圆域上的二元二次多项式回归模型的D-最优设计

圆域上的二元二次多项式回归模型的D-最优设计
圆域上的二元二次多项式回归模型的D-最优设计

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

数学建模——回归分析

回归分析——20121060025 吕佳琪 企业编号生产性固定资产价值(万元)工业总产值(万元) 1318524 29101019 3200638 4409815 5415913 6502928 7314605 812101516 910221219 1012251624 合计65259801 (2)建立直线回归方程; (3)计算估价标准误差; (4)估计生产性固定资产(自变量)为1100万元时总产值(因变量)的可能值。解: (1)画出散点图,观察二变量的相关方向 x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; plot(x,y,'or') xlabel('生产性固定资产价值(万元)') ylabel('工业总产值(万元)') 由图形可得,二变量的相关方向应为直线 (2)

x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x))', x']; [b,bint,r,rint,stats] = regress(y',X,0、05); b,bint,stats b = 395、5670 0、8958 bint = 210、4845 580、6495 0、6500 1、1417 stats = 1、0e+004 * 0、0001 0、0071 0、0000 1、6035 上述相关系数r为1,显著性水平为0 Y=395、5670+0、8958*x (3) 计算方法:W=((Y1-y1)^2+……+(Y10-y10)^2)^(1/2)/10 利用SPSS进行回归分析:

多元线性回归模型案例(DOC)

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。其中已有变量:“c ”—截距项 “resid ”—剩余项。在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。 年份 人口自然增长率 (%。) 国民总收入(亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 2006 5.38 213132 1.5 16024

非参数回归模型与半参数回归模型

第七章 非参数回归模型与半参数回归模型 第一节 非参数回归与权函数法 一、非参数回归概念 前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。另一类回归,非参数回归,则与参数回归正好相反。它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。 设Y 是一维观测随机向量,X 是m 维随机自变量。在第四章我们曾引进过条件期望作回归函数,即称 g (X ) = E (Y |X ) (7.1.1) 为Y 对X 的回归函数。我们证明了这样的回归函数可使误差平方和最小,即 22)]([min )]|([X L Y E X Y E Y E L -=- (7.1.2) 这里L 是关于X 的一切函数类。当然,如果限定L 是线性函数类,那么g (X )就是线性回归函数了。 细心的读者会在这里立即提出一个问题。既然对拟合函数类L (X )没有任何限制,那么可以使误差平方和等于0。实际上,你只要作一条折线(曲面)通过所有观测点(Y i ,X i )就可以了是的,对拟合函数类不作任何限制是完全没有意义的。正象世界上没有绝对的自由一样,我们实际上从来就没有说放弃对L(X)的一切限制。在下面要研究的具体非参数回归方法,不管是核函数法,最近邻法,样条法,小波法,实际都有参数选择问题(比如窗宽选择,平滑参数选择)。 所以我们知道,参数回归与非参数回归的区分是相对的。用一个多项式去拟合(Y i ,X i ),属于参数回归;用多个低次多项式去分段拟合(Y i ,X i ),叫样条回归,属于非参数回归。 二、权函数方法 非参数回归的基本方法有核函数法,最近邻函数法,样条函数法,小波函数法。这些方法尽管起源不一样,数学形式相距甚远,但都可以视为关于Y i 的线性组合的某种权函数。也就是说,回归函数g (X )的估计g n (X )总可以表为下述形式: ∑==n i i i n Y X W X g 1 )()( (7.1.3)

一元线性回归模型案例分析

一元线性回归模型案例分析 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表2.5的数据: 表2.52002年中国各地区城市居民人均年消费支出和可支配收入

非参数回归模型与半参数回归模型

第七章 非参数回归模型与半参数回归模型 第一节 非参数回归与权函数法 一、非参数回归概念 前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。另一类回归,非参数回归,则与参数回归正好相反。它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。 设Y 是一维观测随机向量,X 是m 维随机自变量。在第四章我们曾引进过条件期望作回归函数,即称 g (X ) = E (Y |X ) (7.1.1) 为Y 对X 的回归函数。我们证明了这样的回归函数可使误差平方和最小,即 22)]([min )]|([X L Y E X Y E Y E L -=- (7.1.2) 这里L 是关于X 的一切函数类。当然,如果限定L 是线性函数类,那么g (X )就是线性回归函数了。 细心的读者会在这里立即提出一个问题。既然对拟合函数类L (X )没有任何限制,那么可以使误差平方和等于0。实际上,你只要作一条折线(曲面)通过所有观测点(Y i ,X i )就可以了是的,对拟合函数类不作任何限制是完全没有意义的。正象世界上没有绝对的自由一样,我们实际上从来就没有说放弃对L(X)的一切限制。在下面要研究的具体非参数回归方法,不管是核函数法,最近邻法,样条法,小波法,实际都有参数选择问题(比如窗宽选择,平滑参数选择)。 所以我们知道,参数回归与非参数回归的区分是相对的。用一个多项式去拟合(Y i ,X i ),属于参数回归;用多个低次多项式去分段拟合(Y i ,X i ),叫样条回归,属于非参数回归。 二、权函数方法 非参数回归的基本方法有核函数法,最近邻函数法,样条函数法,小波函数法。这些方法尽管起源不一样,数学形式相距甚远,但都可以视为关于Y i 的线性组合的某种权函数。也就是说,回归函数g (X )的估计g n (X )总可以表为下述形式: ∑==n i i i n Y X W X g 1 )()( (7.1.3)

数学建模之回归分析法

什么是回归分析 回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。 回归分析之一多元线性回归模型案例解析 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:(数据可以先用excel建立再通过spss打开) 点击“分析”——回归——线性——进入如下图所示的界面:

线性回归推导及实例

数据点基本落在一条直线附近。这告诉我们,变量X与Y的关系大致可看作是线性关系,即它们之间的相互关系可以用线性关系来描述。但是由于并非所有的数据点完全落在一条直线上,因此X与Y的关系并没有确切到可以唯一地由一个X值确定一个Y值的程度。其它因素,诸如其它微量元素的含量以及测试误差等都会影响Y的测试结果。如果我们要研究X与Y的关系,可以作线性拟合 (2-1-1) 我们称(2-1-1)式为回归方程,a与b是待定常数,称为回归系数。从理论上讲,(2-1-1)式有无穷多组解,回归分析的任务是求出其最佳的线性拟合。 二、最小二乘法原理 如果把用回归方程计算得到的i值(i=1,2,…n)称为回归值,那么实际测量值y i与回归值i之间存在着偏差,我们把这种偏差称为残差,记为e i(i=1,2,3,…,n)。这样,我们就可以用残差平方和来度量测量值与回归直线的接近或偏差程度。残差平方和定义为: (2-1-2) 所谓最小二乘法,就是选择a和b使Q(a,b)最小,即用最小二乘法得到的回归直线是在所 有直线中与测量值残差平方和Q最小的一条。由(2-1-2)式可知Q是关于a,b的二次函数,所以它的最小值总是存在的。下面讨论的a和b的求法。 三、正规方程组 根据微分中求极值的方法可知,Q(a,b)取得最小值应满足 (2-1-3) 由(2-1-2)式,并考虑上述条件,则 (2-1-4) (2-1-4)式称为正规方程组。解这一方程组可得 (2-1-5) 其中 (2-1-6)

(2-1-7) 式中,L xy称为xy的协方差之和,L xx称为x的平方差之和。 如果改写(2-1-1)式,可得 (2-1-8) 或 (2-1-9) 由此可见,回归直线是通过点的,即通过由所有实验测量值的平均值组成的点。从力学观点看, 即是N个散点的重心位置。 现在我们来建立关于例1的回归关系式。将表2-1-1的结果代入(2-1-5)式至(2-1-7)式,得出 a=1231.65 b=-2236.63 因此,在例1中灰铸铁初生奥氏体析出温度(y)与氮含量(x)的回归关系式为 y=1231.65-2236.63x 四、一元线性回归的统计学原理 如果X和Y都是相关的随机变量,在确定x的条件下,对应的y值并不确定,而是形成一个分布。当X 取确定的值时,Y的数学期望值也就确定了,因此Y的数学期望是x的函数,即 E(Y|X=x)=f(x) (2-1-10) 这里方程f(x)称为Y对X的回归方程。如果回归方程是线性的,则 E(Y|X=x)=α+βx (2-1-11) 或 Y=α+βx+ε(2-1-12) 其中 ε―随机误差 从样本中我们只能得到关于特征数的估计,并不能精确地求出特征数。因此只能用f(x)的估计 式来取代(2-1-11)式,用参数a和b分别作为α和β的估计量。那么,这两个估计量是否能够满足要求呢? 1. 无偏性 把(x,y)的n组观测值作为一个样本,由样本只能得到总体参数α和β的估计值。可以证明,当满足下列条件: (1)(x i,y i)是n个相互独立的观测值 (2)εi是服从分布的随机变量 则由最小二乘法得到的a与b分别是总体参数α和β的无偏估计,即 E(a)= α E(b)=β 由此可推知 E()=E(y)

案例分析 一元线性回归模型

案例分析报告 (2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月 案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,?最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定?

我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。 为了与“城镇居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 以下是2008年各地区城镇居民人均年消费支出和可支配收入表

回归分析在数学建模中的应用

摘要 回归分析和方差分析是探究和处理相关关系的两个重要的分支,其中回归分析方法是预测方面最常用的数学方法,它是利用统计数据来确定变量之间的关系,并且依据这种关系来预测未来的发展趋势。本文主要介绍了一元线性回归分析方法和多元线性回归分析方法的一般思想方法和一般步骤,并且用它们来研究和分析我们在生活中常遇到的一些难以用函数形式确定的变量之间的关系。在解决的过程中,建立回归方程,再通过该回归方程进行预测。 关键词:多元线性回归分析;参数估计;F检验

回归分析在数学建模中的应用 Abstract Regression analysis and analysis of variance is the inquiry and processing of the correlation between two important branches, wherein the regression analysis method is the most commonly used mathematical prediction method, it is the use of statistical data to determine the relationship between the variables, and based on this relationship predict future trends. introduces a linear regression analysis and multiple linear regression analysis method general way of thinking and the general steps, and use them to research and analysis that we encounter in our life, are difficult to determine as a function relationship between the variables in the solving process, the regression equation is established by the regression equation to predict. Keywords:Multiple linear regression analysis; parameter estimation;inspection II

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

多项式回归分析的例子

多项式回归分析的例子 例如, 不能用变量代换的方法将其转换为可按线性模型方式分析的模型, 需要使用多项式回归分析方法, 令, , , 则模型变换为 , 即可按线性模型方式进行分析。 若回归方程是下面这样拟合的非线性方程: , (1) 其中所有的都是自变量的已知函数而不包括任何未知参数, 若令 , , ………………… , 则式(1)可写成 , 从而可按多元线性回归方式进行分析处理。 多项式回归在回归问题中占特殊的地位, 因为任何函数至少在一个比较小的邻域内可用多项式任意逼近, 因此通常在比较复杂的实际问题中, 可以不问与诸因素的确切关系如何, 而用多项式回归(当然首先应试用最简单的一次多项式即线性回归)进行分析和计算。 例在某化合物的合成试验中, 为了提高产量, 选取了原料配比()、溶剂量()和反应时间()三个因素, 试验结果如表1所示, 请用多项式回归模型拟合试验数据(显著性水平等于0.05)。 表1 (

若收率()与原料配比()、溶剂量()和反应时间()三个因素之间的函数关系近似满足二次回归模型: , (其中溶剂用量对作用很小, 建模时可以不考虑), 按表2数据进行数据输入: 表2 )^2() 本软件给出的回归分析有关的结果如下(与回归分析无关的内容未列出): 指标名称: 收率单位: ? 因素1名称: 时间单位: ? 因素2名称: 时间^2 单位: ? 因素3名称: 配比×时间单位: ? ------------------- 多元回归分析 ------------------- 回归分析采用全回归法, 显著性水平α=0.05 拟建立回归方程: y = b(0) + b(1)*X(1) + b(2)*X(2) + b(3)*X(3) 回归系数 b(i): b(0)= 5.79e-2 b(1)= 0.252 b(2)=-6.48e-2 b(3)= 2.83e-2 标准回归系数 B(i):

多种类型的回归模型

数学建模第二次作业 例一:(线性模型) 针叶松数据该数据包含70棵针叶松的测量数据,其中y 表示体积(单位立方英尺),x 1为树的直径(单位:英寸),x 2为树的高度(单位:英尺)。 x 1 4.6 4.4 5.0 5.1 5.1 … 19.4 23.4 x 2 33 38 40 49 37 … 94 104 解答: (1)问题分析: 首先根据这组数据做自变量与因变量之间的关系图,如图1.1 。由图可知y 随x 1、x 2的增加而增加,从而可大致判断y 与x 1,x 2呈线性关系。判断是线性回归模型后进行细节的量纲分析,得出具体模型,从而利用已知的线性模型,借助R 软件求解出估计量0β,1β,β2的值得出最终结果。 图1.1 (2)模型基础 设变量Y 与变量X 1,X 2,…,XP 间有线性关系 Y=εββββ+++++P P X X X (22110) 其中N ~ε(0,2σ),P βββ,...,,10和2σ是未知参数,p ≥2,称上述模型为多元线性回归模型,则模型可以表示为: n i x x y i ip p i i ,...,2,1,...110=++++=εβββ 其中() 2,0σεN i ∈,且独立分布 即令

? ???????????=n y y y y 21,??????????????=p ββββ 10,??? ? ? ? ? ???? ???=np n n p p x x x x x x x x x X ...1...1 (12) 1 222 21 11211 ,? ???????????=n εεεε 21 则多元线性回归模型可表示为 εβ+=X Y , 其中Y 是由响应变量构成的n 维向量,X 是n ?(p+1)阶设计矩阵,β是p+1维 向量,并且满足 E (ε)=0,Var (ε)=2σI n 与一元线性回归类似,求参数β的估计值β ?,就是求最小二乘函数 Q (β)= ()()ββX y X y T -- 达到最小的β的值。 β的最小二乘估计 () y X X X T T 1 ?-=β 从而得到经验回归方程 P P X X Y βββ????11+++= (3)问题求解: 由于体积与长度的量纲不一致,为了使等式两边量纲统一,首先利用excel 软件对数据进行预处理,即对y 进行三次开方的处理。 其中,选择线的性模型为:i i i i x x y εβββ+++=221103,i=1,…,70 3 y 计算结果如下表1.1 0β=0.0329 1β=0.1745 2β=0.0142

数学建模-回归分析-多元回归分析

1、 多元线性回归在回归分析中,如果有两个或两个以上的自变量,就称为 多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。(multivariable linear regression model ) 多元线性回归模型的一般形式为: 其中k 为解释变量的数目,j β (j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为: j β也被称为偏回归系数(partial regression coefficient)。 2、 多元线性回归计算模型 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe)为最小的前提下,用最小二乘法或最大似然估计法求解参数。 设( 11 x , 12 x ,…, 1p x , 1 y ),…,( 1 n x , 2 n x ,…, np x , n y )是一个样本, 用最大似然估计法估计参数: 达 到最小。

把(4)式化简可得: 引入矩阵: 方程组(5)可以化简得: 可得最大似然估计值:

3、Matlab 多元线性回归的实现 多元线性回归在Matlab 中主要实现方法如下: (1)b=regress(Y, X ) 确定回归系数的点估计值 其中 (2)[b,bint,r,rint,stats]=regress(Y,X,alpha)求回归系数的点估计和区间估计、并检 验回归模型 ①bint 表示回归系数的区间估计. ②r 表示残差 ③rint 表示置信区间 ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r2、F 值、与F 对应的 概率p 说明:相关系数r2越接近1,说明回归方程越显著;F>F1-alpha(p,n-p-1) 时拒绝H0,F 越大,说明回归方程越显著;与F 对应的概率p<α 时拒绝H0,回归模型成立。 ⑤alpha 表示显著性水平(缺省时为0.05) (3)rcoplot(r,rint) 画出残差及其置信区间

简单线性回归分析案例辨析及参考答案

第10章简单线性回归分析 案例辨析及参考答案 案例10-1年龄与身高预测研究。某地调查了4~18岁男孩与女孩身高,数据见教材表10-4,试描述男孩与女孩平均身高与年龄间的关系,并预测10.5岁、16.5岁、19岁与20岁男孩与女孩的身高。 教材表10-4 某地男孩与女孩平均身高与年龄的调查数据 采用SPSS对身高与年龄进行回归分析,结果如表教材10-5和教材表10-6所示。 教材表10-5 男孩身高对年龄的简单线性回归分析结果 估计值标准误P Constant 83.736 3 1.882 4 44.483 9 0.000 0 AGE 5.274 8 0.167 6 31.479 8 0.000 0 =990.98 =98.5% 教材表10-6 女孩身高对年龄的简单线性回归分析结果 估计值标准误P Constant 88.432 6 3.280 0 26.961 1 0.000 0 AGE 4.534 0 0.292 0 15.529 0 0.000 0 =241.15 =94.1% 经拟合简单线性回归模型,检验结果提示回归方程具有统计学意义。结果提示,拟合效果非常好,故可认为: (1)男孩与女孩的平均身高随年龄线性递增,年龄每增长1岁,男孩与女孩身高分别平均增加5.27 cm与4.53 cm,男孩生长速度快于女孩的生长速度。 (2)依照回归方程预测该地男孩10.5岁、16.5岁、19岁和20岁的平均身高依次为139.1 cm、170.8 cm、184.0 cm和189.2 cm;该地女孩10.5岁、16.5岁、19岁和20岁的平均身高依次为136.0 cm、163.2 cm、174.6 cm和179.1 cm。 针对以上分析结果,请考虑: (1)分析过程是否符合回归分析的基本规范? (2)回归模型能反映数据的变化规律吗? (3)拟合结果和依据回归方程而进行的预测有问题吗?

回归模型的残差分析

回归模型的残差分析 山东 胡大波 判断回归模型的拟合效果是回归分析的重要内容,在回归分析中,通常用残差分析来判断回归模型的拟合效果。下面具体分析残差分析的途径及具体例子。 一、 残差分析的两种方法 1、差分析的基本方法是由回归方程作出残差图,通过观测残差图,以分析和发现观测数据中可能出现的错误以及所选用的回归模型是否恰当;在残差图中,残差点比较均匀地落在水平区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型的拟合精度越高,回归方程的预报精度越高。 2、可以进一步通过相关指数∑∑==--- =n i i n i i i y y y y R 1 2 1 2 ^ 2 )()(1来衡量回归模型的拟合效果,一般 规律是2 R 越大,残差平方和就越小,从而回归模型的拟合效果越好。 二、 典例分析: 例1、某运动员训练次数与运动成绩之间的数据关系如下: 试预测该运动员训练47次以及55次的成绩。 解答:(1)作出该运动员训练次数x 与成绩y 之间的散点图,如图1所示,由散点图可 知,它们之间具有线性相关关系。 (2)列表计算: 由上表可求得875.40,25.39==y x , 126568 1 2 =∑=i i x ,137318 1 2=∑=i i y ,

131808 1 =∑=i i i y x ,所以∑∑==---= 8 1 2 8 1 )() )((i i i i i x x y y x x β.0415.188 1 2 28 1≈--= ∑∑==i i i i i x x y x y x 00302.0-≈-=x y βα,所以回归直线方程为.00302.00415.1^ -=x y (3)计算相关系数 将上述数据代入∑∑∑===---= 8 1 8 1 2 22 2 8 1 ) 8)(8(8i i i i i i i y y x x y x y x r 得992704.0=r ,查表可知 707.005.0=r ,而05.0r r >,故y 与x 之间存在显着的相关关系。 (4)残差分析: 作残差图如图2,由图可知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比较合适。 计算残差的方差得884113.02 =σ ,说明预报的精度较高。 (5)计算相关指数2 R 计算相关指数2 R =0.9855.说明该运动员的成绩的差异有98.55%是由训练次数引起的。 (6)做出预报 由上述分析可知,我们可用回归方程 .00302.00415.1^ -=x y 作为该运动员成绩的预报值。 将x =47和x =55分别代入该方程可得y =49和y =57, 故预测运动员训练47次和55次的成绩分别为49和57. 点评:一般地,建立回归模型的基本步骤为: (1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量; (2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等); (3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y =bx +a ); (4)按一定规则估计回归方程中的参数(如最小二乘法); (5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性等等),若存在异常,则检查数据是否有误,或模型是否合适等。 例2、某城区为研究城镇居民月家庭人均生活费支出和月人均收入的相关关系,随机抽取

多元线性回归模型的各种检验方法

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββ 22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0 H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。如果拒绝0H ,说明解释变量j X 对 被解释变量Y 具有显著的线性影响,估计值j β?才敢使 用;反之,说明解释变量j X 对被解释变量Y 不具有显 著的线性影响,估计值j β?对我们就没有意义。具体检验 方法如下: (1) 给定虚拟假设 0H :j j a =β;

(2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-=-= 的数值; 11?)?(++-==j j jj jj j C C Se 1T X)(X ,其中σβ (3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝 0H ;反之,无法拒绝0H 。 t 检验方法的关键是统计量 )?(?j j j Se t βββ-=必须服从已 知的t 分布函数。什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21 =。这保证了误差u 自身的随机性,即无自相关性,

初中数学数学论文线性回归分析的数学模型

线性回归分析的数学模型 在实际问题中常常遇到简单的变量之间的关系,我们会遇到多个变量同处于一个过程之中,它们之间互相联系、互相制约.这些问题中最简单的是线性回归.线性回归分析是对客观事物数量关系的分析,是一种重要的统计分析方法,被广泛的应用于社会经济现象变量之间的影响因素和关联的研究.由于客观事物的联系错综复杂经济现象的变化往往用一个变量无法描述,故本篇论文在深入分析一元线性回归及数学模型的情况下,又详细地介绍了多元线性回归方程的参数估计和其显著性检验等.全面揭示了这种复杂的依存关系,准确测定现象之间的数量变动.以提高预测和控制的准确度. 本文中详细的阐述了线性回归的定义及其线性模型的简单分析并应用了最小二乘法原理.具体介绍了线性回归分析方程参数估计办法和其显著性检验.并充分利用回归方程进行点预测和区间预测. 但复杂的计算给分析方法推广带来了困难,需要相应的操作软件来计算回归分析求解操作过程中的数据.以提高预测和控制的准确度.从而为工农业生产及研究起到强有力的推动作用. 关键词:线性回归;最小二乘法;数学模型 目录 第一章前言 (1) 第二章线性模型 (2) 第一节一元线性模型 (2) 第二节多元线性模型 (4) 第三章参数估计 (5) 第一节一元线性回归方程中的未知参数的估计 (5) 第二节多元线性回归模型的参数估计 (8) 第四章显著性检验 (13) 第一节一元线性回归方程的显著性检验 (13) 第二节多元线性回归方程的显著性检验 (20) 第五章利用回归方程进行点预测和区间预测 (21) 第六章总结 (26) 致谢 (27) 参考文献………………………………………………………………………… 第一章前言

相关文档
最新文档