酶在焙烤食品中的应用

酶在焙烤食品中的应用
酶在焙烤食品中的应用

酶在焙烤食品中的应用

浅谈几种酶在焙烤食品中的应用

摘要:主要介绍了脂肪酶、葡萄糖氧化酶、淀粉酶、蛋白酶、半纤维素酶在焙烤食品中的应用。

关键词:酶、焙烤食品、应用

Abstract:introduce lipase, protease, hemicelase, glucose-oxidase, amylase apply in the adhibition.

Key words: enzyme, bake, adhibition.

引言:目前,在食品工业中广泛采用酶来改善食品的品质以及制造工艺,酶作为一类食品添加剂,其品种不断增多。它在食品领域中的应用

方兴未艾。随着溴酸钾被禁用,如何使用天然无害具有替代功能的

产品,成为广大焙烤食品及面粉企业关注的焦点,而生物酶制剂满

足了这方面的要求。酶作为一种生物制品,在面粉改良中,具有显

著的优越性。这些优越性体现在:酶本身就是活细胞产生的活性蛋

白质,本身无毒,故不会留下有毒的物质。酶的催化作用具有高度

的专一性,一种酶只对一种底物起作用。如淀粉酶只能催化淀粉的

水解,而对蛋白质则无效。酶的催化效率非常高,比一般催化剂高

107-1013倍,因此用量相当少。酶的操作条件温和,在常温、常

压下就能进行。与以前的化学催化剂相比,酶反应显得特别温和,

这对避免食品营养的损失是很有利的。以下介绍几种酶在焙烤食品

中的应用。

1.脂肪酶

脂氧合酶在面包中用于改良面包质地、风味,并进行漂白。

脂肪酶能够提高面制品的烘焙品质、改善面包质地、延长制品的货架期。

面类制品的食感主要与小麦粉中的蛋白质、淀粉、脂肪等有关,特别是通过蛋白质的定向和形成网眼结构产生弹性,增加面的黏弹性。在面类食品加工中,以手工方式沿着压延方向进行多方面揉压,或是以机械方式沿着单一方向进行长时间的压延,都会增加面的弹性、提高面类食品的质量,但采用上述两种方法比较耗时。

脂肪酶是酶制剂的一种,酶的所有特性它都具有,与其他酶酶剂如葡萄糖氧化酶复配后能够取代化学增筋剂溴酸钾。脂肪酶在焙烤食品工业当中的应用,主要是体现在对面包粉面团的强筋作用及改善面包品质方面。它对面制品的改良是提高面团的耐醒发力,脂肪酶主要在面团静置发酵阶段起到增强面筋筋力的作用。同时,能适当降低面团的延伸性。特别是用于无脂肪,低脂肪或含油的面包产品中效果最理想,能降低面团粘稠度,改善面团的操作性能,增强面团筋力和面团的弹韧性,提高面团发酵耐力和醒发耐力,提高了面包入炉急胀性,增大产品体积作用非常突出;能够改善面包内部组织结构,使内部组织结构更加均匀细腻,包芯色泽更加洁白,提高了面包组织的柔软度,对面包制品有很好的改良效果。

在面类食品生产时,可以将溶解有脂肪酶的水直接加入面粉中,然后在常温下放置一段时间进行压延处理。与添加蛋白质和多糖类等面粉改良剂相比,添加脂肪酶后产品品质会得到大幅度提高。具体表现在以下三方面:(1)增加并保持弹性。(2)提高成品率。(3)面皮的改良。

2.葡萄糖氧化酶

葡萄糖氧化酶在各类食品中用于祛除食品中的氧气或葡萄糖常与过氧化氢酶结合使用。

葡萄糖氧化酶(glucoseoxidase GOX;ECl.1.3.4)系统抗微生物作用主要是由于生成的H2O2具有细胞毒性。当然形成的葡糖酸引起pH下降,也有抑菌作用。GOX系统作为食品防腐剂抗微生物的效果报道不一,Tiina和Sandholm研究表明,GOX系统能显著抑制多种病原菌的生长,如婴儿沙门氏菌、金黄色葡萄球菌和产气荚膜梭菌。GOX系统对液体全蛋中的革兰氏阴性和阳性菌也有显著抑制作用。但是将GOX系统应用于接种过假单孢菌属和鼠伤寒沙门氏菌的禽类中,未发现这些腐败菌的生长受到抑制。不同微生物对GOX系统的敏感性决定于它们产生H2O2清除剂(如过氧化氢酶、谷光甘肽和抗坏血酸等)的能力。GOX系统更多的应用于食品加工中,而不是作为食品防腐剂,其原因是食品长期暴露于过氧化氢的环境易造成食品脂肪酸败。

葡萄糖氧化酶和过氧化物酶具有显著的改善面粉中面筋强度和弹性、总体提高面粉品质的作用。它与其他酶制剂和添加剂之间具有协同效应, 用于烘焙面包等高筋粉的生产, 均能获得理想效果。同时,葡萄糖氧化酶凭借其天然的优良特性, 可替代被国际癌症研究机构列为致癌物质的溴酸钾等各种化学添加剂。

3.淀粉酶

淀粉酶在各类食品中用于将淀粉转化为糊精、糖,增加吸收水分能力。淀粉酶在焙烤食品中增加酵母在发酵过程中的糖含量。

α-淀粉酶通常与蛋白酶一起应用于改善面团的功能性质。小麦及黑麦面粉只含约0.5%~1. 0%的可发酵糖,不能提供酵母生长所需的糖。如果面粉中α-淀粉酶的活力不足,淀粉分解所产生的麦芽糖含量很低,面团起发性不好。因此面团中可加入约0.3%的麦芽α-淀粉酶或真菌α-淀粉酶以提高面团的质量。真菌α-淀粉酶对热不稳定,在烘烤的过程中易失活,与葡萄糖淀粉酶可以共同控制产品还原糖的含量,进而影响产品的质量,如颜色等。α-淀粉酶可降低产品黏度,改善产品的加工性能,最终使产品松软,体积增大。焙烤过程中,淀粉胶凝,蛋白质变性形成刚性结构并释放水到淀粉凝胶中去。如果α-淀粉酶活力过高,烘烤过程前期过量淀粉水解,则会导致面包黏性增强,体积较小。真菌α-淀粉酶在75℃时失活,所以不会产生上述情况,会使面包的货架期延长两倍。S.Sahlstrom 等研究了面包制作中四种真菌α-淀粉酶的加入,调粉时间及醒发时间对面包质量及货架期的影响。研究结果表明:酶的加入会增大面包体积,但加入α-淀粉酶似乎对降低调粉时间和醒发时间无影响。加入Pullulanase可延迟面包老化。α-淀粉酶不能水解完整的淀粉颗粒。酵母发酵的过程中也依赖于β-淀粉酶产生的还原糖,进而通过美拉德反应产生良好的风味和色泽。而杆菌中嗜热麦芽糖淀粉酶以不同的方式影响面团的流变学特性及淀粉分子。这种酶影响直链淀粉的数量而使其获得单分散性和保持分子量不变,而且发现冷面团的黏性与直链淀粉分子聚合的最大数量有关联。

4.蛋白酶

健全的、未发芽的谷物蛋白酶活性通常很低,且大多为木瓜蛋白酶,就是说当存在能够还原二硫键的物质时,蛋白酶才有活性。内源性蛋白酶对面包质量影响较小,因为其戊聚糖含量较高。然而水解面筋蛋白的酶类对面包质量有很显著的影响。例如某些昆虫的唾液中含有水解谷物中主要蛋白质的酶类,可以使面筋蛋白水解过度。在面包制作过程中控制蛋白酶的用量,加入适量的真菌蛋白酶可缩短1/3的调粉时间,同时面团的机械性能及组织结构也会得到提高。

5.半纤维素酶

早在1973年,Casier 等人就提出不同的小麦面粉所含有的戊聚糖种类不同。总的来说,戊聚糖对面包体积、面团组织结构具有正影响。黑麦面粉含有的戊聚糖能阻止面筋的形成,这些戊聚糖的部分水解可以显著提高面团的加工性能及体积。近来研究发现,非淀粉多糖在面包制作过程中起到很重要的作用。半纤维素酶和β-葡聚糖酶可显著提高面团质量。白面粉、全麦粉及黑麦粉分别含有约2.5%~3%、5%及8%的半纤维素,这些半纤维素在面团吸水能力方面起着重要作用。戊聚糖可吸收其6.5倍重量的水分。

自从发现市售木聚糖酶作为非纯品可增大面包体积,改善面团质量以后,人们的注意力从研究水解蛋白和淀粉的酶逐渐转向研究半纤维素及戊聚糖的酶类。这可认为是烘焙酶技术史上的一次变革。近年来,半纤维素酶,特别是戊聚糖酶在全麦面包生产中应用的研究成为热点。已经证明面团中加入戊聚糖酶会明显提高抗老化能力,而且在黑麦面包生产中可降低调粉

时间,以及调粉过程中消耗的能量。G. Cleemput等对内源性非淀粉多糖水解酶在面包制作过程中对非淀粉多糖(NSP)的影响进行了研究。结果表明:在调粉和烘烤阶段,部分水不溶性NSP转变为水溶性的。发酵过程中阿拉伯

木聚糖分子量的变化部分原因是由于酶水解。由于从面团或面包中提取阿拉伯木聚糖很难,表明NSP之间或NSP与蛋白质或其他面粉组分存在着相互作用。可溶解戊聚糖与谷蛋白结合形成的胶状物质,改善内部网络结构。而脂肪酶则阻止了甘油三酯与谷蛋白的结合,提高面团稳定性,操作性好,成品面包弹性更好,体积增大,面包心结构均匀,色泽光亮。

6.结束语

随着生物技术的迅猛发展,人们对酶在面包生产中应用的兴趣更加浓厚。各种酶在面包生产中的作用机理有待于进一步研究,以开发出多功能、有效的面包改良剂。在食品工业中应用的酶的种类很多,这里只是介绍了几种,总之,在开发多样化的食品新制品同时,酶的需要也是多样化的。今后,随着新规酶的发现,基因工程以及蛋白质工程的发展,可用于食品的酶也将会有新的进展,酶在食品工业中的应用前景更广阔。

参考文献:

[1]王国栋,陈晓亚.漆酶的性质、功能、催化机理和应用[J].植物学通报,2003.20 [2]周素梅,王障,许时婴.面包制作过程中戊聚糖酶作用机理的研究[J].食品工业科技,2002.9

[3]刘传富,董海洲,侯汉学.淀粉酶和蛋白酶及其在烘焙食品中的应用[J].粮食与油脂, 2002.6

[4]酶在焙烤食品制作中的应用及研究进展热包头轻工职业技术学院乳品工程系,[5]吴秋明,叶兴乾,等.脂肪酶在食品工业中的应用.粮油加工与食品机械,2004.11 [6]唐传核,彭志英.酶在食品工业中的应用现状.山西食品工业,2002.1

[7]刘慧清,李宏高.酶在食品工业中的应用.农产品加工,2005.7

[8]姜国龙,赵红双,赵鑫.酶在焙烤类食品中的应用,内蒙古科技与经济.2009.7

[9]浅谈几种酶在食品加工中的应用,石河子大学学报

[10]颜方贵.发酵微生物学,北京农业大学出版社,1993

酶制剂在食品工业中的应用 论文

酶制剂在食品工业中的应用 摘要:酶制剂是一类特殊的食品添加剂,具有催化高效性,专一性等显著特点。文章综述了食品工业中酶制剂利用及新动向,包括淀粉糖、油脂、蛋白质加工、面包、啤酒、饮料工业以及改善苦味的酶类的应用。并介绍了酶与食品的关系、酶制剂在食品生产中用于保藏、改善质量和增加营养价值、增加品种种类、提高便捷性和提高食品生产效率等作用。并对酶制剂在食品工业中的发展方向和安全问题进行了讨论。 关键词:酶制剂;食品工业;应用 酶是一类具有专一性生物催化能力的蛋白质。而从生物体中提取的具有酶活力的制品,称为酶制剂。酶制剂主要用于食品加工和制造业方面,它在对提高食品生产效率和产量、改进产品风味和质量等方面有着其它催化剂所无法替代的作用。另外,酶制剂在日化、纺织、环境保护和饲料等行业也有着较广泛的应用。 随着发酵工业的发展,酶制剂的主要来源已被微生物所取代,它具有不受季节、地区和数量等因素影响的特性,还具有种类多、繁殖快、质量稳定和成本低等特点。随着微生物育种技术的发展,酶制剂的种类越来越多,分类也越来越细。目前我国已工业化生产的、且用于食品工业的酶制剂主要有:淀粉酶、异淀粉酶、果胶酶和蛋白酶等,它们在食品加工中都起着十分重要的作用。当然,尽管目前我国酶制剂行业的发展已有了长足进步,但与发达国家相比,还有很大差距。为进一步加快酶制剂产业技术的进步,今后应注重在调整产品结构、增加新品种、提高产品质量和竞争力、实现规模化经营和拓宽应用领域等方面作深入的研究。 1.酶与食品的关系 在食品生产加工中,为了保持食物原有的色、香、味和结构,就要尽量避免引起剧烈的化学反应。酶是一类具有专一性生物催化能力的蛋白质,因此作用条件非常温和。许多酶所催化的反应从动植物最初生长时就开始了,当它被作为食品时,其体内酶的催化作用仍然继续进行着。如动物体死后,其合成代谢停止,而分解代谢加快,因此就会导致组织腐败,但这可能也会改善某些食品原料的风味。在大多数成熟的水果中,由于某些酶的增加,会使得其呼吸速度加快,淀粉转变为糖,叶绿素发生降解,细胞体积快速增加。这些变化,对于水果风味的改善是有益的;而对蔬菜来讲,叶绿素的降解则是有害的。 2.与食品生产有关的酶制剂 2.1与淀粉糖和甜味剂生产有关的酶制剂 淀粉酶工业上应用酶制剂已有数十年的历史,淀粉加工用酶所占比例达到15%,是酶制剂最大的市场。近年来淀粉酶类耐热性大大提高,并已通过基因工程技术改善其品质。特别要提到的是一系列新的酶制剂的发现和应用,如在1995年已经工业化的酶转化淀粉生产海藻糖,改变了先前从酵母等食物中抽提的生产方法,生产成本大大下降。这种糖不仅耐酸、耐热、防龋齿,还可抑制蛋白质变性和油脂酸败,市场日益扩大。 2.2与油脂生产有关的酶制剂 油脂是人类食品的主要营养成分之一,有赋予食品不可缺少的风味,而且用酶法生产有益健康的油脂的正逐步应用成熟,如用DNA等高度不饱和脂肪酸作为食品的原材料所制作的食品销售额已达400亿日元。 2.3与蛋白质有关的酶制剂 蛋白质在食品加工中,不仅具有营养的功能还具有各种物理功能,提高这类功能将会增加其附加值,要达到这个目的需要利用蛋白酶类。为了以蛋白质水解后的产物作为生产氨基酸系列的调味品,就必须把蛋白质彻底分解为氨基酸。 2..4与面包生产有关的酶制剂

酶在食品中的应用

多种酶在食品中的应用 学生:李慧娜指导老师:胡亚平所在学校:湖南农业大学 摘要:酶是生物活细胞产生的一类具有催化功能的蛋白质。酶的催化效率高,具有很高的专一性,需比较温和的条件。因此,酶在食品科学中相当重要,通过酶的作用能引起食品原料的品质发生变化,也能在比较温和的条件下加工和改良食品。食品加工中几种重要的酶有淀粉酶、蛋白酶、果胶酶、多酚氧化酶、脂肪酶以及其他一些氧化酶等。酶在食吕保藏中也起着非常重要的作用。酶不仅影响着食品的感观功能而且也影响着食品的营养功能。不同的酶在在不同的产品中发挥着不同的作用。 关键词:多种酶食品应用 随着食品工业的快速发展,人们的食品安全和健康意是益增强,对食品的要求愈来愈高。为了让人们吃得放心,吃得健康,研究酶在食品中的应是一个具有重大意义的项目。目前,绿色健康消费已经成为新的消费时尚,首选绿色天然食品的观念已在消费者心中根深蒂固,酶法保鲜广泛应用于食品的贮藏之中。因此,大力推广酶在食品贮藏中的应用已成为广大消费者的心声。由于酶的高效性,专一性,以及影响反应速度的因素的可控制性使得酶的研究逐具有广大的前景。 一、酶对食品感观功能的影响以及营养功能的影响 (一)酶对食品感观功能的影响 内源酶类对食品的风味、质构、色泽等感观质量具有重要的影响,其作用有的是期望的,有的是不期望。如动物屠宰后,水解酶类的作用使肉嫩化,改善肉食原料的风味和质构;水果成熟时,内源酶类综合作用的结果会使各种水果具有各自独特的色、香、味,但如果过度作用,水果会变得过熟和本酥软,甚至失去食用价值。 (二)酶对食品营养功能的影响 脂肪氧合酶催化胡萝卜素降解而使面粉漂白,在蔬菜加工过程中则使胡萝卜素破坏而损失维生素A源;在一些用发本酵方法加工的鱼制品中,由于鱼和细菌中的硫胺素酶的作用,使这些制品缺乏维生素B1;果蔬中的Vc氧化酶及其它氧化酶类是直接或间接导致果蔬在加工和贮存过程中维生素C氧化损失的重要原因之一。 二、多种酶在食品中的应用 (一)淀粉酶 淀粉酶在食品工业上应用很广泛。淀粉酶制剂是最早实现工业化生产和产量最大的酶制剂品种,约占整个酶制剂总产量的50%以上,被广泛应用于食品、发酵及其他工业中。 淀粉酶用于酿酒、味精等发酵工业中水解淀粉;在面包制造中为酵母提供发酵糖,改进面包的质构;用于啤酒除去其中的淀粉浑浊;利用葡萄糖淀粉酶可直接将低黏度麦芽糊精转化成葡萄糖,然后再用葡萄糖异构酶将其转变成果糖,提高甜度等。目前商品淀粉酶制剂最重要的应用是用淀粉制备麦芽糊精、淀粉糖浆

溶菌酶及其在食品工业中的应用

溶菌酶及其在食品工业中的应用 Research advances in egg bioactive component—lysozyme and its applications in food industry 徐敬宜徐永平* 刘姝金礼吉?(请确认是否少写了作者姓名) XU Jing-yi XU Yong-ping*LIU Shu Yu Wang?Yongsheng Ma? (1.大连理工大学环境与生命学院生物科学与工程系,山东大连116024; 2.国家精细化工重点实验室,山东大连116012) (1.Department of Bioscience and Biotechnology,School of Environmental and Biological Science and Technology,Dalian University of Technology, Dalian,Shangdong116024,China;2.State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Shangdong116012,China) 摘要:溶菌酶是一种对人安全且具有保健作用的蛋白酶,是国际公认的绿色天然酶制剂。它在食品工业中被广泛用作食品添加剂和防腐剂。溶菌酶广泛存在于人、动植物及微生物体内,尤以鸡蛋清中含量较高,具有巨大的开发应用价值。 关键词:溶菌酶;鸡蛋;溶菌性;食品 Abstract:Lysozyme is a bacteriolytic enzyme commonly found in nature and is present in almost all secreted body fluids and tissues of human and animals. It has also been isolated from some plants,bacteria and bacteriophages.The chicken egg white is a rich and easily available source of lysozyme.Lysozyme is used as an antimicrobial agent in various foods,either as a preservative or to control microbial processes in cheese,beer and wine production. Keywords:Lysozyme;Egg;Bacteriolytic;Food 溶菌酶(Lysozyme,法定编号:EC3.2.1.17,美国化学文摘服务社(CAS)编号[9066-59-5])是一种安全性很高,且具有一定保健作用的蛋白酶。溶菌酶能选择性地分解微生物及植物细胞壁,对人体细胞不会产生降解作用,常作为绿色天然防腐剂被广泛应用于食品、医药等行业。WHO(World Health Organization)及许多国家,如奥地利、澳大利亚、比利时、丹麦、芬兰、法国、德国、意大利、日本、西班牙和英国都公 基金项目:国家自然科学基金(项目编号:30371053) 作者简介:徐敬宜(1980-),女,大连理工大学环境与生命学院在读研究生。 通讯作者:徐永平 E-mail:bam@https://www.360docs.net/doc/ac3019631.html, 收稿日期:2005-10-29

酶工程技术在食品中的应用

酶工程技术在食品中的应用 生物工程是现代科技的一项高新技术,酶工程是生物工程中最重要的组成部分。自从1906年人类发现了用于液化淀粉生产乙醇的细菌淀粉酶以来,经过几十年的发展,酶制剂已经广泛地应用于食品加工、纺织、洗涤剂、饲料、医药等行业,给这些行业带来了新的生机和活力。酶是具有生物催化能力的蛋白质,其催化反应具有高效性和专一性。国际生物化学联合会把酶分成六大类---氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类、合成酶类。本文将简要介绍几种常用于食品加工中的酶的特性及其作用机理。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。 一、酶工程技术简介 1.酶制剂的生产来源 酶制剂的生产酶的来源主要有植物、动物和微生物。最早人们多从植物、动物组织中提取,例如从动物胰脏和麦芽中提取淀粉酶、从动物胃膜,胰脏、木瓜、菠萝中提取蛋白酶。它们大多数由微生物生产,这是因为微生物种类多,几乎所有酶都能从微生物中找到,而且它的生产不受季节、气候限制;由于微生物容易培养,繁殖快,产量高,故可在短时间内廉价地大量生产。近年来,随着基因工程技术的迅速发展,又为酶产量的提高和新酶种的开发开辟了新的途径。基因工程技术的最大贡献在于,它能按照人们的意愿构建新的物种,或者赋予新的功能。虽然目前基因工程

还未形成大规模的产业,但是它作为一种改良菌种,提高产酶能力,改变酶性能的手段,已受到了人们的极大关注。例如利用改良的过氧化物酶能够在高温和酸性条件下脱甲基和烷基,生产一些食品特有的香气因子。基因工程菌生产a一淀粉酶是目前人们研究最多的课题,美国CPC国际公司的Moffet研究中心,已成功地采用基因工程菌生产了a一淀粉酶,并已获得美国食品药品管理局(FDA)的批准。此外,运用基因工程技术,提高葡萄搞异构酶,纤维素酶,糖化酶等酶活力的研究也取得了一定的成绩。 2.酶的纯化 酶的纯化属于一种后处理工艺,包括粗制工艺与精制工艺,对超酶液进行浓缩精制是生产高质量酶制剂的重要环节,目前采用的技术主要有沉淀法,吸附法和色谱法,分子筛分法,陈结法,减压浓缩法和电泳法等。 3.酶的固定化技术 酶的固定化是指用物理或化学手段,把酶束缚在一定的区域内,使其在一定的范围内起催化作用。固定化技术是酶工程的关键技术之一,自从1969年世界上第一次使用固相酶技术以来,至今已有30多年的历史。应用固定化葡萄糖异构酶生产高果糖浆是现代酶工程在工业生产中最成功、规模最大的应用。固定化酶可用于处理液态食品,价格昂贵的酶经固定化后,可以提高稳定性,降低成本,延长使用寿命,实现连续化和自动控制,减少精制过程中沉淀,过滤等操作费用。

酶在食品工业中的应用与前景

食品科学,2006(12):酶在食品工业中的应用与前景 肖玫1郭雪山2 (1南京农业大学工学院,南京210031 2南京财经大学食品科学与工程学院,南京210003) XIAO Mei 1 GUO Xue shan 2 (1. Engineering College,Nanjing Agricultural Universituy, Nanjing 210031,China ; 2. Food Science And Engineering College,Nanjing Universituy of Finance And Economics,Nanjing 210003,China) 摘要:本文介绍了酶在食品工业中的重要作用;概括了酶在肉类、鱼类加工、蛋品加工、乳品工业、果蔬加工、饮料、酿酒工业、焙烤食品和制糖中的应用;展望了酶对食品工业的发展前景。 关键词:酶;食品工业;应用;前景 The Application and the prospect of developmentof Enzy matic Techology in the Food Industry Abstracts:This paper introduces important effect of enzy in food industry,summarizes the application of enzy in the production of flesh, fish, eggs, milk, vegetable, beverage, vintage, toast food and refine suger,and gives developing prospect of enzy in food industry. Key words: Enzy;Food Industry;Application Prospect 生物工程是现代科技的一项高新技术,酶工程是生物工程中最重要的组成部分,是利用酶的特异催化功能,将一种物质转化为另一种物质的技术,即将生物体内具有特定催化作用的酶类或细胞、细胞器分离出来,在体外借助工业手段和生物反应器进行催化反应来生产某种产品的工程技术。当前酶制剂的生产,主要依靠从微生物发酵液或细胞中提取有用的酶类,如——淀粉酶、糖化酶、蛋白酶、脂酶、果胶酶、纤维素酶、葡萄糖氧化酶、葡萄糖异构酶以及用于重组DNA技术的各种工具酶等。这些酶类已被广泛用于食品加工、纺织、制革、医药、加酶洗涤剂生产和基因工程中。 生物技术在食品工业中应用的代表就是酶的应用。目前已有几十种酶成功地用于食品工业。例如,葡萄糖、饴糖、果葡糖浆的生产、蛋白质制品加工、果蔬加工、食品保鲜以及改善食品的

酶工程在食品工业中的开发应用

酶工程在食品工程中的开发应用 系部:安全工程系 学生姓名: 张开科 专业班级:2014级食品营养与检测 学号:1401050204 指导老师:刘振平

酶工程在食品工业中的开发应用 食品营养与检测 学生:张开科导师:刘振平 摘要: 酶工程在食品工业中的应用,介绍酶工程在水解纤维素、生产功能性糖类、生产环状糊精、干奶酪制品、酿酒工业中以及其他食品加工中中的应用,从而对酶工程在新世纪发的展做出了展望 酶工程技术就是利用了酶所具有的催化功能生产人类生活所需产品的技术,其中包括了酶的生产与研制,酶和其细胞或细胞器的固定化技术,酶分子的改造和修饰,以及生物传感器。酶是活细胞产生的具有高度专一性、高度受控性和高效催化功能的特殊蛋白质。酶的催化作用可在在常温、常压下进行,又有可调控性,酶工程技术在食品工业中是使用最广泛的也是众多行业中使用最早的 生物技术在食品工业中应用的典型代表可以说是酶在食品工业中的各种 应用。酶制剂在食品工艺中的应用为新时代的食品工业注入了新的活力,开辟了新的发展方向,极大地推动了新世纪食品生产工业技术的发展。80年代末,就已经研发出多种蛋白酶、脂肪酶,到目前为止,国际上食品工业酶的应用超过了50多种。主要有、蛋白酶、淀粉酶、果胶酶、糖化酶、纤维素酶等。主要应用于食品保鲜,瓜果蔬菜的加工、蛋白质制品加工、淀粉生产以及改善食品品质等。酶工程技术在食品工业中的应用不仅降低了生产成本,更提高了食品的质量,还为食品工业生产带来了巨大的经济效益和社会效益。 关键词:酶工程食品工业

目录 第一章酶工程的概述 (3) 1.1 酶工程的概念 (3) 1.2酶工程的发展史 (3) 1.3酶的主要用途 (3) 第二章酶基本概念、命名及其分类 (4) 2.1酶的生产方法 (4) 2.2酶的分类 (5) 2.3酶的命名 (6) 2.4酶的分离纯化 (6) 第三章微生物发酵产酶 (6) 3.1 产酶细胞的要求 (6) 3.2 酶发酵生产常用的微生物 (7) 3.3 提高酶产量的措施 (7) 第四章酶工程在食品工业中的应用 (7) 4.1酶工程技术在乳品加工中的应用 (7) 4.2酶工程技术在果蔬加工中的应用 (8) 4.3 鱼肉制品的加工 (8) 参考文献: (9)

酶工程在食品方面的应用

浅谈酶工程及其在食品领域中的应用 摘要:酶工程是现代生物技术的重要组成部分。酶作为生物催化剂,具有高催化效率,专一性强,反应条件温和及酶活性可以调控。本文介绍了酶工程和酶在食品领域中的应用,并对酶工程技术研究应用前景做了整体展望。 关键词:酶工程,固定化,食品 1.酶和酶工程 1.1简述酶和酶工程 酶是由生物体产生的具有催化活性的蛋白质.它能特定地促成某个化学反应而本身却不参加反应,且具有反应率高、反应条件温和、反应产物污染小、能耗低、反应容易控制等特点.这些特点比传统的化学反应具有较大的优越性.【1】酶工程技术是现代五大生物工程技术之一,是利用酶或者微生物细胞、动植物细胞、细胞器等所具有的某些功能,借助于工程学手段来提供产品或服务于社会的一门科学技术。酶工程技术的应用范围很广,主要包括酶的分离和提取、各类酶的开发和生产、固定化技术的研发、酶反应器的研制等几个方面【2】 1.2酶的来源、提取、分离和纯化 酶的来源主要有植物、动物和微生物。最早人们多从植物、动物组织中提取,例如从动物胰脏和麦芽中提取淀粉酶、从动物胃膜,胰脏、木瓜、菠萝中提取蛋白酶。酶是蛋白质,因此一切蛋白质的分离原则都应该遵行。酶作为特殊的蛋白质,最重要的原则是纯化过程中一定要保持其活性。酶的分离纯化化学方法一般很据酶的分子量、等电点、疏水性等生化性质,选择相应的沉淀、盐析、层析方法。 1.3酶的生产 微生物种类多,几乎所有酶都能从微生物中找到,而且它的生产不受季节、气候限制;由于微生物容易培养,繁殖快,产量高,故酶大多有微生物生产。近年来,随着基因工程技术的迅速发展,又为酶产量的提高和新酶种的开发开辟了新的途径。例如利用改良的过氧化物酶能够在高温和酸性条件下脱甲基和烷基,生产一些食品特有的香气因子。此外,运用基因工程技术,提高葡萄搞异构酶,纤维素酶,糖化酶等酶活力的研究也取得了一定的成绩。【4】基因工程的克隆流程包括:目的基因的获得、将目的基因克隆到合适的质粒载体;、将重组质粒转染细胞和表达产物的检测。其中,目的基因的获得主要有三条途径:以含有目的的基因的生物DNA 中获得、以DNA作为目的基因和用化学方法合成目的基因。在宿主体系的选择方面,目前在食品级酶的生产中,原核生物一般选用枯草杆菌、地衣芽抱杆菌、乳酶链球菌、嗜热链球菌等。真核生物一般以酵母和哺乳动物细胞作宿主细胞。【16】 1.4 固定化酶 1.4.1固定化酶简介 酶的固定化是用固体材料将酶束缚或限制于一定区域内,进行特有的催化反应,并可回收及重复利用的技术。酶的化学本质是蛋白质,其最大弱点是不稳定性,对酸、碱、热及有机溶液容易发生酶蛋白的变性作用,从而降低或失去活性。而且酶往往在溶液中进行反应,反应以后会残留在溶液系统中不易回收,造成最终产品生化分离提纯操作上的麻烦。加之酶反应只能分批进行,难于连续化、自动化操作。这大大地阻碍了酶工程的发展应用为克服上述缺点,要将游离酶固定化后进行应用。固定化酶技术是把从生物体内提取出来的酶,用人工方法固定在载体上。由于固定化酶的运动被化学或物理的方法限制了,能将其从反应介质中回收,所以它原则上能在批量操作或连续操作中重复使用酶。固定化酶技术是酶工程的核心,它使酶工程提高到一个新水平。【6】 1. 4.2吸附法 吸附法是通过非特异性物理吸附法或生物物质的特异吸附作用将酶吸附在炭、有机聚合物、玻璃、无机盐、金属氧化物或硅胶等材料上。该方法又分为物理吸附法和离子吸附法。

第二节-食品加工中重要的酶---食品伙伴网

第二节食品加工中重要的酶 一、淀粉酶 凡催化淀粉水解的酶,称为淀粉酶。淀粉酶是糖苷水解酶中最重要的一类酶。因水解淀粉的方式不同,可将淀粉酶分为四类:α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和脱支酶。 (一)α-淀粉酶 α-淀粉酶广泛存在于动物、植物和微生物中。在发芽的种子、人的唾液、动物的胰脏内含量甚多。现在工业上已经能利用枯草杆菌、米曲霉、黑曲霉等微生物制备高纯度的α-淀粉酶。天然的α-淀粉酶分子中都含有一个结合得很牢固的Ca2+,Ca2+起着维持酶蛋白最适宜构象的作用,从而使酶具有高的稳定性和最大的活力。α-淀粉酶是一种内切酶,以随机方式在淀粉分子内部水解α-1,4糖苷键,但不能水解α-1,6糖苷键。在作用于淀粉时有两种情况:第一种情况是水解直链淀粉,首先将直链淀粉随机迅速降解成低聚糖,然后把低聚糖分解成终产物麦芽糖和葡萄糖。第二种情况是水解支链淀粉,作用于这类淀粉时终产物是葡萄糖、麦芽糖和一系列含有α-1,6糖苷键的极限糊精或异麦芽糖。由于α-淀粉酶能快速地降低淀粉溶液的黏度,使其流动性加强,故又称为液化酶。 不同来源的α-淀粉酶有不同的最适温度和最适pH。最适温度一般在55~70 ℃,但也有少数细菌α-淀粉酶最适温度很高,达80 ℃以上。最适pH一般在4.5~7.0之间,细菌中α-淀粉酶的最适pH略低。 (二)β-淀粉酶 β-淀粉酶主要存在于高等植物的种子中,大麦芽内尤为丰富。少数细菌和霉菌中也含有此种酶,但哺乳动物中还尚未发现。 β-淀粉酶是一种外切酶,它只能水解淀粉分子中的α-1,4糖苷键,不能水解α-1,6糖苷键。β-淀粉酶在催化淀粉水解时,是从淀粉分子的非还原性末端开始,依次切下一个个麦芽糖单位,并将切下的α-麦芽糖转变成β-麦芽糖。β-淀粉酶在催化支链淀粉水解时,因为它不能断裂α-1,6糖苷键,也不能绕过支点继续作用于α-1,4糖苷键,因此,β-淀粉酶分解淀粉是不完全的。β-淀粉酶作用的终产物是β-麦芽糖和分解不完全的极限糊精。 β-淀粉酶的热稳定性普遍低于α-淀粉酶,但比较耐酸。 (三)葡萄糖淀粉酶 葡萄糖淀粉酶主要由微生物的根霉、曲霉等产生。最适pH为4~5,最适温度在50~60 ℃范围。 葡萄糖淀粉酶是一种外切酶,它不仅能水解淀粉分子的α-1,4糖苷键,而且能水解α-1,6糖苷键和α-1,3糖苷键,但对后两种键的水解速度较慢。葡萄糖淀粉酶水解淀粉时,是从非还原性末端开始逐次切下一个个葡萄糖单位,当作用于淀粉支点时,速度减慢,但可切割支点。因此,葡萄糖淀粉酶作用于直链淀粉或支链淀粉时,终产物均是葡萄糖。工业上用葡萄糖淀粉酶来生产葡萄糖。所以也称此酶为糖化酶。 (四)脱支酶 脱支酶在许多动植物和微生物中都有分布,是水解淀粉和糖原分子中α-1,6

酶工程的发展状况及其应用前景

酶工程的发展状况及其应用前景 摘要:酶在现代生物生产中扮演着重要角色,酶作为一种生物催化剂,因其催化作用具有高度专一性、催化条件温和、无污染等特点,以及酶工程不断的技术性突破,使得酶在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。 关键词:酶工程生物催化剂酶的固定 正文: 随着酶生产的不断发展,酶的应用越来越广泛。现在,酶工程已在医药、食品工业、农业、饲料、环保、能源、科研等领域广泛应用。成为基因工程、细胞工程、蛋白质工程等新技术领域的科学研究和技术开发中不可取代的工具。 一、酶工程的发展及应用现状 (一)国内外酶制剂的发展现状 BCC最新研究报告显示,未来4年全球工业酶制剂市场价值将以%的复合年增长率继续增长,由2011年的39亿美元增加至2016年的约61亿美元。该报告将工业酶市场细分成3个部分:生物酶、食品和饮料酶以及其他酶制剂。2011年生物酶的市场价值达12亿美元,预计还将以%的复合年增长率继续增长,2016年达17亿美元。2011年食品和饮料活性酶的市场价值接近13亿美元,未来4年还将以%的年均复合增长率增长,预计2016年达21亿美元。2011年其他酶制剂的市场价值为15亿美元,预计还将以%的复合年增长率增长,到2016年市场价值将达到22亿美元①。 我国酶制剂工业面经过近几十年的发展,初步具有一定的规模,取得了很大的进步。但是,国外酶制剂公司仍然处于绝对的领先地位,特别是一些比较出色的公司,例如,诺和诺德公司(Novo Nordisk)、丹尼斯克公司(Danisco)等②。 (二)酶工程的应用现状 一、酶工程技术在医药工业中的应用 1、酶的固定化技术 酶的固定化(enzyme immobilization)是指采用有机或无机固体材料作为载体(carrierorsupport),将酶包埋起来或束缚、限制于载体的表面和微孔中,使其仍具有催化活性,并可回收及重复使用的酶化学方法与技术。不使用固体材料作为载体,通过酶分子之间的相互交联形成聚集体,也可将酶固定化,称为无载体酶固定化。由于酶的蛋白质属性,进人人体后产生免疫反应,因稀释效应,而无法集中于靶器官组织,常不能保持最适合的治疗浓度,而固定化酶则很好的克服了游离酶的这些缺点,应用于治疗镁缺乏症、代谢异常症及制造人工内脏方面,如固定化L-天冬酰胺酶用于治疗白血病。葡萄糖氧化酶被固定化在纳米微带金电极上可用于活体检测的微生物传感器③。 固定化酶技术可用于治疗一些代谢障碍疾病。已知人类关于新陈代谢的疾病已过120余种,很多病因归结为人体缺乏某种酶的活性,一种可能的治疗方法就是通过某种方式给病人提供他所缺乏的酶。其提供的方式主要有:①将固定化酶用于体内作为治疗药物;②将固定化酶组装成体外生物反应器,通过体外循环作为临床治疗剂。将固定化酶用于临床诊断的例子很多,如各种酶测试盒层出不穷,采用固定化酶柱反应器的FIA(流动注射法)可用于临床诊断检测尿酸、葡萄糖、氨、尿素、胆甾醇、谷氨酸、乳酸、无机磷等。 2、酶催化技术 主要介绍非水相介质中的酶催化,传统的酶催化反应主要在水相中进行,但自1987年Kilibanov等。用脂肪酶粉或固定化酶在几乎无水的有机溶剂中成功地催化合成了肽以及手性的醇、脂和酰胺以来,对酶在非水相介质的催化反应技术的开发及研究报道迅速增加,特别在手性药物的不对称合成及手性药物拆分的生物技术开发中得到了很多应用。目前非水相中的酶催化技术已衍生出以下几类体系:①水与有机溶剂的互溶均相体系;②水与有机溶剂形

多酚氧化酶在食品中的应用

多酚氧化酶在食品中的研究进展 摘要:多酚氧化酶(PPO)存在于许多种类的食品中,是引起食物褐变的主要因素,酶促褐变严重影响了食品的感官品质,使得食品的保质期缩短和价值显著降低,不少新鲜食品的销售市场因此受到限制[1]。本文介绍了多酚氧化酶的酶学性质以及相应的抑制方法,并对其应用做出论述。 关键词:多酚氧化酶;性质;抑制方法;应用 多酚氧化酶(PPO)是自然界中分布十分广泛的一类末端氧化酶,属于铜金属酶类,其化学性质稳定,是植物叶子、果实等发生褐变的主要作用酶类[2]。此外,还会引起食品的褐变,损害食品的感官风味质量[3-4]。PPO普遍存在于植物、昆虫和真菌之中,甚至在腐烂的植物残渣上都还可以检测到它的存在。因此该酶与果蔬的加工品质密切相关,科学家们很早就开始对它进行深入彻底的研究[5-6]。 农产品的酶促褐变与多酚氧化酶活性和含量密切相关。这方面研究很多,酶促褐变不仅影响产品外观、风味、营养和加工性能,而且大大降低耐贮性,尤其对肉色较浅且容易碰伤的水果和蔬菜影响更为严重,产生的经济损失更大[7-9]。通常PPO 与底物被区域化分开,PPO 在质体中以潜伏状态存在,而PPO 的底物存在于液泡中。只有当植物体内发生生理紊乱或组织受损时,PPO 与底物的亚细胞区域化才被打破,PPO 底物被激活产生黑色或褐色的沉积物,这是果蔬等农产品酶促褐变的主要原因[10]。 1、多酚氧化酶的酶学性质 与多酚氧化酶酶学性质的主要研究内容有:酶的分离和纯化、测定酶促反应的速度、了解影响酶促反应的因素等等[11]。 在分离和纯化时,一般是进行纯化,再将纯度高的PPO酶液进行酶学的性质研究[12-13]。PPO活性检测则一般通过测定产物生长速度(初速度)来测定,通过采用分光光度法,即在一定波长下测定从醌生成的色素的吸光度,再根据吸光度来定义酶的活性大小[14]。目前,已知的影响PPO酶促反应速度的因素主要有:温度、同一底物不同浓度、不同的底物、pH值、激活剂、抑制剂等[15]。

酶在食品中的应用

酶在食品中的应用 人类对酶的应用可以追溯到几千年前。在对酶的不断认识过程中,我们给酶下了一个科学的定义:酶是由生物活细胞产生的、具有高效和专一催化功能的生物大分子。食品酶学是酶学的基本理论在食品科学和技术领域中应用的科学,主要研究食品原料、食品产品中酶的性质、结构、作用规律以及食品储藏、加工和食用品质的影响,食品级酶的生产及其在食品储藏、加工环节的应用理论与技术。 食品用酶,从早期的酿造、发酵食品开始,至今已广泛应用到各种食品上。随着生物科技进展,不断研究、开发出新的酶制剂,已成为当今新的食品原料开发、品质改良、工艺改造的重要环节。在食品工业中广泛采用酶来改善食品的品质以及制造工艺,酶作为一类食品添加剂,其品种不断增多。它在食品领域中的应用方兴未艾。与以前的化学催化剂相比,酶反应显得特别温和,这对避免食品营养的损失是很有利的。 酶制剂在食品行业中的应用主要体现在以下几个方面: 1. 有利于食品的保藏,防止食品腐败变质。例如:目前与甘氨酸配合使用的溶菌酶制剂,应用于面食、水产、熟食及冰淇淋等食品的防腐。如溶菌酶用于 pH6.0,7.5的饮料和果汁的防腐。乳制品保鲜新鲜牛乳中含有13毫克/100毫升的溶菌酶,人乳中含量为40毫克/毫升。在鲜乳或奶粉中加入一定量溶菌酶,不但可起到防腐作用,而且有强化作用,增进婴儿健康。 2. 改善食品色香味形态和质地。如,花青素酶用于葡萄酒生产,起到脱色作用;复合蛋白酶嫩化肌肉,使肉食品鲜嫩可口;在肉类香精生产中常用的风味酶就是一种复合酶,使最终反应达到风味化要求。 3. 保持或提高食品的营养价值。通过多种蛋白酶的作用生产多功能肽及各种氨基酸已经是营养保健行业常见的加工方法。

第十章 酶在食品分析中的应用

第10章酶在食品分析中的应用 主要内容: 1 酶法分析的特点及应用类型 2 酶联免疫测定(ELISA) 3 聚合酶链式反应(PCR) 4 酶生物传感器 5 酶抑制率法 酶法分析的发展 ?酶在定量分析中的应用可以追溯到19世纪中期。当时,曾采用麦芽提取物作为过氧化物酶源,以愈创木酚作为共底物或指示剂测定过氧化氢。 ?然而,酶法分析真正的发展应归于它在临床实验室中的广泛应用。 酶法分析的发展 ?如早在1914年临床上就开始采用脲酶测定尿中的尿素,但是在临床实验室中酶分析的真正突破要推迟到1958年,当时转氨酶分析发展成为诊断肝病和心脏病的一个有效手段。 ?到了20世纪50年代前已有60种物质能借助于酶法分析。近年来,酶法分析发展迅速,广泛应用于临床检验、食品、环境等生物及其它样品的检测。 1. 酶法分析的特点及应用类型 ?酶的特性 酶在食品分析中的应用类型 ?1. 去除样品中的杂质。如测定果糖、多糖等。 ?2. 催化待测物生成新的产物,而这种产物更容易被定量分析。如:淀粉的测定。 ?3. 测定食品中酶的活性作为食品的指标,如过氧化物酶的测定。 ?4. 利用酶催化反应所产生的一些信息。如酶联免疫法、酶电极法等。 2 酶联免疫测定(ELISA) ?酶联免疫测定(enzyme-linked immunosorbent assay ,ELISA)是继放射免疫测定技术之后发展起来的一项新的免疫学技术。 ?ELISA自上世纪70年代出现开始,就因其高度的准确性、特异性、适用范围宽、检测速度快以及费用低等优点,在临床和生物疾病诊断与控制等领域中倍受重视,成为检验中最为广泛应用的方法之一。 2.1 ELISA的基本原理 ?(1)利用抗原与抗体的特异反应将待测物与酶连接(或建立关联)。 ?(2)通过酶与底物产生颜色反应,用于定量测定。 ?它将酶促反应的高效率和免疫反应的高度专一性有机地结合起来,可对生物体内各种微量有机物的含量进行测定。测定的对象可以是抗体也可以是抗原。 ELISA试剂盒的组成 ?完整的ELISA试剂盒包含以下各组分: (1)包被抗原或抗体的固相载体(免疫吸附剂); (2)酶标记的抗原或抗体(标记物); (3)酶作用的底物(显色剂); (4)阴性和阳性对照品(定性测定),参考标准品和控制血清(定量测定); (5)结合物及标本的稀释液; (6)洗涤液;(含吐温20磷酸盐缓冲液) (7)酶反应终止液。(常用硫酸) 酶标仪和酶标板

酶在食品添加剂生产方面的应用

脂肪酶在食品工业中的应用 摘要:本文综述了脂肪酶在食品工业中的应用。脂肪酶在焙烤食品中可作为绿色生物改良剂;在油脂工业上可促油脂水解;在乳品工业中可用于乳酯水解;在食品添加剂中可增香改质、提高食品档次。并展望了今后的研究方向及应用前景。 关键词:脂肪酶;食品工业;油脂;乳品;添加剂;应用前景 脂肪酶广泛存在于动植物和微生物中,它可将脂肪分解成甘油和脂肪酸,是一类特殊的酯键水解酶。脂肪酶有多功能催化作用的开发,如乳制品的增香、鱼片脱脂、食用油加工、洗涤剂添加酶、皮革毛皮绢纺脱脂、制药、化工合成、污水处理、工具酶等多种用途。而且,在有机相中脂肪酶还能催化酯合成、酯交换反应、酯聚合反应、肽合成以及酰胺合成等,是生产医药、化工、食品和化妆品的重要原料。本文主要综述了脂肪酶在食品工业领域中的应用。 一、脂肪酶在食品工业中的应用 脂肪酶被广泛的应用于食品加工及品质的改良中。如用于乳制品及黄油的增香。利用位置水解特性对油脂之中的酯键催化,从而提高食用油的营养价值。在鱼类的加工中,用脂肪酶分解鱼肉中的脂类,利用脂肪酶催化酯交换反应将棕榈油转化成类可可脂。在生面团中加入脂肪酶使三甘酯部分水解而增加单甘酯的含量可延缓变质,单甘酯和双甘酯的形式使蛋白气泡性质得到改善。 1脂肪酶在焙烤食品中的应用 随着焙烤食品工业的快速发展,消费者的食品安全和健康意识日益提高,对面粉及焙烤食品提出了愈来愈高的要求。脂肪酶在焙烤食品工业中的应用,主要是体现在对面包粉面团的强筋作用及改善面包品质方面。同时,能适当降低面团的延伸性。特别是用于无脂肪、低脂肪或含油的面包产品中效果最理想,能降低面团粘稠度,改善面团的操作性能,增强面团筋力和面团的弹韧性,提高面团发酵耐力和醒发耐力,以及面包入炉急胀性,增大产品体积。此外,还可改善面包内部组织结构,使其更加均匀细腻,包芯色泽更加洁白,提高了面包组织的柔软度,对面包制品有很好的改良效果。 2 脂肪酶在食用油脂工业上的应用 2.1 酶促油脂水解 将油脂与水一起在催化剂作用下生成脂肪酸和甘油的反应叫油脂水解反应,它在脂肪酸与肥皂工业上广泛应用。传统的油脂水解反应使用无机酸、碱及金属氧化物等化学物质作为催化剂,需要高温、中高压、长时间及设备耐腐蚀的条件,其成本高、能耗大、操作安全性差,而且产物脂肪酸颜色深或发生热聚合,不适用于热敏性油脂。而以生物酶作催化剂的酶促水解则正好克服上述缺点,而且可以具有选择性,因此有利于减少副反应、提高目标产品脂肪酸的质量和收率。 3 脂肪酶在乳品工业中的应用 应用于乳酯水解,包括奶酪和奶粉风味的增强、奶酪的熟化、代用奶制品的生产、奶油的酯解改性等。脂肪酶作用于乳酯并产生脂肪酸,能赋予奶制品独特的风味。传统奶酪制品加工所用的脂肪酶大都来自动物组织,如猪、牛的胰腺和年幼反刍动物的消化道组织。不同来源的脂肪酶会产生不同风味特征。脂肪酶还可使用在羊奶仿制牛奶的制

食品酶制剂在食品工业中的应用

食品酶制剂在食品工业中的应用贺州学院 2009级食品科学与工程专业(食品质量与安全方向) 摘要:酶制剂是一种生态型高效催化剂,具有高效、安全、生态和环保等特点,能够有效带动相关领域技术水平的提高。本文从酶制剂在食品加工、保鲜、改良、农副产品附加值的提高、食品检测、脱毒等方面的应用谈其在食品工业中的应用及发展前景。 关键词:食品酶制剂;食品工业;应用 0.引言 酶是一类具有专一性生物催化能力的蛋白质,是一种生物催化剂。一切生物的全部新陈代谢都是在各种酶的作用下进行的。酶制剂是由动物或植物的可食或非可食部分直接提取,或由传统或通过基因修饰的微生物(包括但不限于细菌、放线菌、真菌菌种)发酵、提取制得,用于食品加工,具有特殊催化功能的生物制品,其中专用于食品加工的酶制剂称为食品酶制剂。我国列入食品添加剂使用卫生标准GB2760-2007的酶制剂品种已有30多种,而日本食品卫生法(新法)中,作为食品添加剂的酶已达76种,酶制剂在食品工业的许多领域得到了广泛的应用。 酶制剂是一类比较特殊的食品添加剂,主要成分是具有各种催化活性的酶蛋白。酶制剂是食品添加剂中发展迅速的行业,作为一种食品添加剂,与传统的化学法,如酸法、碱法加工食品相比,酶技术具有显著的优越性,一是酶本身无毒、无味、无嗅,不会影响食品的安全性和食用价值;二是酶具有高度催化性,低浓度的酶也能使反应快速进行;三是酶作用时所要求的温度、pH值等条件温和,不会影响食品质量;四是酶有严格的专一性,在成分复杂的原料中可避免引起不必要的化学变化;五是酶反应终点易控制必要时通过简单的加热方法就能使酶制剂失活,终止其反应。因此,酶工程技术在食品的各个领域得到了广泛应用,如在食品制造、品质改良、提高产品附加值等方面。 1.酶制剂在食品加工上的应用 利用凝乳酶生产奶酪,淀粉酶可液化、糖化淀粉,促进酵母菌的生长,进而生产啤酒、酒精,如果利用棕榈油与硬脂酸进行酶交酯化,就可制得类似可可脂的产品—类可可脂或代可可脂。通过不同的淀粉酶分解淀粉,可以生产出麦芽糊精、麦芽糖浆、麦芽糖和果糖等甜味剂,分别用于糖果、冰淇淋、饮料等各类食品的加工。用橙皮苷酶和橙皮苷反应可以生产橙皮素—F—葡萄糖苷二氢查耳酮,其是对人体安全的甜味剂,甜度为蔗糖的70~100倍[1]。酶制剂还可以用于异麦芽低聚糖、海藻糖、帕拉金糖、低聚果糖、低聚木糖、大豆低聚糖等功能性低聚糖的制造。 酶制剂在起酥油和人造奶油的生产方面也有很好的应用。以大豆油

果胶酶及其在食品工业中应用

果胶酶及其在食品工业中应用 10化本2班禤金萍 2010364223 摘要:果蔬是我们日常生活中必不可少的食品之一,随着生活水平的提高和消费结构的转变,饮料等果蔬加工产品更加受到大众的青睐。而在加工过程离不开酶的参与,果胶酶在工业生产领域中是一种重要的新型酶类,在果蔬饮料中的应用非常广泛,可用于果汁的提取、澄清、提高出汁率等方面。 关键词:果胶酶;应用;展望 1.果胶酶结构和来源 果胶分子是由不同酯化度的半乳糖醛酸以α-1,4糖苷键聚合而成的多糖链,常带有鼠李糖、阿拉伯糖、半乳糖、木糖、海藻糖、芹菜糖等组成的侧链,游离的羧基部分或全部与钙、钾、钠离子,特别是与硼化合物结合在一起[1]。果胶分子的结构因植物的种类、组织部位、生长条件等的不同而不同,其大致的结构简图如图1所示,总体可分为光滑区(smooth region)和须状区(hairy region)两部分,主要由HGA、RG-I和RG-II三个结构区域构成,其中RG-II常以二聚体的形式存在。果胶酶(Pectinase)是世界四大酶制剂之一,是分解果胶质酶类的总称,主要包括原果胶酶、果胶酯酶、多聚半乳糖醛酸酶和果胶裂解酶四大类。[2]果胶酶主要由黑曲霉产生,按作用方式的不同分为两大类,脂酶和解聚酶,后者包括水解酶和裂解酶。 2.果胶酶的应用 果胶酶主要应用于食品工业特别是果汁果酒的加工业,近年来也不断开拓了新的用途。我国学者对果胶酶的应用开展了较广泛而深入的研究。

2.1果蔬汁提取 目前果汁的提取方法主要是加压榨出和过滤,果汁加工时首先将植物细胞壁破坏。大多数植物细胞壁主要由纤维素、半纤维素和果胶物质等组成,细胞壁的结构较紧密,单纯依靠机械或化学方法难以将其充分破碎。另外,果胶随成熟度的增加,酯化程度较高,也是影响出汁率的主要因素之一。用果胶酶处理可以破坏果实细胞的网状结构,提高果实的破碎程度,有效降低其黏度,改善压榨性能,提高出汁率和可溶性固形物含量,从而就能在压榨时达到提高出汁效率并缩短压榨时间的目的,同时把大分子的果胶物质降解后,有利于后续的澄清、过滤和浓缩工序。[3]例如在苹果汁生产中,苹果要先经机械压榨,然后离心获得果汁,但果汁中仍然含有较多的不溶性果胶而呈浑浊状。直接将果胶酶加到苹果汁中,处理后经加热杀菌、灭酶、过滤得到澄清的果汁。 2.2果汁澄清 果胶酶可以降低果汁粘度,使果汁易于被处理而透明澄清。澄清机理的实质包括果胶的酶促水解和非酶的静电絮凝两部分。果汁中有很多物质如纤维素、蛋白质、淀粉、果胶物质等影响澄清,且果胶物质是造成果汁浑浊的主要原因。加入果胶酶澄清处理后,粘性迅速下降,浑浊颗粒迅速凝聚,使果汁迅速澄清、易于过滤。果胶酶能随机水解果胶酸和其他聚半乳糖醛酸分子内部的糖苷键,生成分子质量较小的寡聚半乳糖荃酸,使其粘度迅速下降,容易榨汁过滤,提高果浆出汁率,改善果汁澄清效果。[4] 果胶裂解酶(PL)对苹果汁有较好的澄清作用,但对葡萄汁效果不明显。对于柑橘汁,因要求雾样混浊,应当使用不含果胶酯酶(PE)的聚半乳糖醛酸内切酶(endo-PG)进行处理。由于果胶裂解酶可避免甲醇的产生,也可避免部分脱酯的果胶同钙离子形成沉淀,还可避免构成各种水果芳香性成分的酯类物质的损失。所以有研究表明果胶酶制剂若用于果蔬汁和果酒加工,最好含有较多量果胶裂解酶(PL)。[5] 2.3改善果蔬饮料的营养成分 利用果胶酶生产果蔬汁不仅提高了出汁率,而且保留了果蔬汁中的营养成分。首先果蔬汁的可溶性固形物含量明显提高,而这些可溶性固形物由可溶性蛋白质和多糖类物质等营养成分组成,果蔬汁中的胡萝卜素的保存率也明显提高。酶处理后的果汁的葡萄糖、山梨糖和果糖含量显著提高,蔗糖含量略有下降,总糖含量上升。甜玉米、胡萝卜的试验有相似的结果。此外,由于果胶的脱酯化和半乳糖醛酸的大量生成, 造成果汁的可滴定酸度上升,pH下降[6]。芳香物质含量也有明显提高,经果胶酶处理后的葡萄汁,各种酯类、萜类、醇类和挥发性酚类含量提高,葡萄汁的风味更佳。由于细胞壁的崩溃,类胡萝卜素、花色苷等大量色素溶出,大大提高了果蔬汁的外观品质。K、Na、Ca、Zn 等矿物质元素含量也有较大提高。[7] 3.其他方面的应用 在咖啡发酵过程中利用产碱性果胶酶微生物除去咖啡豆的黏表皮。有时添加碱性果胶酶来去除含大量果胶质的果肉状表层。纤维素酶和半纤维素酶的协同作用可促进咖啡豆黏表皮的降解。碱性果胶酶也可用于茶叶加工。碱性果胶酶处理可促进茶叶发酵,不过要仔细调节用酶剂量以免破坏茶叶。碱性果胶酶还可通过破坏茶叶中的果胶物质来改善速溶茶粉在冲泡过程中形成泡沫的性能。 4.展望 果胶酶是应用于果蔬汁生产中且主要的酶类,它可以较大幅度地提高果蔬品

相关文档
最新文档