。B ’与M 的关系为: B ’=0μM=0χμH ③ 将③式代入①式得: B=()01μχ+H=0μμH ④ 式中μ称为物质的(相对)磁导率。

化学中常用质量磁化率m χ或摩尔磁化率M χ来表示物质的磁性质,它们的定义为: ⑤ ρ χ χχ?= ?=M M m M ⑥ 式中ρ为物质密度,M 为物质的摩尔质量。m χ的单位是13-?kg m ,M χ的单位是 13-?mol m 2、物质的原子、分子或离子在外磁场的作用下的磁化现象存在三种情况。 (1).物质本身并不呈现磁性,但由于它内部的电子轨道运动,在外磁场作用下会产生拉莫进动,感应出一个诱导磁矩来,表现为一个附加磁场,磁矩的方向与外磁场相反,其磁化强度与外磁场强度成正比,并随着外磁场的消失而消失,这类物质称为逆磁性物质,其μ<1,M χ<0。 (2).物质的原子、分子或离子本身具有永久磁矩,由于热运动,永久磁矩的指向各个方向的机会相同,所以该磁矩的统计值等于零。但它在外磁场的作用下,一方面永久磁矩会顺着外磁场方向排列,其磁化方向与外磁场相同,而磁化强度与外磁场强度成正比;另一方面物质内部的电子轨道运动也会产生拉莫进动,其磁化方向与外磁场相反,因此这类物质在外磁场下表现的附加磁场是上述两者作用的结果,通常称具有永久磁矩的物质为顺磁性物质。显然,此类物质的摩尔磁化率是摩尔顺M χ磁化率μχ和摩尔逆磁化率0χ两部分之和0χχχμ+=M ⑦ 但由于μχ>>0χ,故顺磁性物质的μ>1,M χ>0,可以近似地把μχ当作M χ,即 M χ≈μχ ⑧ ρ χχ= M

络合物磁化率的测定

络合物的磁化率测定 磁场强度和磁感应强度均为表征磁场性质(即磁场强弱和方向)的两个物理量。由于磁场是电流或者说运动电荷引起的,而磁介质(除超导体以外不存在磁绝缘的概念,故一切物质均为磁介质)在磁场中发生的磁化对源磁场也有影响(场的迭加原理)。因此,磁场的强弱可以有两种表示方法: 在充满均匀磁介质的情况下,若包括介质因磁化而产生的磁场在内时,用磁感应强度B 表示,其单位为特斯拉T ,是一个基本物理量;单独由电流或者运动电荷所引起的磁场(不包括介质磁化而产生的磁场时)则用磁场强度H 表示,其单位为A/m2,是一个辅助物理量。 络合物的磁化率测定 (1) Ⅰ、实验目的 ........................................................................................................................... 1 Ⅱ、实验原理 ........................................................................................................................... 1 Ⅲ、仪器与试剂 ....................................................................................................................... 5 Ⅳ、实验步骤 ........................................................................................................................... 5 Ⅴ、数据处理 ........................................................................................................................... 6 Ⅵ、思考题 ............................................................................................................................... 7 Ⅶ、实验的重点难点 ............................................................................................................... 7 Ⅷ、网上答疑 ......................................................................................................................... 10 Ⅸ、注意事项 ......................................................................................................................... 10 Ⅹ、仪器操作 ......................................................................................................................... 10 Ⅺ、在线测试 . (12) Ⅰ、实验目的 一、掌握古埃(Gouy)磁天平测定物质磁化率的基本原理和实验方法; 二、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型; Ⅱ、实验原理 1. 摩尔磁化率和分子磁矩 物质在外磁场0H 作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场 H '。物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关: 04H H πχ=' χ称为物质的体积磁化率,是物质的一种宏观性质,表示单位体积内磁场强度的变化,反

磁化率实验报告1

磁化率的测定 08材化2 叶辉青200830750230 1 实验目的 1.1 掌握古埃(Gouy)法测定磁化率的原理和方法。 1.2 测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 1.3 了解磁天平的原理与测定方法。 1.4 熟悉特斯拉计的使用。 2 实验原理 2.1 磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度H′与外磁场强度H 之和称为该物质的磁感应强度B,即 B=H+H′(1) H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。物质的磁化可用磁化强度I来描述,H′=4πI。对于非铁磁性物质,I与外磁场强度H成正比 I=KH (2) 式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物质的磁性质,它的定义是 χm=K/ρ(3) χM=MK/ρ(4) 式中,ρ和M分别是物质的密度和摩尔质量。由于K是无量纲的量,所以χm 和χM的单位分别是cm3/g和cm3/mol,磁感应强度SI单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。 2.2 分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其χM就等于反磁化率χ反,且χM<0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即 χM=χ顺+χ反(5) 通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。顺磁化率与分子 永久磁矩的关系服从居里定律

配合物的磁化率测定

实验二十八 配合物的磁化率测定 一、实验目的 1. 了解物质磁性与其电子结构的关系,加深对物质结构基本原理的理解; 2. 掌握古埃(Gouy )磁天平测定物质磁化率的基本原理和实验方法; 3. 通过测定一些络合物的磁化率,求算其未成对电子数,判断这些分子的配键类型。 二、基本原理 磁化率是物质的一种基本性质。磁化率的测定是研究物质结构的重要方法之一,它涉及物理学及物质结构中的磁化强度、磁场强度、磁感应强度、分子磁矩等基本概念,常用于某些有机物、稀土元素化合物、配合物、金属催化剂、磁流体、自由基等体系的研究,旨在了解物质内部电子结构、化学键、构型、立体化学等信息。 (一)物质磁性与磁化率 物质在外磁场的作用下,由于电子等带电体的运动,会被磁化产生一附加磁场。物质内部的磁感应强度等于 00B B B H B μ=+=+G G G G G '' () II-28-1'B G 式中为外磁场的磁感应强度;0B G 为物质磁化产生的附加磁场的磁感应强度;H G 为外磁场强度;0μ72410N A π??×?。 为真空磁导率,其数值等于M G H G 成正比: 物质的磁化可用磁化强度来描述,它与磁场强度M H χ=G G () II-28-2χ式中为无因次量,称为物质的体积磁化率,简称磁化率,是物质的一种宏观磁性质,表示物质被磁化引起的单位体积内磁场强度的变化,反映了物质被磁化的难易程度。 'B G M G 的关系为: 与00H 'B M μχμ==G G G H () II-28-3将上式代入()式可得: II-28-100(1)B H χμμμ=+=G G G () II-28-41μχ=+称为物质的(相对)磁导率。 式中来表示物质的磁性质,其定义为: m χM χ 在化学上常用质量磁化率或摩尔磁化率m χχρ = () II-28-5

磁化率测定 Ⅰ`目的要求

磁化率测定 Ⅰ、目的要求 1、测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。 2、掌握古埃(Gouy)磁天平测定磁化率的原理和方法。 Ⅱ、仪器与试剂 Ⅲ、实验原理 1、摩尔磁化率和分子磁矩 物质在外磁场H0作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关: χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。化学上常用摩尔磁化率χm表示磁化程度,它与χ的关系为 式中M、ρ分别为物质的摩尔质量与密度。χm的单位为m3·mol -1。 物质在外磁场作用下的磁化现象有三种: 第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,μm=0。当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。这种物质称为反磁性物质,如Hg,Cu,Bi等。 它的χm称为反磁磁化率,用χ 反表示,且χ 反 <0。 第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩μm≠0。这些杂乱取向的分子磁矩 在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn,Cr,Pt等,表现出的顺磁磁化率用χ 顺 表示。 但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm是顺磁磁化率χ顺。与反磁磁化率χ反之和。因|χ顺|?|χ反|,所以对于顺磁性物质,可以认为χm =χ 顺 ,其值大于零,即χm>0。 第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。这种物质称为铁磁性物质。

磁化率的测定实验报告

华 南 师 范 大 学 实 验 报 告 课程名称 结构化学实验 实验项目 磁化率的测定 一、【目的要求】 1.掌握古埃(Gouy )磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d 电子的排布情况和配位体场的强弱。 二、【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A ·m-1)的作用下,产生附加磁场。这时该物质内部的磁感应强度B 为: B =H +4πI = H +4πκH (1) 式中,I 称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H 称为物质的体积磁化率。I 和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=Κm/ρ称为摩尔磁化率。这些数据是宏观磁化率。在顺磁、反磁性研究中常用到χ和χm ,帖磁性研究中常用到I 、σ。 物质在外磁场作用下的磁化有三种情况 1.χm <o ,这类物质称为逆磁性物质。 2.χm >o ,这类物质称为顺磁性物质。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场为零处。 样品在磁场中受到一个作用力。 df=κHAdH 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称重,必须考虑空气修正,即 dF=(κ-κ0)HAdH κ0表示空气的体积磁化率,整个样品的受力是积分问题: F= )()(2 1d )(202000 H H A H HA H H --= -? κκκκ (2) 因H 0<<H,且可忽略κ0,则 F= 22 1 AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F= g )m -m (空样?

磁化率的测定

磁化率的测定 一、实验目的 1.掌握古埃(Gouy)法测定磁化率的原理和方法。 2.测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 二、预习要求 1.了解磁天平的原理与测定方法。 2.熟悉特斯拉计的使用。 三、实验原理 1.磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度 H′与外磁场强度 H 之和称为该物质的磁感应强度 B,即 B = H + H′(1) H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达 104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。 物质的磁化可用磁化强度 I 来描述,H′=4πI。对于非铁磁性物质,I 与外磁场强度 H成正比 I = KH (2) 式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物

质的磁性质,它的定义是 χm = K/ρ(3) χM = MK/ρ(4) 式中,ρ和M分别是物质的密度和摩尔质量。由于K是无量纲的量,所以χm和χM的单位分别是cm3?g-1和cm3?mol-1。 磁感应强度 SI 单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。 2.分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其χM就等于反磁化率χ反,且χM<0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即 χM =χ顺 + χ反(5) 通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。顺磁化率与分子永久磁矩的关系服从居里定律 (6) 式中,NA为Avogadro常数;K为Boltzmann常数(1.38×10-16erg?K-1);T为热力学温度;μm为分子永久磁矩(erg?G-1)。由此可得

磁化率的测定

实验十六 磁化率的测定 1. 摘要 磁化率的测定是一个经典的磁学测量方法。1889年Gouy [1]建立了在均匀磁场中测量磁化率的古埃法,1964年Mulay [2]设计了在非均匀磁声中测定磁化率的Faraday 法。 摩尔磁化率定义为 据κ的特点将物质分为三类:κ>0称顺磁性物质;κ<0称反磁性物质;另外有少数物质的κ值与外磁场H 有关,随外磁场强度的增加而急剧地增强,且伴有剩磁现象,称此为铁磁性物质(如铁、钴、镍等)。凡原子分子中具有自旋未配对电子的物质都是存在固有磁矩的顺磁性物质。这些原子分子的磁矩象小磁铁一样,在外磁场中总是趋向顺着磁场方向定向排列,但原子分子的热运动又使这些磁矩趋向混乱,在一定温度下这两个因素达成平衡,使原子分子磁矩部分顺着磁场方向定向排列而得以增强物质内部的磁场,显示顺磁性。 凡是原子分子中电子自旋已配对的物质,一般是反磁性的物质。大部分物质属反磁性。其原因是物质内部电子轨道运动受外磁场作用,感应出“分子电流”而产生与外磁场方向相反的诱导磁矩。一般说来,原子分子中含电子数目较多电子活动范围较大时,其反磁化率就较大。 实际上顺磁物质的磁化率除了分子磁矩定向排列所产生的χ顺外,同时还包含有感应所产生的反磁化率χ反,即: χM =χ顺+χ反 由于χ顺比χ反大1~3个数量级,因此顺磁性物质的反磁性被掩盖而表现出顺磁性。在不很精确的计算中,可近似地视χ顺为χM 。 顺磁化率与分子磁矩的关系一般服从居里定律 (2.16.2)式将物质的宏观性质χM 与物质的微观性质μ联系起来,因此可通过实验测定χM 来计算物质分子的永久磁矩μ。实验表明,对自由基或其它具有未成对电子的分子和某些第一族过渡元素离子的磁矩μ与未成对电子数n 的关系为 B n n μμ)2(+= (2.16.3) 联系(2.16.2)和(2.16.3)两式,可直接得到n 的表达式 1 1)2(84.22-++= T n n n 顺χ (2.16.4) (2.16.1) (2.16.2)

磁化率-实验报告

一、实验目的与要求 1、测定物质的摩尔磁化率,估计待测金属配合物中心离子的未成对电子数,判断分子配键的类型。 2、掌握磁天平测定磁化率的原理和方法。 二、实验原理 1、摩尔磁化率和分子磁化率 在外磁场作用下,由于电子等带电粒子的运动,物质会被磁化而感应出一个附加磁场。这个附加磁场H’的强度由物质的磁化率χ决定:H’=4χχ为物质的体积磁化率,反映物质被磁化的难易程度,化学上常用摩尔磁化率χ m 表示磁化程度:,单位为。 对于顺磁性物质,摩尔顺磁磁化率与分子磁矩关系有: 顺 (为真 空磁导率,由于反磁化率较小,所以χ 反 忽略作近似处理) 顺磁性物质与为成对电子数n的关系:(为玻尔磁子,=9.273×10-21erg·G-1 =9.273×10-28J·G-1 =9.273×10-24 J·T-1) 2、摩尔磁化率的测定 样品在非均匀磁场中受到的作用力F可近似为: 在非均匀磁场中,顺磁性物质受力向下所以增重;而反磁性物质受力向上所以减重。测定时在天平右臂加减砝码使之平衡。设△m为施加磁场前后的称量,则: 所以: Δy样品管加样品后在施加磁场前后的称量差(g);Δ 为空样品管在施加磁场前后的称量差(g);g为重力加速度(9.8m·s-2);h为样品高度(cm);y样品的摩尔质量(g·mol-1);y样品的质量(g);y磁极中心磁场强度(G)。 磁场强度H可由特斯拉计或CT5高斯计测量。应该注意,高斯计测量的实际 上是磁感应强度B,单位为T(特斯拉),1T=104高斯。磁场强度H可由 B =μ H 关系式计算得到,H的单位为A·m-1。也可用已知磁化率的硫酸亚铁铵标定。 在精确的测量中,通常用莫尔氏盐来标定磁场强度,它的摩尔磁化率与温度的关系为 三、实验用品 1、仪器 分析天平、高斯计、玻璃样品管、研钵、角匙、玻璃棒 2、试剂 莫氏盐(NH 4) 2 SO 4 ·FeSO 4 ·6H 2 O、亚铁氰化钾 K 4 [Fe(CN) 6 ]·3H 2 O、硫酸亚铁FeSO 4 ·7H 2 O。 四、实验步骤

磁化率的测定

结构化学实验报告题目:磁化率的测定 报告作者: 学号: 班级:级化教班 指导老师:彭斌老师 实验时间:年月日

磁化率的测定 一、【实验目的】 1.掌握古埃(Gouy )磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配合物磁化率的测定,计算中心离子的不成对电子数.并判断d 电子的排布情况和配位体场的强弱。 二、【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A ·m-1)的作用下,产生附加磁场H'。这时该物质内部的磁感应强度B 为外磁场强度H 与附加磁场强度H'之和: B =H 十H'=H+4πI=H 十4πκH (1) 式中,I 称为体积磁化强度,物理意义是单位体积的磁矩,式中的κ=I/H 称为物质的体积磁化率、表示单位体积物质的磁化能力,是无量纲的物理量。I 和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。Χm=κM/ρ称为摩尔磁化率(M 是物质的摩尔质量)。这些实验数据都可以从实验测得,是宏观磁性质。在顺磁、反磁性研究中常用到χ和χm ,铁磁性研究中常用到I 、σ。 不少文献中按宏观磁性质,把物质分成反磁性物质、顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质几类。其中顺磁性物资的χm>0而反磁性物质的χm<0。 (2)古埃法(Gouy )测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。为了测量不同温度的数据,要使用变温、恒温和测温装置。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场强度为零处。 样品在磁场中受到一个作用力。 HAdH dF κ= 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称量,必须考虑空气修正,即 HAdH dF )(0κκ-= κ0表示空气的体积磁化率,整个样品的受力是个积分问题: ?--==0) (21 20200H H H H A HdH A F κμκμ 因H0<

实验二十一磁化率测定

实验十一磁化率的测定 一、目的要求 1.掌握Gouy磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配合物磁化率的测定,计算中心离子的不成对电子数.并判断d 电子的排布情况和配位体场的强弱。 二、实验原理 物质在磁场中被磁化,在外磁场强度H(A·m-1)的作用下,产生附加磁场H'。这时该物质内部的磁感应强度B为外磁场强度H与附加磁场强度H'之和: B=H十H'=H十4πχH=μH (1) 式中χ称为物质的体积磁化率、表示单位体积物质的磁化能力,是无量纲的物理量。μ称为导磁率,与物质的磁化学性质有关。由于历史原因,目前磁化学在文献和手册中仍多半采用静电单位(CGSE),磁感应强度的单位用高斯(G),它与国际单位制中的特斯拉(T)的换算关系是 1T=10000G 磁场强度与磁感应强度不同、是反映外磁场性质的物理量.与物质的磁化学性质无关。习惯上采用的单位为奥斯特(oe).它与国际单位A·m-1的换算关系为 1oe= 1/4πX10-3 A·m-1 由于真空的导磁率被定为:μ=4π×10-7Wb·A-1·m-1,而空气的导磁率μ空≈μ0,因而 1oe=1×10-4Wb·m-2=1×10-4T=1G 这就是说1奥斯特的磁场强度在空气介质中所产生的磁感应强度正好是1 高斯,二者单位虽然不同.但在量值上是等同的。习惯上用测磁仪器测得的"磁场强度"实际上都是指在某一介质中的磁感应强度,因而单位用高斯,测磁仪器也称为高斯计。 除χ外化学上常用单位质量磁化率χm和摩尔磁化率χM来表示物质的磁 化能力:

χm=χ/ρ(2) χM=M·χM=M·χ/ρ(3) 式中ρ和M是物质的密度(g·cm-3)和分子量,χm的单位取cm3·g-1,χM的单位取cm3·mol-1。 物质在外磁场作用下的磁化有三种情况 1.χM<o,这类物质称为逆磁性物质。 2.χM>o,这类物质称为顺磁性物质。 3.少数的χM与外磁场H有关,其值随磁场强度的增加而剧烈增加,并且还伴有剩磁现象,如铁、钴、镍等,这类物质称为铁磁性物质。 物质的磁性与组成物质的原子、离子、分子的性质有关。原子、离子、分子中电子自旋已配对的物质一般是逆磁性物质。这是由于电子的轨道运动受外磁场作用,感应出"分子电流",从而产生与外磁场相反的附加磁场。这个现象类似于线圈中插入磁铁会产生感应电流,并同时产生与外磁场方向相反的磁场的现象。 磁化率是物质的宏观性质,分子磁矩是物质的微观性质,用统计力学的方法可以得到摩尔顺磁化率χμ和分子永久磁矩μm之间的关系: (4) 式中N A为Avogadro常数(6.022x1023mol-1);K为Boltzmann常数 (1.3806x10-23J·K-1); T为绝对温度。通过实验可以测定物质的χM,代人(4)式求得μm(因为χM≈μm),再根据下面的(6)式求得不成对的电子数n,这对于研究配位化合物的中心离子的电子结构是很有意义的。 物质的摩尔顺磁磁化率与热力学温度成反比这一关系,称为居里定律,是P. Curie 首先在实验中发现的,C为居里常数。 原子、离子、分子中具有自旋未配对电子的物质都是顺磁性物质。这些不成对电子的自旋产生了永久磁矩μm,微观的永久磁矩与宏观的摩尔磁化率χM 之间存在联系,这一联系可以表达为:

磁化率的测定实验报告(华南师范大学物化实验).

0 HAdH ) (3) m m m m 磁化率的测定 一、实验目的 (1)掌握古埃磁天平测定物质磁化率的实验原理和技术。 (2)通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数,并 判断 d 电子的排布情况和配位体场的强弱。 二、实验原理 2.1 物质的磁性 物质在磁场中被磁化,在外磁场强度 H 的作用下,产生附加磁场。该物质 内部的磁感应强度 B 为: B=H+4 πI=H+4π H (1) 式中,I 称为体积磁化强度,物理意义是单位体积的磁矩。式中 =I/H 称为 物质的体积磁化率。I 和 分别除以物质的密度 ρ可以得到 σ和 χ,σ=I/ρ称为克 磁化强度;χ= /ρ称为克磁化率或比磁化率。χ= M/ ρ称为摩尔磁化率(M 是 物质的摩尔质量)。这些数据都可以从实验测得,是宏观磁性质。在顺磁、反磁 性研究中常用到 χ和 χ,铁磁性研究中常用到 I 、σ。 不少文献中按宏观磁性质,把物质分成反磁性物质。顺磁性物质和铁磁性物 质以及亚铁磁性物质、反铁磁性物质积累。其中,顺磁性物质 χ>0 而反磁性物 质的 χ<0。 2.1 古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和 测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测 力装置可以用分析天平。为了测量不同温度的数据,要使用变温、恒温和测温装 置。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处, 另一端则在磁场强度为零处。 样品在磁场中受到一个作用力。 dF= HAdH (2) 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称量,必须考虑空气修正,即 dF=( - 0 表示空气的体积磁化率,整个样品的受力是积分问题: (4) 因 H 0 H ,且忽略 ,则 (5)

磁化率的测定(完成)

实验报告 学生姓名学号 专业年级、班级 课程名称实验项目磁化率的测定 实验类型验证设计综合实验时间年月日 实验指导老师实验评分 一、目的要求 1.掌握Gouy磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配合物磁化率的测定,计算中心离子的不成对电子数.并判断d 电子的排布情况和配位体场的强弱。 二、实验原理 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A·m-1)的作用下,产生附加磁场H'。这时该物质内部的磁感应强度B为外磁场强度H与附加磁场强度H'之和: B=H十4πI=H十4πкH=μH (1) 式中I称为体积磁化强度,物理意义是单位体积的磁矩。式中的к称为物质的体积磁化率、表示单位体积物质的磁化能力,是无量纲的物理量。I 和к分别除以物质的密度ρ可以得到σ和χ,σ = I/ρ称为克磁化强度;χ = к/ρ称为克磁化率或比磁化率。χm = кM/ρ称为摩尔磁化率(M是物质的摩尔质量)。这些数据都可以从实验测得,是宏观磁性质。在顺磁、反磁性研究中常用到χ和χm ,铁磁性研究中常用到I、σ。 不少文献中按宏观磁性质,把物质分为反磁性物质、顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质几类。其中,顺磁性物质的χm >0,而反磁性物质的χm <0。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流的大小,磁头间距离大小,可以控制磁场强度大小。

测力装置可以用分析天平。为了测量不同温度的数据,要使用变温、恒温和测温装置。 样品要放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,此处磁场强度最强;另一端则在磁场强度为零处,即处在磁场强度可忽赂不计的位置。 样品在磁场中受到一个作用力。 dF = κHAdH ① 式中,A表示圆柱玻璃管的截面积。 样品在空气中称量,必须考虑空气修正,即 dF =(κ-κ0)HAdH ② 表示空气的体积磁化率,整个样品的受力是个积分问题: F=∫(κ-κ0)HAdH = 1/2(κ-κ0)A(H2-H20) ③因H0<<H,且忽略κ0,则 F = 1/2 κAH2④ 式中,F可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F =(?m样- ?m空)g ⑤ 式中,?m 样为样品管加样品在有磁场和无磁场时的质量差;?m 空 为空样品 管在有磁场和无无磁场时的质量差;g为重力加速度。 则有,κ = 2F AH2 ⑥ 而χm = κM ρ,ρ= m样品 Ah,h为样品高度,A为样品管截面积,m样品为样品 质量。 χm = κM ρ= ( 2F AH2 M)/ m样品 Ah= 2(?m样- ?m空)ghM m样H2 ⑦ 只要准确测量样品重量的变化、磁场强度H及样品高度h,即可根据式⑦来计算样品的摩尔磁化率。 在实际工作中是采用已准确知道磁化率数值的校准样品来标定磁场,根据式⑦ χ样品 χ校准剂= ?m样- ?m空 ?m校准剂- ?m空× m校准剂 m样品 × M样品 M校准剂 × h样品 h校准剂

相关文档
最新文档