循环流化床锅炉漏风试验

循环流化床锅炉漏风试验
循环流化床锅炉漏风试验

循环流化床锅炉漏风试验、冷态试验方法。

一、漏风试验

锅炉经过检修后,应在冷却状态下,以正压、负压试验的方法,检查锅炉各部的严密

性。

(#)用正压试验检查锅炉本体及烟道的严密性。其程序是:

#)严密关闭各部人孔门、检查门及放渣管挡板等。

!)启动一次风机,保持燃烧室压力接近于正常运行时炉膛中部负压值。

")用小火把(或用其它方法)靠近炉墙及烟道进行检查,如燃烧室漏风则火炬会从不严密处吹离炉墙。

$)在漏风部位画上记号,试验完毕后予以消除。

(!)用正压试验检查空气预热器,风道及其挡板、风室及其的严密性,其程序是:#)适当保持燃烧室风压。

!)关闭一、二次风机入口挡板,播煤风、二次风挡板,左右一次风挡板。

")启动一、二次风机并记录其电流值,然后逐渐开大入口挡板,直至全开为止,如电流值增大,则表明挡板、风门有不严处,应查明原因,予以消除。

$)如电流值增大,则表明挡板、风门有不严如空气喷出,则表明有不严密处,在漏风部位画上记号,实验完毕后,予以消除。

漏风试验完毕后,关闭一、二次风机及其入口挡板,停止其运行,并将其试验结果及新

发现的问题记录在交接班日志内。为了消除漏风要经常检查,及时消除漏风。(七)冷态试验

循环流化床锅炉大修完毕或处理布风板和风帽后,在点火启动前,应对燃烧系统及物

料循环装置进行冷态试验,目的是:确认送风机风量和风压是否达到设计要求,能否满足

燃烧需要;测定布风板阻力;测定料层阻力;检查床内各处流化质量,如有死料区应予以消

除,即布风板均匀性检查;确定冷态流化临界风量,用以估算热态运行时的最低风量;检查

物料循环系统的工作性能和可靠性能。

(#)试验方法为:

#)准备底料,粒径为%&& 以下的灰渣,也可准备符合粒度要求的石英砂。

!)检查和清理床面,风帽安装是否正确,风帽出风口是否被堵,床面耐火材料是否有裂纹,大的缝纹要用耐火水泥填塞。

")检查风室内是否有杂物,如有应清除干净;排渣管和放灰管应清洁畅通,阀门开闭灵活。

$)检查风道烟道挡板的调节是否灵活可靠,开关位置标定是否准确,如确无问题应全部关闭。

%)启动引风机、一次风机,检查风道和风室是否严密,如发现漏风,必须及时消除。’)检查物料循环系统所配置的阀门开关灵活可靠,全部关闭。关闭锅炉本体上所有— (’’—

第四篇循环流化床锅炉的启动调试与运行

的人孔门、检查门。

!)将所有炉门关闭,并将所有排渣管、放灰管堵死。

")启动引风机、一次风机后,逐渐开大风门,缓慢、平滑地增加风量,并且记录风量和

风室静压的数据,调整引风机开度,使炉膛内保持零压,一般每次增加#$$ %

&$$$’( 风量

记录一次,一直增加到最大风量(一次风机达到额定电流为止)。

))再从最大风量逐渐减少,并记录相对应的风量和风压,用上行和下行的数据平均值,作为布风板阻力的最后数据,并画出控板阻力特性曲线,以备运行时估算料层厚度用。

&$)在热态运行时,要考虑热风温度对风帽小孔速度影响和对气体重度影响引起的布

风板阻力修正。

(*)测定料层阻力步骤为:

&)在布风板上铺上一定厚度的料层,像测布风板阻力方法一样,测定不同风量下的风

室静压。以后每改变一次料层厚度(($$ % !$$’’,每隔&$$’’做一次)重复一次风量一风

室静压关系的测定,风室静压等于布风板阻力与料层阻力总和,料层阻力二风室静压—布

风板阻力(相同风量之下),根据上述两个试验测定结果就可得到不同料层厚度下阻力和

风量间的关系,绘制成料层阻力———风量关系曲线。

*)料层阻力与静止料层厚度是成正比例关系,料层越厚,阻力越大。

()运行时,可根据风室的静压与风量来估算料层厚度。

布风均匀性试验方法为,在床面上铺上颗粒为$ % &$’’的灰渣,铺料厚度约为(#$ %

+$$’’,开启引风机、一次风机、缓慢调节一次风挡板,直到整个料层流化起来,然后联锁

停止引风机,观察料层是否平坦,如果很平坦,说明床内布风均匀,如果料层表面高低不

平,高处表明风量小,反之,低处表明风量大。应查明原因,予以消除。

冷态临界流化风量确定方法为,在料层平整、布风均匀的前提下,逐渐开启一次风机,

维持炉膛负压,检查床料情况,床料由局部或部分流化过渡到全部流化起来的风量为临界

流化风量。点火及运行中在对应燃料层下,运行风量不许低于临界风量。(()检查物料循环系统的工作性能和可靠性能:

&)在布风板上铺准备好的粒径5mm 以下的细灰,(粒径过大,冷态下不易吹起,影响试验效果)细灰厚度($$ % #$$’’。

*)启动引风机、一次风机,此时绝大部分细灰将扬起,细灰经分离器分离后,在料腿中存有一定高度,调节返料阀送风量,打开返料器处的人孔门,观察两个返料阀,出料口是否

畅通。调节返料风压、风量,观察循环灰溢流返回情况,如发现返料不畅或有堵塞情况,则

应查明原因予以消除。再次启动返料阀继续观察返料情况,直到整个物料循环系统物料

的储存、回送畅通,可靠为止。

锅炉机组检修后的检查验收结果,要做好全面总结,做好检查验收记录。

循环流化床锅炉的特点

循环流化床锅炉的特点 循环流化床锅炉的特点 循环流化床锅炉是近十几年发展起来的一项高效、低污染清洁燃烧技术。因其具有燃烧效率高、煤种适应性广、烟气中有害气体排放浓度低、负荷调节范围大、灰渣可综合利用等优点,在当今日益严峻的能源紧缺和环境保护要求下,在国内外得到了迅速的发展,并已商品化,正在向大型化发展。 1.1 独特的燃烧机理 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其炉子称为流化床

锅炉。流化理论用于燃烧始于上世纪20年代,40年代以后主要用于石油化工和冶金工业。 流化燃烧是一种介于层状燃烧与悬浮燃烧之间的燃烧方式。煤预先经破碎加工成一定大小的颗粒(一般为<8mm)而置于布风板上,其厚度约在350~500mm左右,空气则通过布风板由下向上吹送。当空气以较低的气流速度通过料层时,煤粒在布风板上静止不动,料层厚度不变,这一阶段称为固定床。这正是煤在层燃炉中的状态,气流的推力小于煤粒重力,气流穿过煤粒间隙,煤粒之间无相对运动。当气流速度增大并达到某一较高值时,气流对煤粒的推力恰好等于煤粒的重力,煤粒开始飘浮移动,料层高度略有增长。如气流速度继续增大,煤粒间的空隙加大,料层膨胀增高,所有的煤粒、灰渣纷乱混杂,上下翻腾不已,颗粒和气流之间的相对运动十分强烈。这种处于沸腾状态的料床,称为流化床。这种燃烧方式即为流化燃烧。当风速继续增大并超过一定限度时,稳定的沸腾工况就被破坏,颗粒将全部随气流飞走。物料的这种运动形式叫做气力输送,这正是煤粉在煤粉炉中随气流悬浮燃烧的情景。

1.2 锅炉热效率较高 由于循环床内气—固间有强烈的炉内循环扰动,强化了炉内传热和传质过程,使刚进入床内的新鲜燃料颗粒在瞬间即被加热到炉膛温度(≈850℃),并且燃烧和传热过程沿炉膛高度基本可在恒温下进行,因而延长了燃烧反应时间。燃料通过分离器多次循环回到炉内,更延长了颗粒的停留和反应时间,减少了固体不完全燃烧损失,从而使循环床锅炉可以达到88~95%的燃烧效率,可与煤粉锅炉相媲美。 1.3 运行稳定,操作简单 循环流化床锅炉的给煤粒度一般小于10mm,因此与煤粉锅炉相比,燃料的制备破碎系统大为简化。循环流化床锅炉燃料系统的转动设备少,主要有给煤机、冷渣器和风机,较煤粉炉省去了复杂的制粉、送粉等系统设备,较链条炉省去了故障频繁的炉排部分,给燃烧系统稳定运行创造了条件。

循环流化床锅炉岗位操作法

循环流化床锅炉岗位操作法 1.岗位任务 本岗位负责循环流化床锅炉及附属设备的安全经济运行、调节、控制锅炉的运行参数,确保锅炉供汽质量,作好本锅炉及辅机设备运行的原始记录,设备维护保养工作。 2.管辖围 本岗位负责循环流化床锅炉及附属设备的运行、维护、生产现场卫生的清扫,所用仪器、工具、原始记录的管理。 3.工艺流程叙述 煤从煤仓落至给煤机,经螺旋片进入炉膛燃烧,燃烧所需空气由鼓风机经布风板送入,燃烧后的炉渣经落渣管排出,高温烟气在炉膛燃烧后经过分离器、过热器、省煤器、空气预热器换热再进布袋除尘器,然后由引风机送入烟囱排入大气。 4.设计特性和设备说明 4.1设计说明 JG-15/3.82-M型锅炉在炉膛外设有物料高温旋风分离器将物料分离,通过返料风将物料返回炉膛。 4.2设计煤质 4.2.1 JG-15/3.82-M 4.2.1.1 按二类无烟煤设计 4.2.1.2设计煤质分析如下:

碳C y= 氢H r= 氧O r= 氮N r= 硫S r= 灰分A r= 水分W r= 挥发性V r= 发热值Q dw r = 4.2.1.3煤质颗粒度要求:0-10mm(其中0-1.0mm不大于40%) 4.3锅炉主要参数如下: 5.锅炉的点火启动 5.1点火前的检查 5.1.1检查各压力表应干净清晰,刻度上应划红线指示工作压力,要有良好的照明,压力表应经校验合格,检查后方能投入运行。 5.1.2水位计应在投运转态,汽阀和水阀须处打开的位置,放水阀应关闭,照明良好,水位计上应有指示最高、最低安全水位的明显标志。 5.1.3各安全阀应按规定的压力进行校验,弹簧安全阀要有提升手柄和防止随便拧动调整螺钉的装置。 5.1.4检查所有放水阀、排污阀是否拧得动,检查后应把它关闭,排污总阀、疏水阀应开启,开启减温器进出水阀,使减温器进入调节状态。

循环流化床锅炉的技术特点

编号:SM-ZD-33151 循环流化床锅炉的技术特 点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

循环流化床锅炉的技术特点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、燃料适应性广 由于大量灰粒子的稳定循环,新加入循环流化床锅炉的燃料(煤)将只占床料的很小份额。由于循环流化床的特殊流体动力特性,使其中的质量和热量交换非常充分。这就为新加入燃料的预热、着火创造了十分有利的条件。而未燃尽的煤粒子通过多次循环既可增加其炉内停留时间又可多次参与床层中剧烈的质量和热量交换,十分有利于其燃尽。这就使循环流化床锅炉不仅可高效燃用烟煤、褐煤等易燃煤种,同样可高效燃用无烟煤等难燃煤种,还可高效燃用各种低热值、高灰分或高水分的矸石、固体垃圾等废弃物。 2、截面热强度高 同样由于流化床中剧烈的质量和热量交换,不仅使燃烧

过程能在较小截面内完成,还使炉膛内床层和烟气流与水冷壁之间的传热效率也大大增加。这就使循环流化床锅炉的炉膛截面和容积可小于同容量的链条炉,沸腾床锅炉甚至煤粉炉。这一点对现有锅炉的改造尤其具有现实意义。 3、污染物排放少 可利用脱硫剂进行炉内高效脱硫是循环流化床锅的突出优点。常用的脱硫剂是石灰石。通常循环流化床锅炉的床温保持在800-1000oC之间,过高可能因床内产生焦、渣块而破坏正常流化工况,过低则难以保证必要的燃烧温度。而这一区间正是脱硫反应效率最高的温度区间。因而在适当的钙硫比和石灰石粒度下,可获得高达80%--90%的脱硫率。同样由于较低的燃烧温度,加以分级送风,使循环流化床锅炉燃烧时产生的氮氧化物也远低于煤粉炉。这样,燃煤循环流化床锅炉的二氧化硫和氮氧化物排放量都远低于不加烟气脱硫的煤粉炉,可轻易地控制到低于标准允许排放量的水平。

循环流化床锅炉结焦预防措施(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 循环流化床锅炉结焦预防措施 (通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

循环流化床锅炉结焦预防措施(通用版) 引言 循环流化床锅炉技术是近十几年迅速发展起来的一项高效、清洁燃烧技术。随着大量的循环流化床锅炉投入生产运行,循环流化床锅炉的运行特点逐渐为大家所掌握。但由于其固有的一些特点,运行中仍经常出现问题。结焦就是循环流化床锅炉运行中较为常见的故障,它直接影响到锅炉的安全经济运行。笔者根据几年来的流化床锅炉调试和运行经验,谈谈关于预防循环流化床锅炉结焦的一些体会,供循环流化床锅炉运行人员参考。 循环流化床锅炉结焦的原因分析 结焦的直接原因是床料局部或整体温度超过灰熔点或烧结温度。当床层整体温度低于灰渣变形温度,由于局部超温而引起的结焦称为低温结焦。低温结焦常在启动和压火时的床层中出现,也可

能出现在高温旋风分离器的灰斗内,以及外置换热器和返料机构内。避免低温结焦,最好的办法是保证床料良好的流化状态和正常移动状态,使温度均匀,防止局部超温。锅炉在压火期间,床料处于静止状态,如果漏入小风,热的床料中的可燃物获得氧气,便会产生燃烧。由于燃烧产生的热量不能及时带走,使局部区域床料超温而结焦。 高温结焦是指床层整体温度水平较高而流化正常时所形成的结焦现象。当床料中含碳量过高,如不及时调整风量或返料量来控制床温,床温将急剧上升,超过灰熔点,便会产生高温结焦。 渐进性结焦是运行中较难察觉的一种结焦形式。它是缓慢生长的,此时床温和观察到的流化质量都比较正常。产生渐进性结焦的主要原因是布风系统设计和安装质量不好,给煤颗粒度超出设计值,运行参数控制不当,风帽错装或堵塞等等。 循环流化床锅炉结焦的预防措施 循环流化床锅炉结焦一旦产生,便会迅速增长,焦块长大速度越来越快,因此预防结焦和及早发现结焦并予以清除是运行人员必

循环流化床锅炉调试运行方案

循环流化床锅炉启动准备及试运行方案 编制:张会勇 审核:张进平 批准:张会勇 河南得胜锅炉安装有限公司

目录 序:分部试运转 一:锅炉漏风试验 二:烘炉 三:煮炉 四:锅炉冷态模拟实验 五:锅炉首次点火启动 六:蒸汽严密性试验 七:安全阀调整 八:试运行 九:运行中监视与调整 十:试运行期间注意事项

序:分部试运转 1、锅炉机组在整套启动以前,必须完成锅炉设备各系统的分部试运和调整试验工作。 2、按照《机械设备安装工程施工及验收通用规范》规定,各辅助设备试运转前应具备下列条件: A、设备及其附属装置、管路等均应全部施工完毕,施工记录及资料应齐全。其中,设备的精平和几何精度经检验合格;润滑、液压、冷却、水、气(汽)、电气(仪器)控制等附属装置均应按系统检验完毕,并应符合试运转的要求。 B、需要的能源、介质、材料、工机具、检测仪器、安全防护设施及用具等,均应符合试运转的要求。 C、对大型、复杂和精密设备,应编制试运转方案或试运转操作规程。 3、设备试运转应包括下列内容和步骤: A、应按规范规定机械与各系统联合调试合格后,方可进行空负荷试运转。 B、应按说明书规定的空负荷试验的工作规范和操作程序,试验各运动机构的启动。启动时间间隔应按有关规定执行;变速换向、停机、制动和安全连锁等动作,均应正确、灵敏、可靠。其中持续运转时间和短断续运转时间无规定时,应按各类设备安装验收规范的规定执行。 C、空负荷试运转中,应进行下列检查并记录: ①技术文件要求测量的轴承振动和轴的窜动不应超过规定。 ②齿轮副、链条与链轮啮合应平稳,无不正常的噪音和磨损。

③传动皮带不应打滑,平皮带跑偏量不应超过规定。 ④一般滑动轴承温升不应超过35℃,最高温度不应超过70℃;滚动轴承温升不应超过40℃,最高温度不应超过80℃;导轨温升不应超过15℃,最高温度不应超过100℃。 ⑤油箱油温最高不得超过60℃。 ⑥润滑、液压、气(汽)动等各辅助系统的工作应正常,无渗漏现象。 ⑦各种仪表应工作正常。 ⑧有必要和有条件时, 可进行噪音测量, 并应符合规定。 4、设备分部运转还应按各专业验收规范进行。 5、分部试运转还应按照“锅炉安装通用工艺辅机篇”执行。

解析循环流化床锅炉超低排放改造可行性

解析循环流化床锅炉超低排放改造可行性 发表时间:2019-10-12T11:11:01.613Z 来源:《云南电业》2019年4期作者:赵亮 [导读] 近几年随着我国可持续发展理念的不断深化,使得环境问题逐渐成为了社会关注的焦点问题。与此同时,国家也针对各个领域企业的排污、排烟情况制定了一系列的排放标准。 山西京玉发电有限责任公司山西省朔州市 032700 摘要:近几年随着我国可持续发展理念的不断深化,使得环境问题逐渐成为了社会关注的焦点问题。与此同时,国家也针对各个领域企业的排污、排烟情况制定了一系列的排放标准。 关键词:循环流化床;超低排放;改造;可行性 进入新时期后,环保理念与节能理念正在实现全方位的深入,尤其是针对化工领域而言。锅炉循环流化床本身包含了复杂性较高的锅炉内在结构,其在运行时将会排放相对较高的烟尘和其他类型污染物。在当前状况下,电力企业及其有关部门正在着手引进超低排放的模式用来全面改造现有的锅炉装置,进而将全面减排与节能的根本理念渗透在锅炉运行的整个流程中。与传统运行模式相比,建立于超低排放前提下的全新运行模式体现为更高层次的环保实效性,针对此项节能举措有必要致力于全面推广。 一、超低排放改造具备的可行性 通常来讲,循环流化床锅炉将会排出相对较多的烟尘和其他污染物,对于人体健康增添了威胁性,同时也无益于保障最根本的环境洁净度。通过运用超低排放改造的手段与措施,电力企业针对自身现有的流化床装置着手进行改造,从源头上杜绝较高污染带来的威胁性,确保其符合当前绿色化工的宗旨与目标。实质上,传统模式的流化床系统存在较大可能将会排放过高的污染物,其中典型性的污染成分包含二氧化硫、烟尘与氮氧化物等。因此在全面施行超低排放改造时,应当确保限制于每立方米40毫克以内的二氧化硫排出量、每立方米20毫克的烟尘总量以及每立方米180毫克以内的氮氧化物总量。 我厂设有330MW机组的大型循环流化床系统,具体在改造时,关键集中于布袋除尘、湿法脱硫以及尿素脱硝等措施。与此同时,技术人员还能运用在线监测模式来随时测查锅炉排放量。在某个时间段,锅炉排放如果超出了最大限度,那么对此就要着手进行适度的调控。对于在线监测仪将其设计为粉尘监测装置,运用改造与升级的方式来优化其现有的监测精度。 二、脱硫部分改造 第一,石灰石注入点改造。本次石灰石技术改造结合福斯特惠勒循环流化床锅炉固有特点、紧凑式旋风分离器及炉膛出口的高宽比、炉内喷钙脱硫技术进行石灰石注入点的改造工作,在实际改造过程中,应注重合理布置并选择炉膛喷射的具体位置。一般情况下,炉膛石灰石注入点主要有以下4种位置:①给煤管给入,当石灰粉进入炉膛内部后,无法与烟气充分混合,致使给煤管给入普遍存在脱硫效果不佳的现象;②二次风中给入,由于二次风压较低且穿透力较差,使得运行工程中经常会出现石灰粉与烟气混合不充分的现象;③独立开口,在石灰粉进入炉膛后,混合扩散性较差,有改造时间长、破坏原有耐火材料的缺点;④返料器侧面中部人孔给入,有利于提高石灰石细粉利用率、缩短原有炉内喷钙固硫时间、提高石灰石在炉内与二氧化硫混合接触能力,该改造需要有合适的位置和温度,具有投料后反应时间长、效果滞后的缺点。 第二,锅炉密相区设置蒸汽喷枪改造,为了防止由断煤偏烧引起的二氧化硫超标排放的现象,相关工作人员应在锅炉密集区增设蒸汽喷枪,且每台循环流化床锅炉应配置3个蒸汽喷枪并将这3支蒸汽喷枪分别设置在锅炉密集区的左墙、右墙、后墙的中部,且每支蒸汽喷枪应满足出力为5t/h、蒸汽参数为P=1.15MP、T=315℃等基本条件,导致二氧化硫超标排放的主要原因为是循环流化床锅炉在正常运行过程中由于给煤机断煤是的锅炉内部的布风板煤炭无法均匀分布,从而导致锅炉密相区温度呈现出混乱状态。因此,本次改造将通过在锅炉密相区上部设置蒸汽喷枪的方式来提高锅炉密相区的脱硫的稳定性,在断煤等锅炉非正常运行状态下,紧急投入蒸汽喷枪,控制二氧化硫排放浓度不会突升,避免硫化物排放超标。因此,在改造过程中相关技术人员需要根据实际情况选择炉膛石灰石注入点的位置非常关键。此外,在选择石灰石注入点温度区域时应以835℃~850℃为宜。在本次改造过程中,结合实际情况最终选择从分离器的中部人孔注入的方式,且通过将原有石灰石输送管线易磨损弯头全部更换为新型耐磨弯头的方式,提高石灰石输送管线的稳定性,同时降低循环流化床锅炉出现故障的概率。 三、脱硝部分改造 脱硝系统主要的工作原理为:氨水在运输到指定位置时通过氨水卸载泵注入将氨水注入到氨水储存罐,然后通过氨水输送泵将氨水输送到指定的计量混合系统。与此同时,储存在稀释水储罐中的稀释水也会通过输送泵输送到计量混合系统,根据系统实时反馈出的具体情况,氨水与稀释水会在计量混合系统内进行充分混合,氨水在经过稀释后会进入喷射系统,并通过喷嘴与压缩空气进行混合,当稀释后的氨水完全雾化后将会借助喷嘴喷入锅炉炉膛内,而这时雾化的氨水会与烟气中的NOX发生化学反应,并在合适的温度下将有害气体还原成氮气和水。 我厂将在本次改造过程中组织相关技术人员在锅炉正常运行状态下,检查炉膛及尾部受热面是否存在漏风现象,若是存在应及时将锅炉漏风得具体部位以及情况详细记录,并在检查结束后对出现漏风现象的部位进行全面补漏工作,以减轻锅炉漏风现象。减少锅炉漏风有利于降低锅炉的排烟热损失,同时还可以在一定程度上提高锅炉燃烧热效率,减少锅炉的烟气量、降低反应区过剩空气系数、提高喷氨区的烟气温度,使得脱硝系统的脱硝效率可以达到相关设计值并起到有效抑制氨逃逸率的作用。 此外,在改造脱硝系统的过程中采取以下四种有效措施对脱硝烟系统进行优化:第一,控制合理的锅炉燃烧空气系数。过剩空气系数越大,燃烧形成的氮氧化物会受到空气系数的影响,当过剩空气系数增加时燃烧形成的氮氧化物浓度也会随之增加,因此应在充分保证锅炉安全运行、不影响煤的燃尽、不影响脱硫系统运行前提下采用“低氧燃烧”的工艺技术,使得锅炉满负荷运行时可有效将省煤器入口的烟气含氧量控制在4.2%左右,使得脱硝前的浓度NOX低于设计值,则脱硝后的NOX浓度小于50mg/Nm3。第二,控制二次风比例。CFB的燃烧风比是影响NOX排放浓度的重要因素,因此在锅炉燃烧中应重点关注CFB的燃烧风比,在锅炉启动过程的后期逐步提高二次风比例,控制脱硝前的NOX排放浓度。第三,控制脱硝氨氮摩尔比。选取合适的氨氮摩尔比以保证NOX脱除率和氨逃逸率符合重要技术指标,当氨氮摩尔比超过2时会增加氨逃逸率,严重影响到了脱硝效率。因此在脱硝烟系统运行中应将氨氮摩尔比控制在1.5,最大时不超过2.0。第四,

3MW循环流化床锅炉设计特点及运行情况分析.doc

3MW循环流化床锅炉设计特点及运行情况分析

135MW循环流化床锅炉设计特点及运行情况分析 1.概述 徐州彭城电力有限责任公司位于江苏省徐州市,根据国家环保及节约能源要求,扩建两台440t/h超高压中间再热循环流化床锅炉及135MW汽轮发电机组。 工程设计单位是中南电力设计院,锅炉由武汉锅炉股份公司供货,汽轮机和发电机由哈尔滨汽轮机有限公司供货。山东电力建设第三工程公司负责电厂主机的安装施工,机组调试由山东电力研究院负责。江苏兴源电力建设监理有限公司负责整个工程的监理工作。 机组于2004年2月28日开工建设,两台机组分别于2005年7月11日和9月16日顺利完成168小时满负荷试运行,移交电厂转入商业运行。 2.锅炉整体布置特点 2.1 锅炉本体设计参数及布置特点 锅炉是武汉锅炉股份有限公司采用引进的ALSTOM公司技术设计制造的首台440t/h超高压中间再热、高温绝热旋风分离器、返料器给煤、平衡通风、半露天布置的锅炉。 锅炉的主要设计参数如下表所示: 名称单位B-MCR B-ECR 过热蒸汽流量t/h 440 411.88 过热蒸汽出口压力MPa(g> 13.7 13.7 过热蒸汽出口温度℃540 540 再热蒸汽流量t/h 353.29 330.43 再热蒸汽进口压力MPa(g> 2.755 2.56 再热蒸汽进/出口温度℃318/540 313/540

锅炉启动点火和低负荷稳燃。炉膛前墙布置流化床风水冷冷渣器,把渣冷却至150℃以下。 第二部分为炉膛与尾部烟道之间布置有两台高温绝热旋风分离器,每个旋风分离器下部布置一台非机械型分路回料装置。回料装置将气固分离装置捕集下来的固体颗粒返送回炉膛,从而实现循环燃烧。 第三部分为尾部烟道及受热面。尾部烟道中从上到下依次布置有过热器、再热器、省煤器和空气预热器。过热器系统及再热器系统中设有喷水减温器。管式空气预热器采用光管卧式布置。 锅炉整体呈左右对称布置,支吊在锅炉钢架上。 2.2 锅炉岛系统布置特点 输煤系统:原煤经两级破碎机破碎后,由皮带输送机送入炉前煤斗,合格的原煤从煤斗经二级给煤机,由锅炉返料斜腿进入炉膛燃烧。床料加入系统:启动床料经斗式提升机送入启动料斗,再通过输煤系统的给煤机,由锅炉返料斜腿进入炉膛。 一次风系统:一次风经空预器加热成热风后分成两路,第一路直接进入炉膛底部水冷风室,第二路进入床下启动燃烧器。 二次风系统:二次风共分四路,第一路未经预热的冷风作为给煤机密封用风,第二路经空预器加热成热风后分上、下行风箱进入炉膛,第三路热风作为落煤管输送风,第四路作为床上启动燃烧器用风。 返料器用风系统:返料器输送风由单独的高压流化风机<罗茨风机)供应,配置为2x100%容量<一运一备)。

循环流化床锅炉技术(岳光溪)

循环流化床技术发展与应用 岳光溪清华大学热能工程系 摘要:循环流化床燃烧技术对我国燃煤污染控制具有举足轻重的意义。我国自上世纪八十年代后采取引进和自我开发两条路线,完全掌握了中小型循环流化床锅炉设计制造技术,在大型循环流化床燃烧技术上已经完成了首台135MWe超高压再热循环流化床锅炉的示范工程。引进的300MWe循环流化床锅炉进入示范实施阶段。燃煤循环流化床锅炉已在中国中小热电和发电厂得到大面积推广使用。中国积累的设计运行经验对世界上循环流化床燃烧技术的发展做出了重要贡献。超临界循环流化床锅炉是今后循环流化床燃烧技术发展极为重要的方向,是大型燃煤电站污染控制最具竞争力的技术。我国已经具备开发超临界循环流化床锅炉的能力,在政府支持下可以实现完全自主知识产权的超临界循环流化床锅炉,扭转过去反复引进的被动局面。 前言 能源与环境是当今社会发展的两大问题。我国是缺油,但煤炭资源相对丰富大国。石油天然气对我国是战略资源,要尽量减少直接燃用。目前一次能源消耗中煤炭占65%,在可预见的若干年内还会维持这个趋势。可见发展高效、低污染的清洁燃煤技术是当今亟待解决的问题。 循环流化床是近年来在国际上发展起来的新一代高效、低污染清洁燃烧技术,具有许多其它燃烧方式所没有的优点: 1)由于循环流化床属于低温燃烧,因此氮氧化物排放远低于煤粉炉,仅为120ppm左右。并可实现燃烧中直接脱硫,脱硫效率高且技术设备简单和经济,其脱硫的初投资及运行费用远低于煤粉炉加FGD,是目前我国在经济上可承受的燃煤污染控制技术; 2)燃料适应性广且燃烧效率高,特别适合于低热值劣质煤; 3)排出的灰渣活性好,易于实现综合利用。 4)负荷调节范围大,负荷可降到满负荷的30%左右。 因此,在我国目前环保要求日益严格,煤种变化较大和电厂负荷调节范围较大的情况下,循环流化床成为发电厂和热电厂优选的技术之一。我国的循环流化床燃烧技术的来自于自主开发、国外引进、引进技术的消化吸收三个主要来源。上世纪八十年代以来,我国循环流化床锅炉数量和单台容量逐年增加。据不完全统计,现有近千台35~460t/h 循环流化床蒸汽锅炉和热水锅炉在运行、安 106.78t/h,见图1;参数从中压、次高压、高压发 展到超高压,单台容量已经发展到670t/h,见图2。 截至2003年,投运台数已有700多台。单炉最大 容量为465t/h,发电量150MWE。近三年,我国 循环流化床锅炉发展迅速,100MWe以上循环流 化床锅炉订货量达到近80台,100MWe以下循环 流化床锅炉订货超过200台。今后,随着环保标 准的提高,供热及电力市场对循环流化床锅炉的 需求将会进一步扩大。

循环流化床锅炉的压火

循环流化床锅炉的压火 如果循环流化床锅炉需要短时间停止运行,或锅炉由于事故停炉而在较短时间内能够恢复运行时可对锅炉进行压火操作,具体操作步骤如下: 1.压火前应通知汽轮机及其它运行单位,做好压火准备; 2.压火前应根据运行风量及风室风压估算出料层厚度,并适当调整 床温(炉膛密相区),一般可控制在900~950℃; 3.当燃烧温度调整稳定后,首先停给煤机,停止向炉内给煤,待床 温有下降趋势时(一般下降5~10℃);同时停一次风机,二次风机及引风机并迅速关闭各风机挡板门和各风道挡板门防止空气漏入炉内造成锅炉压火结焦; 4.锅炉压火后应保温、保压,根据蒸汽参数适当开启对空排汽门调 整蒸汽压力、温度,防止超温、超压; 5.严格监视汽温、汽压及汽包水位,控制汽包水位在±50mm,上水 时应关闭省煤器再循环门,停止给水时应关闭省煤器再循环门; 6.压火后,应及时从回料阀放灰管将循环灰防尽; 7.压火后,应对锅炉进行一次全面检查,并停除尘器; 8.一般锅炉压火时间较长可达8小时,但锅炉压火时间的长短取决 于料层厚度和床料温度,故在压火后,应严格监视床温,当床温低于600℃时应启动锅炉待燃烧稳定后再进行压火操作,以确保锅炉不灭火(一般建议压火5小时左右再启动一次)。

锅炉压火后的启动 当锅炉处于热备用状态,需要投入运行时可直接进行启动,其启动步骤如下: 1.接到启动通知后,应与汽机和电气联系做好启动准备; 2.对锅炉及辅助转动设备进行一次全面检查,确认完全正常方可进 行启动操作; 3.首先启动引风机,再启动一次风机,调整风机挡板门,保证炉料 在高于临界风量的状态下正常流化,并迅速启动二次风机及给煤机,向炉内投入适当的煤量; 4.根据温度变化的情况不断调整一次风量和给煤量控制床温,若温 度上升较快可适当增加一次风,减小给煤量;若温度下降可适当减少一次风(但不能低于临界风量),并根据具体情况增加给煤量; 直至燃烧稳定,控制床温在900~950℃运行; 5.当燃烧稳定后,放掉循环灰,重新开启循环风将回料阀投入;待 一切稳定后调整蒸汽参数,当蒸汽参数达到并汽要求后即可按并汽步骤进行并汽(或直接进行供汽)。 6.在启动过程中若床温下降较快,而低于550℃,不能使煤着火时应 及时停止给煤,并检查油系统,投油枪进行点火操作。 由于锅炉压火及压火后启动对锅炉本体膨胀影响较大,同时循环流化床锅炉的点火启动较快;故在锅炉运行操作中,如需锅炉停炉时间较长(一般超过8小时)不宜采用本操作。

循环流化床锅炉调试及运行操作规程教程文件

循环流化床锅炉调试及运行操作规程 1 锅炉启动调试 1.1 锅炉调试重要性 锅炉启动调试是全面检验主机及其配套设备的设计、制造、安装、调试和生产准备工作的质量的重要环节,是保证今后锅炉安全、可靠、经济运行的一个重要程序。通过启动调试应达到如下目的:检验锅炉、辅机、控制系统等设备的安装质量;确保管道内表面清洁、管道内无杂物;初步了解锅炉和主要辅机等设备的运行特性;检验锅炉控制系统、保护系统的合理性和可靠性;初步检验锅炉和辅机满负荷运行能力;发现锅炉和辅机等存在的重要缺陷,以便及时采取有效的措施;同时也培训了有关运行人员对设备性能的了解及运行的初步调整,为试生产和商业运行打好基础。 1.2 锅炉整体启动前的准备 锅炉整体启动试运前,应已完成各系统主要设备的分部调试外,还须完成锅炉的水压试验,烘炉,冷态空气动力特性试验,清洗锅炉本体,蒸汽管道吹扫,锅炉点火试验,锅炉安全阀整定,辅机联锁保护试验,锅炉主保护试验等主要工作。冷态启动前,通常按调试大纲、运行规程及锅炉使用说明书,对锅炉本体及其汽水系统、烟风系统、燃烧系统,有关的辅机、热控、化学水处理设备以及现场环境等进行全面检查,以满足 锅炉安全启动条件。 2 水压试验程序 2.1 介绍 水压试验是对安装完毕的锅炉承压部件进行冷态检验,目的是检查锅炉承压部件的严密性,以确保锅炉今后的安全、经济运行。 在所有受压件安装完毕之后,除那些在化学清洗需拆除外,锅炉应以设计压力的 1.25~1.5倍进行初始水压试验。根据安全的要求,受压部件检修后的水压试验通常在正常的工作压力或设计压力下进行。 锅炉的汽水系统、过热器和省煤器作为一个整体进行水压试验,水压试验的压力为锅筒工作压力的1.25倍;再热器则以再热器出口压力的1.5倍单独进行水压试验。如果锅炉在再热器进口没有安装截止阀,这些进口应该用盲法兰隔断。 水压试验程序很大程度上取决于现场条件和设施,初次水压试验程序必须符合锅炉法规的技术要求。通常应遵守下列基本程序: 2.2 准备工作 1) 在向水冷壁和过热器开始充水前,应确认所有汽包和集箱中的外来物质都已清除。关闭所有疏水阀。充水时,打开所有常用的放气阀(例如过热器连接管道放气阀、省煤器连接管道放气阀、汽包放气阀)。 2) 在进行高于正常工作压力的水压试验前,所有安全阀均应按照有关制造商的要求装上堵板。如果水压试验在等于或低于正常工作压力下进行,则只需关闭安全阀本身就够了。请参阅安全阀制造商的说明书。 2.3 充水 1) 通过一只适当的出口接头(例如末级过热器出口集箱的疏水管或排气管)给过热器充水,直到所有部件都充满水,并溢流入汽包为止。 2) 当水溢流入汽包时,即停止通过过热器出口接头的充水,关闭过热器的充水和排气管接

循环流化床锅炉中心筒的技术改造

龙源期刊网 https://www.360docs.net/doc/ac15046858.html, 循环流化床锅炉中心筒的技术改造 作者:贾启河包云鹏 来源:《城市建设理论研究》2013年第02期 摘要:针对内蒙古京海煤矸石发电有限责任公司#1循环流化床锅炉A中心筒脱落更换等问题,对影响它们的因素进行了技术分析。在此基础上,为锅炉更换了新型中心筒。 中图分类号:TK22 文献标识码:A 文章编号: 1 前言 京海发电有限责任公司两台330MW国产循环流化床机组。锅炉是由东方锅炉厂生产,型号为DG1177/17.4-II1型循环流化床锅炉,亚临界参数,单炉膛,一次中间再热自然循环汽包、紧身封闭、平衡通风、固态排渣、全钢架悬吊结构、炉顶设密封罩壳。配备300MW级亚临界中间再热单轴双缸双排汽、直接空冷式汽轮机发电机组,#1锅炉2010年9月投产。锅炉炉膛出口设置三个汽冷旋风分离器,旋风分离器分离锅炉出口外循环床料,将外循环物料中较大的颗粒分离送入炉膛进行再次燃烧。分离器中心筒由直段及锥段两部分构成,中心筒总高6650mm,直段φ4149×12mm,直段上部由12块扇形分段组成高2400mm,锥顶 φ4970×12mm、高1348mm,中心筒材料为RA253MA。中心筒以锥段(最上部)为固定段, 通过穿过直段上部每块扇形(中心线)六个卡板与锥段连接,从而使中心筒固定在分离器外壳上。 锅炉自投产以来中心筒都发生不同程度的变形,2012年4月16日#1炉B级检修期间,在对A旋风分离器中心筒碳化部位割孔检查,发现整个中心筒直段全部脱落,仅剩下1块直段上部扇形板靠卡板固定在锥段上,坠落到分离器下部直段中心筒变形严重。我公司与东方锅炉(集团)股份有限公司取得联系,由东方锅炉(集团)股份有限公司设计处出方案,我公司根据方案对#1锅炉A中心筒进行更换及技术改造。 原因分析 采用焊接固定支撑使筒体膨胀受限,造成固定部分向内卷曲变形,形如西瓜皮,由于金属热胀冷缩,密封浇注料及隔热填充物受挤压形成缝隙,形成新的通道,造成了烟气直接短路,部分烟气未经分离(未通过中心筒)直接进入尾部烟道,整个分离器的效果降低,并且形成的通道更加剧中心筒受热变形,使进入烟道的可燃物增多,经常在烟道再燃烧,过热蒸汽超温严重,灰含碳量增加,锅炉的安全经济性不能得到保障。 3新中心筒简介

循环流化床锅炉的优缺点

是在鼓泡床锅炉(沸腾炉)的基础上发展起来的,因此鼓泡床的一些理论和概念可以用于循环流化床锅炉。但是又有很大的差别。早期的循环流化床锅炉流化速度比较高,因此称作快速循环循环床锅炉。快速床的基本理论也可以用于循环流化床锅炉。鼓泡床和快速床的基本理论已经研究了很长时间,形成了一定的理论。要了解循环流化床的原理,必须要了解鼓泡床和快速床的理论以及物料从鼓泡床→湍流床→快速床各种状态下的动力特性、燃烧特性以及传热特性。 一、循环流化床锅炉的优点。 1.燃料适应性广,这是循环流化床锅炉的重要优点。循环流化床 锅炉既可燃烧优质煤,也可燃烧劣质燃料,如高灰煤、高硫煤、高硫高灰煤、高水分煤、煤矸石、煤泥,以及油页岩、泥煤、 炉渣、树皮、垃圾等。他的这一优点,对充分利用劣质燃料具

有总大意义。 2.燃烧效率高。国外循环流化床锅炉的燃烧效率一般髙达99%。 我国自行设计的循环流化床锅炉燃烧效率髙达95%-99%。该锅炉燃烧效率的主要原因是燃烧尽率高。运行锅炉的实例数据表明,该型锅炉的炉渣可燃物图仅有1%-2%,燃烧优质煤时,燃烧效率与煤粉炉相当,燃烧劣质煤是,循环流化床锅炉的燃烧率比煤粉炉约高5%。 3.燃烧污染排放量低。想循环流化床内直接加入石灰石,白云石 等脱硫剂,可以脱去燃料燃烧生成的SO2。根据燃料中所含的硫量大小确定加入脱硫剂量,可达到90%的脱硫效率。循环硫化床锅炉NOχ的生成量仅有煤粉炉的1∕4-1/3。标准状态下NOχ的排量可以控制在300mg/m3以下。因此循环流化床是一种经济、有效、低污染的燃烧技术。与煤粉炉加脱硫装置相比,循环流化床锅炉的投资可降低1∕4-1/3。 4. 燃烧强度高,炉膛截面积小炉膛单位截面积的热负荷高是循 环流化床锅炉的另一主要优点。其截面热负荷约为 3.5~ 4.5MW/m2,接近或高于煤粉炉。同样热负荷下鼓泡流化床锅炉 需要的炉膛截面积要比循环流化床锅炉大2~3倍。 5.负荷调节范围大,负荷调节快 当负荷变化时,只需调节给煤量、空气量和物料循环量,不必 像鼓泡流化床锅炉那样采用分床压火技术。也不象煤粉锅炉 那样,低负荷时要用油助燃,维持稳定燃烧。一般而言,循

循环流化床锅炉基础知识

循环流化床锅炉基础知识 第一篇循环流化床锅炉部分 1.循环流化床锅炉部分 1.1.流化态定义, 答:当流体向上流过颗粒床层时,其运动状态是变化的。流速较低时,颗粒静止不动,流体只在颗粒之间的缝隙中通过;当流速增加到某一速度之后,颗粒不再由布风板所支持,而全部由流体的摩擦力所承托,此时,每个颗粒可在床层中自由运动,就整个床层而言,具有了许多类似流体的性质。这种状态就被称之为流态化。 当固体颗粒群与气体或液体接触时,使固体颗粒转变成类似流体的状态。 1.2.什么是起始流化态点, 答:当气体流速刚刚达到临界风速时,床层内只有乳化相,当流化速度增加时在乳化相中固体颗粒和气体的比例一直保持在开始流化那个临界状态,就称之为起始流化态。 1.3.什么是临界流化速度, 答:颗粒床层从静止状态转变为流态化时的最低速度,称之为临界流化速度。 1.4.什么是空隙率, 答:床层内气固两相中气相所占的体积份额。 空隙率:ε= V / ( V+ V) ; aa b 其中:V---气体体积;V---颗粒所占体积。 a b 1.5.循环流化床的主要组成部分, 答:流化容器、布风装置、物料、旋风分离和回料装置。 1.6.流化床锅炉的分类,

答:流化床燃烧锅炉可分为:常压鼓泡流化床锅炉、常压循环流化床锅炉、增压 鼓泡流化床锅炉和增压循环流化床锅炉。 1.7.流化床燃烧过程的特点, 答:(1)流化床本身是一个蓄热容量很大的热源,有利于燃料的迅速着火和燃烧; (2)床内燃料与空气相对运动强烈,混合良好,燃烧速度极快; (3)由于床内煤粒燃烧反应异常强烈,煤粒燃烧的实际化学反应过程的温度按 普通方法所测得的床层平均温度高得多; (4)煤粒在床内有较长的停留时间; (5)流化床燃烧的一个重要特点就是减少大气污染,满足环保要求。 1.8.流化床中碳粒燃烧的机理, 答:碳的燃烧过程是一种具有复杂物理化学过程的多相燃烧,主要是碳在空气 中被氧化生成CO和CO,以及CO又被碳还原的两个反应过程,通常称为一次反应 和二次反应。一22 次反应是在温度较低的情况下,氧从周围空间扩散到碳表面,并生成CO及CO 的反应。 2 C + O=CO+ 408860 J/g?mol 2 2 2C + O=2CO + 246447 J/g?mol 2 二次反应是在温度大于1200,1300?时,碳粒表面产生的CO又被还原为CO,其 反应为: 2 CO+ C = 2CO,162414 J/g?mol 。 2 1.9.流化床内传热的三种基本形式, 答:(1)床层内的有效传热; (2)颗粒与气体的传热; (3)床层与埋管受热面的传热。

循环流化床锅炉热效率统计分析研究

第25卷第6期 2010年11月 热能动力工程 JOURNAL OF E NGI N EER I N G F OR T HER MAL E NERGY AND P OW ER Vol .25,No .6 Nov .,2010   收稿日期:2009-12-06; 修订日期:2010-03-11作者简介:蒋绍坚(1963-),男,湖南邵东人,中南大学教授. 文章编号:1001-2060(2010)06-0627-03 循环流化床锅炉热效率统计分析研究 蒋绍坚1 ,刘 乐1 ,何相助2 ,艾元方 1 (1.中南大学能源科学与工程学院,湖南长沙410083;2.湖南省节能中心,湖南长沙410007) 摘 要:针对循环流化床锅炉炉膛容积采用经验比较法适应性差的问题,采用幂函数规律拟合循环流化床锅炉运行数据。研究循环流化床锅炉热效率与其主要影响因素(吨汽有效容积、煤的挥发分)之间的关系,提出了吨汽有效容积的概念。结果表明:吨汽有效容积与燃用煤种的挥发分是影响炉膛容积的重要因素。为使循环流化床锅炉热效率达到 80%以上,吨汽有效容积(用y 表示)与煤的挥发分(用x 表 示)应满足:y ≥7.78x -0.136。关 键 词:循环流化床锅炉;炉膛容积;挥发分;回归分析; 热效率;吨汽有效容积 中图分类号:TK229.6 文献标识码:A 引 言 锅炉炉膛是燃料与空气发生燃烧反应,并产生辐射传热过程的有限空间。如何根据给定条件合理确定炉膛容积,是锅炉设计与锅炉改造中重要的问题。目前,解决这一问题的常用方法是经验比较法[1~3]。首先根据煤种对照类似锅炉,确定炉膛截面热负荷,定出炉膛横截面积,再根据长宽比确定炉膛的长与宽,最后确定炉膛的高度。采用经验比较法需收集大量锅炉的设计煤种、额定蒸发量等信息,当这些参数与投运锅炉不符时,还需进行相似分析,对使用者的专业知识要求高。由于炉膛容积不合理导致热效率偏低的情况时有发生。对运行中的低效锅炉而言,目前尚缺乏概念直观、变量少、计算简单、准确度高、便于工程技术人员掌握的判断炉膛容积大小是否合理的标准,因此,有必要展开相关研究。 1 炉膛有效容积和吨汽有效容积的概念 煤在炉膛内的燃烧过程由挥发分析出和固定碳 燃烧两个阶段构成。为获得高效率,煤在炉内应尽可能燃尽。虽影响煤燃尽的因素很多,但总体而言可分为由煤质特性决定的内因和由炉膛几何特性、 温度特性等决定的外因两大方面 [5~6] 。在煤质特性 方面,煤的挥发分含量对挥发分析出过程以及紧接 着的固定碳燃烧过程都有显著影响。挥发分含量越高,挥发分析出后煤孔隙率越大,燃烧表面积越大, 完全燃烧所需时间就越短,燃烧越充分[7~9] 。 固定碳的燃烧,其燃尽度与炉膛几何特性和温度特性直接相关。炉膛几何特性对煤在炉内的停留时间及炉内传热效果有决定性影响;而温度特性对煤在炉内的燃烧速度有决定性影响。为综合反映炉膛几何特性和温度特性的影响程度,本研究提出炉膛吨汽有效容积的概念。有效容积是指具备能使煤发生燃烧所需温度条件的炉膛容积。文献[10]指出:流化床炉膛温度分布均匀,在锅炉尾部离炉烟气温度高于850~950℃时,炉膛容积即具备了燃烧所需温度条件。因此,采用“离炉烟气温度高于850℃”作为炉膛有效容积定义中所涉及的燃烧反应所需温度条件,炉膛有效容积与锅炉设计吨位之比即为吨汽有效容积。 2 锅炉等热效率曲线图 图1 热效率与炉膛吨汽有效容积、 燃煤挥发分之间的函数关系

循环流化床锅炉扬火操作.

3#炉压火扬火操作 压火操作: 1、停烧垃圾,通知垃圾临工打扫卫生,为减少压火时漏风,尽量不要将入炉绞笼垃圾走空,保证入炉口密封以减少冷风漏进炉内; 2、入炉绞笼停运后,将绞笼两侧检查孔门关闭并扣好; 3、控制料层高度、风室静压及一次风机出口压头在11.2KP~11.5KP,一次风机转速控制在1260~1280转/分; 4、根据床温、氧量的变化趋势减少或停运二次风机运行,减少引风量,引风转速约600~650转/分,并检查锅炉大联锁在投入位置; 5、适当加大给煤量,待床温上升到880~900℃时,停31#、32#皮带给煤机运行,并关闭皮带给煤机出口闸板门,待平均床温下降到5~10℃时,氧量下降到15%以上时,拉掉引风机主开关,相应一次风机及返料风机联锁动作,并将其开关复位至停止位置。放尽返料灰,关闭所有进出口风门挡板,尽量减少漏风; 6、与母管解列后,开启集汽集箱疏水门,若集箱压力高于工作压力,适当打开向空排汽门,维持较高余压,控制好汽包水位略高于正常水位; 7、停止进水后,开启省煤器再循环门,并闭连排、加药各阀门,并通知化水、输煤各值班人员。 扬火操作: 1、通知化水、输煤值班人员,3#炉准备启动扬火; 2、专一指派炉运人员检查31#、31#皮带给煤机,打开31#、32#皮带给煤机出口闸板门,短时间试转31#、32#皮带给煤机运行及下煤情况,并检查清扫机运行情况; 3、开启集汽集箱疏水、连排、加药各阀门;

4、开启引风机、一次风机冷却风扇,合上引风机主开关、变频器,开启引风机进口挡板。合上一次风机主开关、变频器,开启一次风机进口挡板,打开一次风主风道流化风门,直接输入引风开度60%~65%,引风转速控制在600~650转/分.直接输入一次风机开度84%~86%,一次风机转速在1280~1300转/分,进行充分流化后可适当减小一次风转速但不得低于1250转/分; 5、同时启动31#、32#皮带给煤机,将给煤开度调到20%~25%左右,根据床温、氧量变化趋势调整给煤量及一次风量、引风量。密切注意锅炉水位变化,维持汽包水位正常; 6、若床温上升,氧量下降,视床温上升趋势,略减少给煤量,将氧量维持在一定范围内,待床温上升到780~800℃时投运返料风机运行,若床温下降较快,短时间停运返料风机,待床温稳定后再投运返料风机,并观察返料温度变化; 7、若床温下降较快,加大给煤后仍未有上升趋势,氧量并未变化仍然较高,此时停止给煤,关闭主风道流化风门,相应调整一次风量及引风量,降低料层高度,必要时打开密相区人孔门,观察流化状态,并相应做流化试验。若流化良好,则启动油泵,投点火油枪肋燃,若流化不良并有焦块出现,则进行相应汇报和处理。

循环流化床锅炉低氮燃烧改造

循环流化床锅炉低氮燃烧改造 3台240t/h锅炉是年产85万吨甲醇装置的动力源输出设备,为单汽包、自然循环、循环流化床燃烧方式。为满足锅炉现有SCR烟气脱硝装置后烟气使用条件,同时提高锅炉出力负荷,降低锅炉炉膛出口氮氧化物排放量,文章介绍甲醇分公司已实施的2台240t/h锅炉本体改造过程及达到的改造效果。 标签:循环流化床锅炉;低氮燃烧;改造 1 3台锅炉运行现状介绍 (1)锅炉带负荷困难,240t/h的循环流化床锅炉最高能带至 220t/h负荷,有时只能带180t/h负荷,影响对化工工艺主装置的供汽及供电。 (2)锅炉床温偏高(975℃),偏离设计值(790℃-920℃),炉内整个温度场分布不均匀,炉膛底部床层温度和炉膛出口烟气温度相差较大,炉膛出口水平烟道温度较低。锅炉稀相区压差小,锅炉风帽、分离器结构及回料器风系统设计不合理,锅炉主循环回路运行不正常。 (3)氮氧化物生成量高,最高达到650mg/Nm3,而炉膛出口水平烟道(脱硝喷枪位置)温度较低,影响SNCR烟气脱硝效率。锅炉各主要运行风量测点设置空气预热器入口,屏幕显示的锅炉风量受空气预热器漏风影响,不能准确反映锅炉运行状况。 (4)为了使锅炉能带较大负荷必须高炉温运行,炉膛供风量偏大,导致锅炉磨损严重,能耗较高。 2 项目实施内容 2.1 锅炉布风装置改造 改造方案选取了较低的风帽外罩小孔速度以降低外罩磨损,通过芯管小孔调节布风板阻力以保证布风板具有良好的阻力特性。针对甲醇分公司循环流化床锅炉风帽磨损严重的问题,对风帽外罩小孔区域进行了加厚,以提高其耐磨性和使用寿命。将风帽外罩风孔向下倾斜20°,减少相邻风帽风孔的扰动,减少床料反窜;风帽芯管上端部利用端板焊死,防止风帽脱落从芯管漏渣,便于安装施工。材质方面采用铸造方式进行加工,风帽外罩及芯管材质统一采用ZG40Cr25Ni20。改造后的风帽阻力从2.3kPa提升至4.3kPa,由于目前风机余量较大,加之改造后可以降低一部分一次风量,因此风帽阻力可以满足运行需要。 2.2 旋风分离器中心筒改造

相关文档
最新文档