电子态密度的各种计算方式

电子态密度的各种计算方式
电子态密度的各种计算方式

密度泛函理论(DFT)

一、 计算方法 密度泛函理论(DFT )、含时密度泛函理论(TDDFT ) 二、 计算方法原理 1. 计算方法出处及原理 本计算方法设计来源于量子化学理论中的Born –Oppenheimer 近似,给近似下认为原子核不动, 这样电子就相当于在一个由核产生的外部的静态势场 V 中运动。那么一个固定的电子态可以用波函数 Ψ(1r , · · · ,N r ), 并且满足多 N 电子体系薛定谔方程: ()() 22????,2N N N i i j i i i i j H T V U V r U r r E m

333*231212()(,,)(,,) N N N n r N d r d r d r r r r r r r =???ψ???ψ?????? (2-4) 更重要的是, DFT 的核心理念告诉我们, 对于一个给定的基态, 如果基态 的电子密度0()n r 是知道的话, 那么基态的波函数012(,,)N r r r ψ???就唯一确定。也就是说, 基态的波函数0ψ是基态电子密度0n 的泛函[11], 表达为: [] 00n ψ=ψ (2-5) 既然有以上的假定, 那么对于基态的任何一个观测量?O , 它的数学期望就应该是0n 的泛函: [][][]000 ?O n n O n =ψψ (2-6) 特别的, 基态的能量也是0n 的泛函: [][][]0000 ???E E n n T V U n ==ψ++ψ (2-7) 这里外部势能的贡献[][]00?n V n ψψ可以通过基态的电子密度0 n 来精确表达: 300[]()()V n V r n r d r =? (2-8) 或者外部势能?V ψψ可以用电子密度 n 来表达: 30[]()()V n V r n r d r =? (2-9)

种群密度调查方法

种群密度调查方法比较 样方法标志重捕法黑光 灯诱 捕法显微计数法取样器取 样法 适用对象及实例活动能力弱,活动 范围小 植物,虫卵、蚜虫、 跳蝻 活动能力强,活动 范围大 动物 趋光性 的昆虫 微生物 活动能力强, 身体微小。 土壤中小动物 丰富度的调查 要点提示影响因素:(1)样 方的位置(随机取 样) (2)样方数目和 大小(草本1m2、 灌木16m2、乔木 100m2) (3)取样方法(五 点取样法和等距 取样法) (4)计数(样方 内的数量+两边及 夹角的数量) (1)计算公式: 种群的个体数 捕获的个体数 =标记的个体数 重捕中的标记数 (2)注意事项 1)估算情景:捕获 机会相等;无出生无 死亡;无迁入无迁 出。 2)标志物要求: 不可过于醒目; 不影响正常生活;不 易脱落 3)估算值比实际值 偏大:标记后不易捕 获 略(1)方法:抽 样检测法 (2)步骤注意: 吸取培养液滴 于盖玻片边缘 自行渗入; 试管振荡目的: 使酵母菌分布 均匀; 对照原则:前后 自身对照 多次测数取平 均值; 稀释计数倍数 问题 (3)结果:数 量变化原因:营 养物质缺乏、有 害代谢产物积 累、PH变化 (1)统计方 法:记名计算 法和目测估计 法 (2)两个装置 比较: 诱虫器原理: 利用动物趋 暗、趋湿、避 高温特性 吸虫器适于体 型较小的动物 (3)存放方 法:70%酒精中 (脱水固定防 腐杀菌) (1)植物——样方法。某同学采用样方法对一种植物进行计数,右图是其 中一个样方中该植物的分布情况(注:图中黑点表示该种植物),对该样 方中该种植物进行计数时,应记录的数目是_______________________ (2)动物——标志重捕法。在对某池塘内鲫鱼种群数量调查时,第一次捕获200尾,全 部进行标志后放回;第二次捕获160尾,其中被标志的鲫鱼有10尾,则该池塘内鲫鱼的总数为。 (3)细菌——显微记数法。每单位面积上平均有50个细菌,放在显微镜下观察,在液 体中培养4 h后稀释10倍,与以前相同的条件下再在显微镜下观察,这次观察到每单位面积上平均有80个细菌。则细菌细胞分裂的平均时间为小时。

用样方法调查草地中双子叶植物的种群密度

用样方法调查草地中双子叶植物的种群密度 一、实验目标 1、初步学会用样方法调查双子叶植物种群密度; 2、帮助学生发展科学探究的能力; 3、通过亲身调查周边植物,帮助学生更进一步认识自然,培养热爱自然、保护 环境的情操。 二、实验原理 样方法是指在被调查种群的生存环境中,随机选取若干个样方,计数每个样方内的个体数,计算每个样方内的平均个体数,然后将其平均数推广,来估计种群整体。我们需要根据不同形状的调查地段选择相应的取样方法。常用的取样方法有一下几种:五点取样法,样方的形状可以是方形的、长方形的、条带状的或圆形的,但样方必须具有良好的代表性,这可以通过随机取样来保证。 等距取样法。当调查的地段为长条形时,可用等距取样法。先将调查地段按纵向分成若干等份,由抽样比率决定样方之间的距离或间隔,然后按这一相等的距离或间隔抽取样方的方法,叫做等距取样法。长条形的总体为100m长,如果要等距抽取10个样方,那么抽样的比率为1/10,抽样距离为10m。然后可再按需要在每10m的前1m内进行取样,样方大小要求一致。 五点取样法。当调查地段为方形时,可以按梅花形取五个样方:先做该地段的两条对角线,在两条对角线的交点确定一个样方的中心,在每条对角线上距边角1/4对角线长处,各确定一个样方的中心,共五个样方。样方面积一般为1m2,如果该种群的密度较小,样方面积可适当扩大。 三、材料用具 卷尺、尼龙绳、木楔、钢笔、记录本、植物分类图鉴 四、实验准备 1、调查前教师先进行实地考察,找出比较典型的地块。 2、选择学生比较熟悉、容易识别而且分布比较均匀的双子叶植物作为调查对 象,这样有利于数据的分析、比较。像一年蓬这类单株生长特征明显的双子叶植物,就是很理想的调查对象。

初学VASP中电子态密度计算设置参考

初学VASP中电子态密度计算基本设置参考主要分成三步:一、结构优化;二、静态自洽计算;三、非自洽计算以Al-FCC为例子 第一步结构优化 输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2 GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 IBRION=2 NSW=50 ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 1.0 4 Direct 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 KPOINT 文件 Automatic generation Mohkorst Pack 15 15 15 0.0 0.0 0.0 第二步静态自洽计算 INCAR:PREC = Medium,ISTART = 0,ICHARG = 2,ISMEAR = -5输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2

GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 #IBRION=2 #NSW=50 #ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 4 Selective Dynamic Direct 0.0 0.0 0.0 T T T 0.5 0.5 0.0 T T T 0.5 0.0 0.5 T T T 0.0 0.5 0.5 T T T KPOINT 文件 Automatic generation

密度泛函理论的进展与问题

密度泛函理论的进展与问题 摘要:本文综述了密度泛函理论发展的基础及其最新进展,介绍了求解具体物理化学问题时用到的几种常用的数值计算方法,另外对密度泛函理论的发展进行了展望。密度泛函理论的发展以寻找合适的交换相关近似为主线,从最初的局域密度近似、广义梯度近似到现在的非局域泛函、自相互作用修正,多种泛函形式的相继出现使得密度泛函理论可以提供越来越精确的计算结果。另外,在密度泛函理论体系发展的同时,相应的数值计算方法的发展也非常迅速。随着密度泛函理论本身及其数值方法的发展,它的应用也越来越广泛,一些新的应用领域和研究方向不断涌现。 关键词:密度泛函数值计算发展应用 1 研究背景 量子力学作为20世纪最伟大的发现之一,是整个现代物理学的基石。量子力学最流行的表述形式是薛定谔的波动力学形式,核心是波函数及其运动方程薛定谔方程。对一个外势场v(r)中的N电子体系,量子力学的波动力学范式可以表示成: 即对给定的外势,将其代入薛定谔方程可以得到电子波函数,可以得到所有可观测量的值。 当用量子力学处理真实的物理化学体系时,传统的波动力学方法便显得有点力不从心。因为在大多数情况下,人们只是关心与实验相关的一部分信息,如能量、密度等。所以,人们希望使用一些较简单的物理量来构造新的理论[1]。 电子密度泛函理论是上个世纪60年代在Thomas-Fermi理论的基础上发展起来的量子理论的一种表述方式。传统的量子理论将波函数作为体系的基本物理量,而密度泛函理论则通过粒子密度来描述体系基态的物理性质。因为粒子密度只是空间坐标的函数,这使得密度泛函理论将3N 维波函数问题简化为3维粒子密度问题,十分简单直观。另外,粒子密度通常是可以通过实验直接观测的物理量。粒子密度的这些优良特性,使得密度泛函理论具有诱人的应用前景。 2 密度泛函理论的基础 Thomas-Fermi模型 1927 年Thomas和Fermi分别提出:体系的动能可以通过体系的电子密度表达出来。他们提出了一种的均匀电子气模型,把空间分割成足够小的立方体,通过在这些立方体中求

10有关种群密度的计算

十.有关种群密度的计算 【知识回顾】 1.样方法:在被调查种群的分布范围内,随机选取若干个样方,通过计数每个样方内的个体数,求得每个样方的种群密度,以所有样方种群密度的平均值作为该种群的种群密度估计值。 2.标志重捕法:在被调查动物种群的活动范围内捕获一部分个体,做上标记后再放回原来的环境,经过一段时间(标志个体与未标志个体重新充分混合分布)后,进行重捕,据重捕动物中标记个体数占总个体数的比例,来估计种群密度。 计算公式 【精选练习】 1.某同学在对一块面积为5000m 2的野生草坪进行野外调查时,选取了5个样点,每个样点4m 2,发现5个样点中某种草药的株数依次为12,15,14,17,12株。可估算出这块草坪中这种草药株数为( ) A .15000 B .16250 C .17500 D .70000 2.“标志重捕法”是动物种群密度调查中的一种常用取样调查法:在被调查种群的生存环境中,捕获一部分个体(M )全部进行标记后释放,经过一段时间后进行重捕,根据重捕中标记个体数(m )占总捕获数(n )的比例,估计该种群的数量(N )。某研究机构对我国北方草原一种主要害鼠—布氏田鼠进行了调查。调查样方总面积为2hm 。(1hm 2=10000m 2),随机布设100个鼠笼,放置一夜后,统计所捕获的鼠数量、性别等,进行标记后放归;3日后进行重捕与调查。所得到的调查数据如下表。 捕获数/只 标记数/只 雌性个体数 雄性个体数 初捕 32 32 14 18 重捕 36 4 18 18 (1)假定重捕取样中标记比例与样方总数中标记比例相等,写出样方中种群总数(N )的计算公式 。 (2)该草地布氏田鼠的平均种群密度为 只/hm 2。事实上田鼠在被捕捉过一次后更难捕捉,上述计算所得的平均种群密度与实际种群密度相比可能会偏 。 (3)综合两次捕获情况,该田鼠种群的性别比例(♀/♂)为 。 (4)在上述调查的同时,还对样方中布氏田鼠的洞口数进行了调查(假设样方中只有这一种鼠),平均每100m 2有3.6个洞口,洞口数与田鼠数的比例关系 为 。 m n M N 重捕的标志个体数再次捕获个体数初次捕获标志数个体总数

种群密度调查方法介绍.doc

种群密度调查方法介绍 样方法 (1 )取样调查中的两个概念 ①样方:样方也叫样本,从研究对象的总体中抽取出来的部分个体的集合,叫做样方。 ②随机取样:在抽样时如果总体中每一个个体被抽选的机会均等,且每一个个体被选与其他个体间无任何牵连,那么,这种既满足随机性,又满足独立性的抽样,就叫做随机取样 (或叫做简单随机取样 )。随机取样不允许掺入任何主观性,否则,就难以避免调查人员想获得调查属性的心理作用,往往使调查结果偏大。 ③适用范围:植物种群密度,昆虫卵的密度,蚜虫、跳蝻的密度等。 (2)常用取 样①点状取样 法

点状取样法中常用的为五点取样法,如图A,当调查的 总体为非长条形时,可用此法取样。在总体中按梅花形取 5 个样方,每个样方的长和宽要求一致。这种方法适用于调查 植物个体分布比较均匀的情况。 ②等距取样法 当调查的总体为长条形时,可用等距取样法,如图B,

先将调查总体分成若干等份,由抽样比率决定距离或间隔, 然后按这一相等的距离或间隔抽取样方的方法,叫做等距取样法。例如,长条形的总体为100 m 长,如果要等距抽取 10 样方,那么抽样的比率为1/10 ,抽样距离为10 m ,然后 可再按需要在每 10 m 的前 1 m 内进行取样,样方大小要求一致。 样方法的两种边角统计方式如下图(红色为需统计边线) 样方法具体步骤如下: ①确定调查对象; ②选取样方:必须选择一个该种群分布较均匀的地块, 使其具良好的代表性;③计数:计数每个样 方内该种群数量; 样方法的两种边角统计方式 ④计算:取各样方平均数。 标志重捕法 在被调查种群的生存环境中,捕获一部分个体,将这些个 体进行标志后再放回原来的环境,经过一段时间后进行重捕, 根据重捕中标志个体占总捕获数的比例来估计该种群的数量。 是种群密度的常用调查方法之一。

DOS态密度

态密度(Density of States,简称DOS) 在DOS结果图里可以查瞧就就是导体还就就是绝缘体还就就是半导体,请问怎么瞧。理论就就是什么?或者哪位老师可以告诉我这方面得知识可以通过学习什么获得。不胜感激。 查瞧就就是导体还就就是绝缘体还就就是半导体,最好还就就是用能带图DOS得话瞧费米能级两侧得能量差 谢希德。复旦版得《固体能带论》一书中有,请参阅!另外到网上或者学校得数据库找找“第一性原理”方面得论文,里面通常会有一些计算分析。下面有一篇可以下载得:ZnO得第一性原理计算 hoffman得《固体与表面》对态密度得理解还就就是很有好处得。 下面这个就就是在版里找得,多瞧瞧吧: 如何分析第一原理得计算结果 用第一原理计算软件开展得工作,分析结果主要就就是从以下三个方面进行定性/定量得讨论:1 ?、电荷密度图(charge density); 2、能带结构(EnergyBand Structure);?3、态密度(Density ofStates,简称DOS)。??电荷密度图就就是以图得形式出现在文章中,非常直观,因此对于一般得入门级研究人员来讲不会有任何得疑问。唯一需要注意得就就就是这种分析得种种衍生形式,比如差分电荷密图(def-ormationchargedensity)与二次差分图(difference chargedensity)等等,加自旋极化得工作还可能有自旋极化电荷密度图(spin-polarizedc harge density)。所谓“差分”就就是指原子组成体系(团簇)之后电荷得重新分布,“二次”就就是指同一个体系化学成分或者几何构型改变之后电荷得重新分布,因此通过这种差分图可以很直观地瞧出体系中个原子得成键情况。通过电荷聚集(accumulation)/损失(depl etion)得具体空间分布,瞧成键得极性强弱;通过某格点附近得电荷分布形状判断成键得轨道(这个主要就就是对d轨道得分析,对于s或者p轨道得形状分析我还没有见过)。分析总电荷密度图得方法类似,不过相对而言,这种图所携带得信息量较小。?能带结构分析现在在各个领域得第一原理计算工作中用得非常普遍了。但就就是因为能带这个概念本身得抽象性,对于能带得分析就就是让初学者最感头痛得地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到得能带,如何能从里面瞧出有用得信息。首先当然可以瞧出这个体系就就是金属、半导体还就就是绝缘体。判断得标准就就是瞧费米能级与导带(也即在高对称点附近近似成开口向上得抛物线形状得能带)就就是否相交,若相交,则为金属,否则为半导体或者绝缘体。对于本征半导体,还可以瞧出就就是直接能隙还就就是间接能隙:如果导带得最低点与价带得最高点在同一个k点处,则为直接能隙,否则为间接能隙。在具体工作中,情况要复杂得多,而且各种领域中感兴趣得方面彼此相差很大,分析不可能像上述分析一样直观与普适。不过仍然可以总结出一些经验性得规律来。主要有以下几点: 1) 因为目前得计算大多采用超单胞(supercell)得形式,在一个单胞里有几十个原

常见种群密度的调查方法

种群密度的取样调查方法 1.动物——标志重捕法 标志重捕法是指在被调查种群的生存环境中捕获一部分个体,将这些个体标志后再放回原来的环境,经过一段时间后进行重捕,根据重捕中标志个体占总捕获数的比例,来估计该种群的数量。常用于动物种群密度的取样调查,计算公式是:种群中个体总数/重捕个体总数= 开始标志的个体总数/重捕个体中所含标志的个体总数。 例题1 在对某池塘内鲫鱼种群数量调查时,第一次捕获200尾,全部进行标志后放生;经过一段时间后,第二次捕获160尾,其中有标志的鲫鱼有10尾,则该池塘内鲫鱼的总数大约为。 研析:常用标志重捕法对某个动物种群的个体进行计数,其计算公式:种群中个体总数/重捕个体总数= 开始标志的个体总数/重捕个体中所含标志的个体总数,故该种群中个体数为x∶160= 200∶10,求得x=3200。答案:3200尾。 2.植物——样方法 样方法是在被调查种群的生活环境内,随机选取若干个样方,通过计数每一个样方内的个体数,求得每个样方的种群密度,以所有样方种群密度的平均值作为该种群的种群密度。常用于植物种群密度的取样调查。样方形状可以多样,但样方的选取必须具有广泛的代表性,这可以通过随机取样来保证。 例题2 某同学采用样方法对一种植物进行计数,图3-1-1是其中一个样方中该植物的分布情况(注:图中黑点表示该种植物),对该样方中该种植物进行计数时,应记录的数目是个。研析:样方法计数时,若有植物正好长在边界线上的,只计样方相邻两 条边上的个体。答案:8。 3.细菌——显微记数法 将待测样品与等量的已知含量的红细胞混匀后,涂布在载玻片上,经固定染色后,在显微镜下随机选取若干个视野进行计数,得出细菌与红细胞的比例,再根据红细胞的含量计算出单位体积内的细菌数目。 例题3 为了测定培养液中细菌的数目,将500个红细胞与5mL该培养液混匀,然后制片观察,并进行随机统计。统计结果如下: 该5mL培养液共含有细菌个。 研析:测定细菌的数目有两种方法:一种是测细菌数目,一种是测细菌重量,两种方法均是取平均值。故80/4∶400/4=500∶x,求得x=2500。答案:2500 4.昆虫——去除取样法 对于某些隔离带的稳定种群,可以通过连续捕捉一定次数,根据捕获量的减小来估计种群大小。由于每次捕获后不放回,理论上种数量应当越来越少,因此,我们把每次捕获数加到前面所捕获的总数上,得到捕获积累数,以推算种群数量。(注:以捕获积累数为X轴,每次捕获数为Y轴,根据数据描点作直线向右延伸与X轴的交点即为种群估计数。) 例题4 假如在某田块(120平方米)连续捕虫8次,得到下表数据:

能带结构分析、态密度和电荷密度的分析

电荷密度图、能带结构、态密度的分析 能带图的横坐标是在模型对称性基础上取的K点。为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。能带图横坐标是K点,其实就是倒格空间中的几何点。纵坐标是能量。那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。我们所得到的体系总能量,应该就是整个体系各个点能量的加和。 主要是从以下三个方面进行定性/定量的讨论: 1、电荷密度图(charge density); 2、能带结构(Energy Band Structure); 3、态密度(Density of States,简称DOS)。 电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。 成键前后电荷转移的电荷密度差。此时电荷密度差定义为:delta_RHO = RHO_sc - RHO_atom 其中RHO_sc 为自洽的面电荷密度,而RHO_atom 为相应的非自洽的面电荷密度,是由理想的原子周围电荷分布堆彻得到的,即为原子电荷密度的叠加(a superposition of atomic charge densities)。需要特别注意的,应保持前后两次计算(自洽和非自洽)中的FFT-mesh 一致。因为,只有维数一样,我们才能对两个RHO作相应的矩阵相减。 能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。首先当然可以看出这个体系是金属、半导体还是绝缘体。对于本征半导体,还可

密度泛函理论

密度泛函理论

摘要:介绍了密度泛函理论的发展与完善,运用密度泛函理论研究了钒(Vanadium)在高压下的结构相变。通过计算体心立方结构的钒在不同压强下剪切弹性系数C44,发现当压强约95 GPa时C44<0,说明体心立方结构的钒在此条件下是不稳定的。进一步计算分析得到钒在高压下发生了从体心立方到菱面体的结构相变,相变压强约70 GPa,这一结果与实验结果符合。还首次发现当压强约380 GPa时,将会发生菱面体到体心立方的结构相变,这有待实验的验证。 引言:相变的研究受到广泛重视,通过相变研究可以认识物质的内部结构,可以了解原子核的内部性质。尤其是极端条件下—高温、高压下相变的研究一直是人们关注的热点,能量很高的重离子反应能形成高温、高密的区域,在这种条件下会出现许多奇异现象[1]。原子在高压下也会出现许多新的特征,如发生结构相变。过渡金属钒由于有较高的超导转变温度Tc,最近成为实验和理论研究的主题[2—8]。Ishizuka等[2]对钒的实验研究发现:常压下钒的转变温度Tc为5.3 K,并随压强成线性增长的关系,当压强为120 GPa时Tc=17.2 K(迄今是金属中最大的Tc),但压强大于

120 GPa,Tc出现了反常,即不再随压强成线性增长而保持不变。Takemura等[8]对高压下的钒进行了X射线衍射实验,结果显示状态方程并没有奇异性,体心立方结构的钒在压强达到154 GPa 时仍是稳定的。Suzuki和Ostani利用第一性原理对进行了计算,发现横向声子模在加压下有明显的软化,当压强约130 GPa时变成虚的,能说明可能发生了结构相变,但并未给出相变细节[3]。Nirmal等[4]理论计算表明,压强约140 GPa时会发生体心立方到简立方(sc)的结构相变。Landa 等[5,6]计算了体心立方结构的钒在加压下剪切弹性系数C44的大小,发现压强约200 GPa时会出现力学不稳定,并用费米面嵌套解释了不稳定的原因,但并没有给出相变后的结构。最近Ding 等[7]在常温下首次从实验上得到当准静压约63 GPa时钒会发生从体心立方到菱面体的结构相变,并分析了产生结构相变的原因。他们认为,排除传统的s-d电子跃迁的驱动,相变可能与来自于费米面嵌套、带的Jahn-Teller扭曲以及电子拓扑跃迁等因素有关。 基于如上原因,本文运用密度泛函理论研究钒在高压下的结构相变,即通过计算体心立方结构的

DOS态密度

态密度(Density of States,简称DOS) 在DOS结果图里可以查看是导体还是绝缘体还是半导体,请问怎么看。理论是什么?或者哪位老师可以告诉我这方面的知识可以通过学习什么获得。不胜感激。 查看是导体还是绝缘体还是半导体,最好还是用能带图 DOS的话看费米能级两侧的能量差 谢希德。复旦版的《固体能带论》一书中有,请参阅!另外到网上或者学校的数据库找找“第一性原理”方面的论文,里面通常会有一些计算分析。 下面有一篇可以下载的: ZnO的第一性原理计算 hoffman的《固体与表面》对态密度的理解还是很有好处的。 下面这个是在版里找的,多看看吧: 如何分析第一原理的计算结果 ? ?? ?用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论: ??1、电荷密度图(charge density); ??2、能带结构(Energy Band Structure); ??3、态密度(Density of States,简称DOS)。 ? ? ? ???电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。 ? ?? ?能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。首先

高考地理一轮复习 每日一题 调查种群密度的方法

每日一题调查种群密度的方法 高考频度:★★★☆☆难易程度:★★★☆☆ 典例在线 下列关于种群密度调查的叙述,合理的是 A.宜选择蔓生或丛生的单子叶植物作为抽样调查对象 B.宜采用样方法调查活动能力强的高等动物的种群密度 C.使用样方法调查种群密度时,关键是要做到随机取样 D.种群密度能准确反映种群数量的变化趋势 【参考答案】C 解题必备 种群密度调查的注意事项 (1)样方法的注意事项 ①计数原则:同种生物个体无论大小都要计数,若有正好在边界线上的,应遵循“计 上不计下,计左不计右”的原则,即只计数相邻两边及顶角上的个体。 ②取样原则及方法:随机取样;样方大小适中:乔木100 m2、灌木16 m2、草本1 m2; 样方数量不宜太少;一般选易辨别的双子叶植物(叶脉一般呈网状);常用五点取样法(如图1)和等距取样法(如图2)。 (2)标志重捕法的注意事项 被调查个体在调查期间没有大量迁入和迁出、出生和死亡的现象;标记物不能过于醒目;不能影响被标记对象的正常生理活动;标记物不易脱落,能维持一定时间。因为动物被捕获并标记一次后难以被再次捕获,则利用标志重捕法计算出的种群密度会比实际密度偏大。 学霸推荐 1.某同学调査正方形样地中某植物的种群密度时选用五点取样法取样,下表为各样方的植

株数量,分析表格中的数据,你认为该同学需要改进的是 A.适当增大样方面积 B.适当减少样方数目 C.改用等距取样法取样 D.改变计数方法 2.某小组用样方法调查草地中某种双子叶植物的种群密度,下列做法错误的是A.根据地段的形状确定取样方法 B.根据调査数据估算该种群密度 C.取样的关键要做到随机取样 D.计数时差异较大的数据要舍弃 3.利用标志重捕法调查某动物的种群密度时,下列哪种因素会导致调查结果小于实际值A.误将部分未标记个体统计为标记个体 B.两次捕获间间,有部分个体迁出调查区域 C.标志物脱落 D.两次捕获时间间隔过短,动物个体被再次捕获几率降低 4.某研究机构对某区域的一种田鼠进行了调查,所调查样方的总面积为2 hm2(1 hm2=10 000 m2),统计所捕获的鼠数量、性别等,进行标记后放归,3日后进行重捕与调查。所得到的调查数据如下表: A.此调查方法可以用来调查土壤中小动物物种的丰富度 B.若田鼠在被捕捉过一次后更难捕捉,统计的种群密度比实际低 C.综合两次捕获情况,该田鼠种群的性别比例(♀/♂)约为7∶2 D.该地区田鼠的平均种群密度约为125只/hm2 答案 1.【答案】A

§5-7晶体中电子的能态密度

§5-7 晶体中电子的能态密度 5.7.1 带底附近的能态密度 在本章第一节中,我们已经得到自由电子的态密度N (E ), 3 212 22()4m N E V E π??= ??? h ………………………………………… …………………………………(5-7-1) 而且N(E)~E 的关系曲线已由图5-7-1给出。晶体中电子受到周期性势场的作用,其能量E(k )与波矢的关系不再是抛物线性质,因此式(5-7-1)不再适用于晶体中电子。下面以紧束缚理论的简立方结构晶格的s 态电子状态为例,分析晶体中电子态密度的知识。 由前面的紧束缚理论,我们已经得到简立方结构晶格的s 能带的E(k )形式为: ()()012cos cos cos s x y z E J J k a k a k a ε=--++k …………………………………………………(5-7-2) 其中能量极小植在Γ点k =(0, 0, 0)处,其能量为()016s E J J ε=--k ,所以在Γ点附近的能量,可以通过将()E k 展开为在k =0处的泰勒级数而得到,以2 cos 12x x =-+L ,取前两项代入,可以得到: ()()()2222222 2011123()2s x y z s x y z E J J a k k k E J a k k k ε??=---++=Γ-++ ??? k …………………(5-7-3) 在第五节,我们已经根据有效质量的定义,算得简立方晶格s 带Γ点处的有效质量为一个标量, 2 21 *02m a J =>h …………………………………………………………………………………………… (5-7-4) 代入后,可得到 ()22 * ()2s k E E m =Γ+h k …………………………………………………………………………………(5-7-5) 式(5-7-5)表明:在能带底k =0附近,等能面是球面,如果以()()s E E -Γk 及* m 分别代替自由电子的能量E 及质量m ,就可得到晶体中电子在能带底附近的能态密度函数: *312 222()4()[()()]s m N E V E E π=-Γh k ……………………………………………………………(5-7-6) 5.7.2 带顶附近的能态密度 能带顶在(,,)a a a πππ=k 的R 点处,容易知道,其能量为()016s E J J ε=-+k 。以R 点附近的 图5-7-1 自由电子能态密度

调查种群密度的方法

调查种群密度的方法 教师行为 学生学习活动 设计意图 课前准备 布置、指导兴趣小组估算学校10平方米草坪中某种杂草的数量 小组讨论方法、实地估算,拍摄照片和录像,准备汇报 锻炼学生的实践能力。同时为新课做课前准备。 导入新课 1. [回忆]初中时学习过的物种分类的 最小单位是甚么,并举一些例子。 2. [提问]在一定环境中,这些不同种 类的生物是如何存在的?由此引出种群 的概念,并讨论种和种群之间有哪些相同和不同之处。 3. 学生分析种群概念,注意以下问题: i.种群中可能有外表不同的个体; ii.种群中个体有年龄的差异; iii.指出种群不是个体的简单累加。 回忆,讨论。 举例,比较种和种群, 明确各种生物都以一定的 数量存在于环境中。 分析种群概念的内涵。 通过比较、辨 别,理解种群概念。 问题探讨,引出种群密度的概念 1. 提问一片稻田中,杂草500株,蝗虫350只,虎纹蛙10只。如何描述这些情况? 再问:能否用一个概念来描述? 2. 提问:对农田害虫采取防治措施的依据是甚么?根据什么估算鱼塘中草鱼的数量? 3. 提问有什莫办法可以知道上述动物的种群密度? 讨论,提出种群的个体 数量不同,可用种群密度描 述。 给种群密度下定义。 讨论分析,指出防治措 施或估算产量的依据是这些动物的种群密度。 锻炼学生从具 体事务中归纳出概 念的能力。 明确调查种群 密度的意义。 引入方法研究

模拟体验统计方法[课前准备]100颗黄豆和200颗绿豆 (不告诉学生各种豆子的数量只说总数),放进一个大容器中混合。 要求:发挥各自能力,找出办法来估算黄豆和绿豆的数量。 讨论、发给每组学生相同的材料。 学生估算并公布结果后,教师再说正确答案 引导学生交流估测方法并思考为啥有的组结果较接近。 [注意]只取一次样可能不是很准确,要重复几次求平均值。 分组讨论估测方法。 分组统计估测并汇报 结果。 小组介绍估测方法。 全班交流哪种方法可 行,要注意哪些问题 通过模拟训练 让学生对统计方法 有一个初步的感性 认识,肯定这一方 法的可靠性和实用 性,激发学生兴趣。 用样方法估算种群密度 [小组汇报]估算学生运动场一定面积草坪中某种杂草数量的方法和结果,提醒学生注意观察方法。 [引导]学生提出质疑 [提出样方法的概念]引导学生讨论如何取样才能科学简单。 引导学生举出用样方法来解决现实问题。 兴趣小组汇报,其他同 学听、观察。 思考讨论。 带着问题阅读教材第 61页探究,讨论交流。 举例。 分享测量方法 和结果、感受和乐 趣,激发探究欲望。 联系实际进一 步了解样方法的应 用。 标志重捕法 [引导]如果现在要调查草原上某动 物的密度还能用样方法吗? 讲述:对于活动能力强、活动范围大的动物,用另外一种方法---标志重捕法来调查。 简述具体方法。 针对练习:调查某种鼠,范围是一公顷,第一次捕获并标记39只,第二次捕获34只,其中带标记的15只,请估算这种鼠的种群密度单位为只公顷。思考。 回答。 用刚学过方法进行估算。 让学生了解、 掌握标志重捕法。

能带,态密度图分析

能带结构和态密度图的绘制及初步分析 前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。 MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究 研究,看看有没有实现的可能性)。 能带结构、态密度和布居分析是很重要的内容,在 分析能带结构和态密度的时候,往往是先作图,然后分 析。 软件本身提供的作图功能并不是很强,比如说能带结构 (只能带只能做point图和line图),不美观不说,对于 每一个能带的走势也不好观察,感觉无从下手。所以我 一般用origin作图(右图是用origin做的能带图)。能带 结构和态密度的作图过程请参考我给大家提供的动画。 接下来我们先开看看能带结构的分析和制作! 第一部分:能带结构 这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。^_^ 第一个问题是: 1、能带是怎样形成——轨道和一维体系的能带。 这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试: ①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^ 从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。所以计算小分子体系,或者采用团簇模型的朋友,这部分内容或许对你们没有帮助!那么,非周期体系的态密度能够计算吗?这应该是能够计算的,曾经开到过文献采用团簇模型,计算出态密度的(phys. Rev. 上的文章)。 那么非周期体系为什么没有能带结构呢? 看一个例子:一个H2分子有能带吗?没有,因为它没有周期边界条件,也就是说在x,y,z方向上没有重复,所以它没有能带结构。那H2分子有什么东西呢?有两个轨道,两个 1s原子轨道,或者说两个轨道能级,它们成键参考右图。 再看另外一个例子:一维无限H原子链 H H H H H H 在一维无限H原子链体系中,产生了能带。 为什么在一维无限H原子链体系中能够产生能带呢?

密度泛函理论

1、相对于HF方法,DFT方法的优点 2、密度泛函方法:交换泛函和关联泛函 3、绝热近似的基础(内容):核和电子之间的相互运动,近似看做电子不需要时间靠近核的运动 前提:①核的质量大于电子质量,核看成不动,可以考虑分离②不考虑电子从一个态到另一个态的跃迁 4、DFT方法的分类 LDA:slater、 exchange 、VWN condition GGA:Ex B88 PW91 PBE OPTX HCTH,Ec LYP P86 PW91 PBE HCTH LDA和GGA的优缺点: LDA低估了gap,LDA计算晶格常数总是会偏小一些,这样子可以尽可能得到一个电子密度分布均匀的体系,LDA主要Ex就是来自于均匀电子气的交换能,而Ec部分来自于Quantum Monte Carlo计算拟合,对于均匀电子气体系,LDA是理论上严格精确的。 GGA严重低估了CT、里德堡激发的能量,明显低估了gap,GGA优化时电子密度越不均匀的体系,Exc反而越小,体系能量越低。 LDA计算致密结构的能量更接近真实值,而疏松体系的能量都会偏大;GGA相反,疏松结构的能量更接近真实数值,而致密结构则往往偏大 5、Hohenbong-Kohn定理: 一:不计自旋的全同费米子系统的基态,能量是粒子数密度ρ(r)的唯一泛函 二:如果n(r)是体系正确的密度分布,则E[n(r)]是最低能量,即体系的基态能量。 6、DFT的发展方向(前景)---相对于HF方法,DFT方法的优点 DFT方法考虑了电子相关,这会使得过渡态的能量偏低,造成算出来的活化能偏低而且计算氢键的键能也会偏低,而且算起来也快,在计算有机分子的芳香性也不好,dft会过多考虑电子离域,导致计算出来的能量偏低,对于过渡金属、有机生物分子,DFT方法都能很好的处理,这是它比其它方法好的地方。 上个世纪末,很多使用TDDFT算激发能的文章都得到一个相同的结论,就是B3LYP作TDDFT 激发能计算的结果是不可靠的:对不同的分子体系,有的时候跟实验值相当接近,有的时候却差得不得了。因此在做TDDFT激发能计算的时候,应该多试几种泛函,特别是没有实验值。 B3LYP之所以计算TS能量会偏低,主要在于其交换相关势不够准确,特别是在长程区的渐近行为不够好,也正是如此,b3lyp是不可能准确计算氢键. 除一些简单情况(如单-三重态分裂)外,不能普遍用于电子多重态结构的研究,这是密度泛函理论的重要缺陷之一,不解决这个问题,密度泛函理论方法的应用范围受到很大限制。 人们在用密度泛函理论处理多重态分裂问题中针对不同的问题有不同的方法,但各自都有优缺点,没有统一的方法,发表的文章一般只介绍其所用方法的优点,而避开缺点.但DFT的计算量小确实是它的优势,特别是对于大分子体系及磁性材料,半导体材料等性质的研究,所以人们对用DFT计算比较感兴趣. 7、DFT方法选择 非双杂化泛函的最佳选择: 计算碳团簇用B3LYP 计算硼团簇用TPSSh 计算双核金属用PBE、BP86,勿用杂化(see JCTC,8,908) 计算NMR用KT2,M06-L, VSXC, OPBE, PBE0 计算普通价层垂直激发用PBE0(误差约在0.25eV),M06-2X也凑合

关于种群密度的计算

关于种群密度的计算 孙德 研究种群动态首先要统计种群的数量,数量统计中最常用的指标是种群密度。估计种群密度的方法与其在自然栖息地个体数目的计数难度有关。植物和动物种群密度的计算方法不同。 一、植物种群密度的取样调查 植物种群密度的取样调查常采用样方法,也就是在被调查种群的生存环境内,随机选取若干个样方,通过计数每个样方内的个体数,求得每个样方的种群密度,以所有样方种群密度的平均值作为该种群的种群密度。样方也叫样本,是从研究对象的总体中抽取出来的部分个体的集合。为了保证取样调查的科学性,必须进行随机取样。 例1(2004天津理综,30)生态工作者从东到西对我国北方A、B、C三种类型的草原进行调查。下表是不同调查面积的物种数量统计结果: (1)略 (2)调查B草原某种双子叶草本植物种群密度时,设计如下调查步骤: ①选取40cm×40cm为最佳样方面积。 ②在该物种分布较密集的地方取5个样方。 ③计数每个样方内该植物的个体数。若计数结果由多到少依次为 ,则将 作为种群密度的估计值。

请指出以上设计步骤中的错误并加以改正。 [解析](2)种群密度的取样调查方法包括以下几个步骤: ①确定调查对象,如实验中的“调查B草原某种双子叶草本植物”; ②选取样方,应在B草原中随机抽取5个样方,样方为长和宽各为1m的正方形; ③计数每个样方内该种群的数量; ④计算种群密度,计算各个样方内种群数量的平均值,这个数值就可以作为该种群的种群密度的估计值。 [参考答案](2)①选取的样方面积不对。应取物种数量达到稳定的最小面积100cm×100cm。 ②取样方法不对。应在B草原中随机取样。 ③对种群密度值的估计方法不对。应以调查样方的单位面积中种群个体数量的均数作为种群密度的估计值。 二、动物种群密度的取样调查 对于不断移动的动物,直接计数往往比较困难,其种群密度的取样调查常用标志重捕法(以称捉放法)。在调查样地中,随机捕获一部分个体,进行标记后释放,经过一段时间后进行重捕。根据重捕取样中标记比例与样地总数中标记比例相等的假定,来估计调查样地中被调查动物的总数,即:N:M=n:m,N=M×n/m(式中:M,标记个体数;n,重捕个体数;m,重捕样中标记个体数;N,样地中个体的总数)。 例2(2001上海,36)调查某草原田鼠数量时,在设置1公顷的调查区内,放置100个捕鼠笼,一夜间捕获鼠32头,将捕获的鼠经标记后在原地释放。数日后,在同一地方再放置同样数量的捕鼠笼,这次共捕获30头,其中有上次标记过的个体10头。请回答下列问题。 (1)若该地区田鼠种群个体总数为N,则N=________头。 A. 30 B. 32 C. 64 D. 96 (2)要使上面所计算的种群个体总数和实际相符,理论上在调查期必须满足的两个条件是_________。 A. 有较多个体迁出调查区 B. 调查区内没有较多个体死亡 C. 调查区内没有较多个体出生 D. 有较多个体迁入调查区 (3)(4)(5)略 [解析](1)根据计算公式:N=M×n/m,可得出该地区田鼠种群个体总数为96头。(2)影响种群数量变动的因素有出生率和死亡率、迁入和迁出,要使上面所计算的种群个体总数和实际相符,理论上在调查期必须满足的条件是调查区内没有较多的个体出生和死亡及没有较多的个

相关文档
最新文档