(静电起电原理)静电范德格拉夫起电机

(静电起电原理)静电范德格拉夫起电机
(静电起电原理)静电范德格拉夫起电机

范德格拉夫起电机工作原理

我们大多数人都见过这个能让人们的头发直立的、称作范德格拉夫起电机的设备。该设备看起来就像一个安装在底座上的大铝球,您可以从下图中看到它的效果。

Photo courtesy

-->约翰·兹维萨和他的儿子近距离体验范德格拉夫起电机!

您是否曾经想知道这个设备到底是什么、它是如何工作的、发明它的目的是什么以及您自己如何制作一台这样的设备?当然,它不是为了让人们的头发直立而发明的……或者,您是否曾经在干燥的冬日里拖着赤足走过地毯,然后在碰到某个金属物体时受到从未有过的电击?您是否曾想了解静电和静电贴纸的奥秘?

如果您曾思考过上述任一问题,那么本文将为您提供完美的答案。在本篇博闻网文章中,我们将对范德格拉夫起电机和静电进行一般性的讨论。您甚至将学会如何制作自己的

范德格拉夫起电机!

要了解范德格拉夫起电机以及它的工作方式,您需要了解静电。我们几乎全都熟悉静电,因为我们能在冬天看到并感觉到它。在干燥的冬日,静电能够在我们的身体中累积,并且使电火花从我们的身体跳到金属物体或其他人的身体上。当电火花跳跃时,我们能够

看到、感觉到它,并听到电火花的声音。

词根英语中“electron”(电子)一词来自于希腊语中意思为amber(琥珀)的单词!

在科学课上,您还可能用静电做过一些实验。例如,如果您用丝绸摩擦玻璃棒或用毛线摩擦琥珀,那么玻璃和琥珀将产生静电荷,能够吸引小的纸片或塑料。

要了解在身体或玻璃棒产生静电荷时发生了什么事情,您需要了解组成我们日常所见之万物的原子。所有物质都由原子组成,原子本身由带电粒子组成。原子具有由中子和质子组成的原子核。它们还具有由电子组成的“外壳”。通常,物质呈电中性,这意味着电子和质子的数量相等。如果原子具有的电子数超过质子数,则原子带负电。如果它的质子

数超过电子数,则带正电。

一些原子保持电子的能力比其他原子强。物质保持电子能力的强弱决定了它在摩擦电序中的位置。如果一种材料在与其他材料接触时更容易放弃电子,则它在摩擦电序中具有更高的正电性。如果一种材料在与其他材料接触时更容易“捕获”电子,则它在摩擦电序

中具有更高的负电性。

下表显示了您可以在家中找到的许多材料的摩擦电序。摩擦电序中的正电性材料位于

顶部,负电性材料位于底部:

人手(尽管通常过于潮湿)极强正电性

兔皮

玻璃

人的头发

尼龙

毛线

毛皮

丝绸

棉花

钢电中性

木头

琥珀

硬橡胶

镍、紫铜

黄铜、银

金、铂

聚酯

苯乙烯(泡沫聚苯乙烯)

保鲜膜

聚安酯

聚乙烯(例如透明胶带)

聚丙稀

聚氯乙烯(PVC)

特氟纶极强负电性

(上面的列表摘自Nature\'s Electricity,由查尔斯·亚当斯编写。)

摩擦电序中两种物质的相对位置表明它们在相互接触时所具有的行为。丝绸摩擦玻璃将导致电荷分离,因为它们在表中相差多个位置。同样的情况也发生在琥珀和毛线身上。

在表中相隔越远,效果就越明显。

当两种不导电的材料互相接触时,这两种材料之间将形成化学键,也称作粘合力。根据材料的摩擦电属性的不同,一种材料可能“捕获”另一种材料的一些电子。如果两种材料现在彼此分离,则会发生电荷不平衡现象。捕获电子的材料现在带负电,而失去电子的材料现在带正电。这一电荷不平衡现象是“静电”产生的来源。这里的“静”一词带有欺骗性,因为它意味着“不运动”,而实际上电荷不平衡的流动很常见并且很必要。您在触摸门把手时感觉到的电火花正是这类流动的一个例子。

您可能感到好奇,为什么不是每次从桌子上拿纸时都能看到电火花。电荷的数量取决于涉及的材料以及连接材料的表面区域的大小。用放大设备观察时,许多表面都看起来非常粗糙或凹凸不平。如果弄平这些表面以便使更多表面发生接触,则电荷(电压)无疑将

增加。

静电学中的另一个重要因素是湿度。如果天气非常潮湿,则电荷不平衡不会持续一段有效的时间。请记住,湿度是衡量空气中湿气的量度标准。如果湿度高,则湿气会覆盖在材料表面,为电子流动提供一条低阻抗的路径。此路径使电荷可以“重新组合”,从而中和了电荷不平衡。同样,如果天气非常干燥,则电荷可能累积至高达数万伏的极高电平!

不是源于摩擦静电电荷不是由摩擦引起。许多人对此存在误解。将气球在您的头上进行摩擦或者在地毯上拖着脚走都会累积电荷。静电和摩擦之间的联系在于它们都是粘合力的产物。将材料放在一起摩擦可以增加静电电荷,因为有更多表面区域发生接触,但摩擦

本身与电荷没有任何关系。

想象一下您在干燥的冬日受到的电击。根据您的鞋底类型和地板材料的不同,您可以累积足够的电压,使电荷跳到门把手上,从而使您保持电中性。您可能回忆起过去的“静电贴纸”商品。干衣机中的衣服会累积静电电荷。干衣机提供了旋转的低湿气环境,从而使衣服相互之间不断接触和分离。电荷很容易累积至足够高的水平,从而导致材料吸引和“附到”带相反电荷的表面(这里是指您的身体或其他衣服)。您可以用来消除静电的一

种方法是用一些水稍微湿润一下衣服。同样,水使电荷可以泄漏,从而使材料保持电中性。

应该注意的是,如果空气中存在尘埃,那么空气将更容易在电场中分离。这意味着尘埃使空气更容易电离。电离后的空气实际上是被剥夺了电子的空气。发生这种情况后,空气就变为了等离子体——一种非常好的导体。一般来说,向空气中加入杂质可提高其导电性。空气中有杂质和空气中有湿气的效果是一样的。两种情况下都不容易产生静电。如果空气中存在这些杂质,那么这通常意味着它们也存在于您所使用的材料上。空气状况是材料状况的良好标尺——材料通常像空气一样分解,只是更快一些。

既然您了解了有关静电的一些知识,那么就很容易理解范德格拉夫起电机的用途了。

范德格拉夫起电机是一种用来产生静电并使其可用于实验的设备。

静电的起电机原理及其防治的方法

静电的起电机道理及其防治的方法 不知道诸位能否有过这样的阅历,当你用手去触摸一个金属物体的时辰,手感到猛的麻了一下。对,是静电。试想一下,假如此刻您触摸的不是其余的东西,而是您的CPU,内存能够是硬盘甚么的,呵呵,怎么样,不止是手麻了一下吧? 静电在咱们的保存中大约说是无处不在。着实早在公元前600年,希腊的Thales就已经发明并记载了静电,只无非在那个时辰人们称之为“鬼火”罢了。跟着光阴的推移,此刻,人们进入了一个数字化的全国里,各式各式的电子配备充斥在各个范围,尤其是在PC高度遍及的神童。咱们知道,共计机搜罗有大量的微功耗、低电平、高集成度、高电磁活络度的电路和元器件,以是,共计机是最简单受到静电损害的电子配备之一。 在探求静电对共计机的损害畴前,笔者以为有重要对静电的起电机理做一下简单的陈诉。物体的静电带电景象也叫静电起电,按照伏特——赫姆霍兹假说,大约把静电起电机理分为打仗、连系、抵触三个进程。而咱们平日保存中所碰见的静电景象也绝大荣华是固体和固体的打仗——连系起电。它的起电现实主假如指固体和固体之间的打仗——连系起电机理,即是指两种差别的固体亲密打仗、连系明日,将带上标记类似、电量相等的电荷,撤消固体和固体打仗——连系起电外,还有剥离起电、团结起电、电解起电等等。 共计机在使用进程中能在元器件外表积聚大量的静电电荷。最榜样的即是浮现器在使用事后用手去触摸浮现屏幕就会发生猛烈的静电放电景象,这即是浮现器屏幕上的电荷和咱们人体上所带异号电荷发生中和时所发作的静电放电景象,至于静电放电的定义,这里就不再论述,乘兴致的读者大约自行查阅质料。因为静电放电进程是电位、电流随机瞬时变动的电磁辐射,以是,不论是放电能量较小的电晕放电,仍是放电能量较大的火款式放电,都大约发作电磁辐射。而咱们在后头已经提到共计机自己搜罗有大量的高电磁活络度的电路以及元器件,以是,在使用进程中假如碰到静电放电景象(ESP),泛起的终于是不成猜想的。静电放电景象对共计机的损害可分为硬性损伤和软性损伤,硬性损伤即是指因为ESP过于强烈而导致的如显卡、CPU、内存等电磁活络度很高的元器件被击穿,从而无奈正常任务以至彻底报废。静电放电所组成的硬性损伤的破欠安程度主要取决于静电放电的能量及元器件的静电减速度,也和损害源和减速器件之间的能量耦合方法,彼此地位无关。软性损伤则是指因为静电放电时发作的电磁干扰(其电磁脉冲频谱可达Mhz~Ghz)组成的存储器内部存储过错、比特数位移位,从而发作如死机、非法操作、文件丢失、硬盘欠安道发作等隐性过错,绝对硬性损伤,它更难被发明。 如何解除静电损害是财富范围十分重要的一个课题。而为了咱们的爱机,咱们也要奋力的解除机器上的静电。起首,要解除咱们自己的静电。静电具有电压高、电场强的特性,在枯燥的低温状况下对地绝缘良好的人在脱衣服时,人体就带有数万伏的电压。有人曾经做过执行,当一个人私家在覆盖有PVC薄膜的椅子顶面疾速地坐下站立明日,他身体上所带静电电压为18Kv。这已经远远的凌驾了共计机芯片所能遭受的抗静电放电的耐压值。分外是当人体对地泄露电阻越大(如穿绝缘鞋底或地面绝缘)人体静电越简单积聚,组成较高的人体静电电位,这时人体的静电放电和静电损害就愈易发生。解除人体静电很简单,只要用手摸一下大地或和大地相连的导体就能监禁掉身体上的静电。而共计机上的静电如何迷失?静电迷失的末端毕竟是OK正负电荷的中和,OK静电迷失的路径主要有两条:一是经由空气,使物体上的电荷和大气中的异号电荷中和,另外一条即是经由带电体自己和大地相连的物体的传导感化使电荷向大地泄露,和大地中的异号电荷发生中和,又称静电接地。说到这里各人可要留心了,尤其是保具备城市里居住在楼房上的朋友,请看:根据我国无关标准(JXB110-91,GJB2527-95)和文献对静电接地做了严厉的定义:所谓的静电接地是指物体经由导电,防静电质料或其余制品和大地在电气上牢靠连接,确保静电导体和大地的电位相近。好了,看看你自己所接的地线吧(没接的朋友就不用看了)合适国标吗?着实在静电学上,即是对静电接地的方法及用料申请也是有着严厉的规定,比喻规定接地装置要有接地体,接地干线和接地支线组成,并对接地质料的长度,宽度都有很严厉的规定,但对于我等DIYer来说,假如按照那些标准来OK接地的话,估计有点儿不太现实,咱们只能敷衍了事了。一根铁丝即是咱们最好的质料,具体的接中央法我就不在这里频频了。

维姆胡斯感应起电机原理详解

维姆胡斯感应起电机原理 丁炳亮 一、小电荷的放大 假如我们需要一个带1C 电量的小球,但是手头上只有一个带0.1C 电量的小球,如何能使小球的电量增加呢?下面将用一种非常简单的方法就可以使小球带的电量增加很多倍。 (第一步) (第二步) (第三步)

刚开始只有小球A是带少量电荷的,经过第二、第三步后得到了带电量比小球A多小球B1、B2。重复二、三步骤可以得到带更多电量的小球。上面实验中旁边的小球称为施感小球,中间两个小球用金属导杆连接在一起构成了电偶极子,移去连接小球的金属导杆再移开旁边的施感小球即可得到两个带异种电荷且电荷量略比施感小球多些的小球。当然,如果施感小球离中间两个小球太远就不一定能得到比施感小球多的电荷量。假设施感小球带的电荷量为Q1,一个施感小球能使电偶极子一边的小球得到电荷量为KQ1(可以肯定K是小于1),电场具有叠加性,则左右两个施感小球能使电偶极子一边的小球得到电荷量为2KQ1。2KQ1>Q1才能保证重复实验二、三步电荷量是不断增加的,即K>1/2。另外,需注意是先移开连线中间小球的金属导杆再移开施感小球,否则中间两个小球不能得到感应电荷。这点将在后面解释感应电机为什么反转不起电。 二、电荷的收集与存储 为了能得到更多的电荷需要在小球带的电荷达到一定量时用装置存储起来,但是一次只收集存储其中的一对小球,也就是说要轮流收集两对小球上的电荷,因为要留一对做为下一步的施感小球。存储电荷用的是一个特殊电容器(耐电压高,电容量小),称为莱顿瓶。如果莱顿瓶一直连在小球上则一有些电荷就会被存储,施感小球的电荷量一直上不去,使得产生电荷速度缓慢。所以需要在小球电荷达到一定量才开始收集存储。实现该目的的方法就是利用间隙放电,如下图中的集电梳,集电梳与小球之间有一定的间隙,当小球电荷量达到一定量时,间隙放电,才开始对莱顿瓶充电。 电刷 莱顿瓶

碳离子辐射对空间GaAs-Ge太阳电池性能影响的研究

第30卷 第4期 核 技 术 V ol. 30, No.4 2007年4月 NUCLEAR TECHNIQUES April 2007 —————————————— 国家自然科学基金项目(10675023)、北京市优秀人才基金和北京市教育委员会共建项目(XK100270454)资助 第一作者:刘运宏,男,1982年出生,2004年毕业于北京师范大学,现为北京师范大学低能核物理研究所硕士研究生 通讯作者:王 荣 收稿日期:2007-01-12,修回日期:2007-01-23 碳离子辐射对空间GaAs/Ge 太阳电池性能 影响的研究 刘运宏1,2 王 荣1,2,3 孙旭芳1,2 1(北京师范大学射线束技术与材料改性教育部重点实验室 北京 100875) 2(北京师范大学低能核物理研究所 北京 100875) 3(北京市辐射中心 北京 100875) 摘要 利用2×1.7 MV 串列静电加速器提供的碳(C )离子束模拟空间环境辐射,对空间GaAs/Ge 太阳电池用注量为3.1×109—6.9×1012 cm -2的2 MeV C 离子进行辐照。通过I -V 特性和光谱响应测试,研究分析了GaAs/Ge 太阳电池的C 离子辐射效应。结果表明:随着C 离子辐照注量的增加,GaAs/Ge 太阳电池电性能参数I sc 、V oc 和P max 衰降增大,其中P max 衰降最大,I sc 次之,V oc 最小。该衰降规律和质子辐照的衰降规律相似。但使GaAs/Ge 太阳电池的P max 衰降到原值的50%, 用C 离子辐照所需注量要比相同射程的质子辐照小两个量级。在低注量辐照时,光谱响应衰降主要发生在长波范围;而注量大于3.1×1010 cm -2时,则发生明显的长、短波整个波段的光谱响应衰降;当注量增大到2.3×1011 cm -2以上,光谱响应基本消失。 关键词 GaAs/Ge ,太阳电池,碳离子,辐照 中图分类号 TM914.4,V 442 GaAs 太阳电池有效率高、工作温度范围宽和耐辐射等优点,而选用 Ge 作为基体材料有晶格匹配好、重量轻、机械强度高等优点。因此,在Ge 衬底上外延生长制备的GaAs/Ge 太阳电池,具备了空间卫星应用的特点,有望在空间得到广泛应用[1]。但在空间实际应用中,卫星等航天器的太阳电池板不可避免地会受到空间环境中质子、电子等带电粒子的辐射,导致其性能退化,影响航天器的可靠运行和使用寿命。为了确保GaAs/Ge 太阳电池在恶劣的空间多种离子辐射环境中可靠有效地工作,人们开展了大量的GaAs/Ge 太阳电池质子、电子辐射效应的研究工作[1—3]。但空间辐射环境中不仅存在质子辐射和电子辐射,而且还存在α粒子及C 、O 等 重离子辐射[4], 也会对太阳电池材料造成辐射损伤,导致电池性能衰降。因此,有必要对其重离子辐射的损伤规律和机理进行实验研究。目前,国内外相关研究报道较少。所以,我们进行了C 离子辐射对空间GaAs/Ge 太阳电池性能影响研究。 1 实验 实验样品GaAs/Ge 太阳电池是用金属有机物化学气相沉积(MOCVD )方法制备的,其结构如图1 所示。样品衬底为n 型Ge 单晶,用于支撑太阳电池和增强机械强度。在Ge 单晶上生长1—2 μm 高的掺杂n + 缓冲层,作为后续有效生长的起始层。在其上生长掺Si 施主浓度为 ( 1—1.5 ) × 1017 cm -3、厚度约为3 μm 的基区,再接着生长掺Zn 受主浓度约为3×1018 cm -3、厚为0.50 μm 的p + 发射区。在发射区上生长(GaIn )P 窗口层,其厚度为40—50 nm ,以满足1/4波长的减反射光学设计,起钝化发射区表面和提高光通过的作用。还有电池光照面采用真空蒸镀的双层抗反射膜(Anti-Reflection Coating ),用于减少光的反射。所用电池样品效率约为19.0%。 图1 GaAs/Ge 太阳电池结构示意图 Fig.1 Schematic diagram of GaAs/Ge solar cell 万方数据

感应起电机实验报告

感应起电机实验报告 篇一:感应起电机原理 感应起电机工作原理 及应用概述 学院:信息工程学院 班级:计01. 2班 组长:冯明浩0154038 小组成员:贾铮0154042 闫玮蓉0154054 张星0154056 日期:2002年12月20日 课题研究介绍 名称:感应起电机工作原理及应用概述 内容: 一、感应起电机基本结构。 二、感应起电机正转、反转状态下的工作原理。 三、拓展试验。

资料收集:冯明浩贾铮闫玮蓉张星 资料整理:贾铮 论文撰写:冯明浩贾铮闫玮蓉张星 主讲:闫玮蓉 试验操作:冯明浩 参考书目:《大学物理·电磁学》清华大学出版社张三慧主编《静电防护技术手册》电子工业出版社张宝铭主编《大不列颠百科全书》第五卷 参考网站: /retype/zoom/1b56b6d4b9f3f90f76c61b52 ?pn=3&x=0&y=0&raww=553&rawh=350 &o=png_6_0_0_439_282_337_213__&ty pe=pic&aimh=&md5sum=bfc23c0255ea7 e56ae71b40e01c0c6de&sign=8cbda26375 &zoom=&png=24362-125522&jpg=0-0” target=“_blank”>点此查看 这是因为没有莱顿瓶后其电容减小了,

可由公式U=Q/C解释:要产生电火花,两小球间电压约为几万伏,当C减小时,悬空电刷仅需要集聚很少电荷就可使电压升高到放电要求,故与原来相比,放电频率会加大。但是由于小球上每次放电所放出的电量减少了,相应电流也会减小,因而电火花很小。 二、感应起电机正转、反转状态下的工作原理 当顺时针摇动转轮上的摇柄时,分开的两个小球之间会有电火花产生,同时会听到噼里啪啦的放电声。这就是感应起电机的放电现象。这样的现象是如何产生的呢?下面我们就介绍一下它的原理。 由于在静电序列中铝排在铜之前,所以在圆盘转动时铝片与电刷上的铜丝摩擦而带上正电荷,铜丝带负电荷。如图:假设刚摩擦时金属铝片S1带电量为Q1,与其在同一直径上的铝片S2带电量为Q2,Q1与Q2有大小之分。如图:S1转过45°1===> S

例谈几种常见加速器的工作原理

例谈几种常见加速器的工作原理 浙江奉化中学 王军明 加速器的全称是“带电粒子加速器”,顾名思义,它是利用电磁场加速带电粒子的装置。带电粒子包括电子、质子、α粒子和各种离子。加速器将电磁能量转移给带电粒子,使带电粒子速度加快,能量增高。自1931年首台静电加速器问世以来,这种作为探索原子核结构而发展起来的粒子加速器得到迅速的发展。加速器类型已增加到20多种。数量已达五千多台。按粒子在加速过程中的轨迹和加速原理相结合的分类方法:可分为高压加速器、感应加速器、直线加速器和回旋加速器。04年高考又把“回旋加速器”列入考试大纲,所以本文结合例题简单谈谈这几类加速器的工作原理。 一、高压加速器 高压加速器是利用直流电场加速带电粒子的加速器。这类加速器结构简单,造价低廉。 例1、串列加速器是用来产生高能离子的装置。如图(一)中虚线框内为其主体的原理示意图,其中加速管的中部b 处有很高的正电势U,a 、c 两端均有电极接地(电势为零)。现 将速度很低的负一价碳离子从a 端输入,当离子到达b 处时, 可被设在b 处的特殊装置将其电子剥离,成为n 价正离子, 而不改变其速度大小,这些正n 价碳离子从c 端飞出后进入 一与其速度方向垂直的、磁感应强度为B 匀强磁场中,在磁 场中做半径为R 的圆周运动,已知碳离子的质量 kg m 26100.2-?=,v U 5105.7?=,,2,50.0==n T B 基 元电荷c e 19106.1-?=,,求R. 解析:设碳离子到达b 处时的速度为1v ,从c 端射出时的速度为2v ,由能量关系得eU mv =2121 ……①,neU mv mv +=21212221……②,进入磁场后,碳离子做圆周运动,可得R v m B nev 222=……③ , 由以上三式可得 e n mU nB R )1(21+=……④ , 由④式及题给数值可得R=0.75m 二、感应加速器 例2,电子感应加速器是利用变化磁场产生的电场加速电子的。在圆形磁铁两极之间有一环形真空管,用交变电流励磁的电磁铁在两极间产生交变磁场,从而在环形室内产生很强的电场,使电子加速。被加速的电子同时在洛仑兹力的作用下沿圆形轨道运动。在10-1ms 内电子已经能获得很高的能量了。最后把电子引入靶室,进行实验工作。北京正负电子对撞机的环行周长为=240m,加速后电子在环中做匀速圆周运动的速率接近光速,其等效电流大小I=8mA,则环中约有多少个电子在运行? 解析:一周内每个电子通过每一截面一次,设电子个数为N,周期为T.则,T Ne I =c L T =,

(静电起电原理)静电起电机

范德格拉夫起电机工作原理 我们大多数人都见过这个能让人们的头发直立的、称作范德格拉夫起电机的设备。该设备看起来就像一个安装在底座上的大铝球,您可以从下图中看到它的效果。 Photo courtesy -->约翰·兹维萨和他的儿子近距离体验范德格拉夫起电机! 您是否曾经想知道这个设备到底是什么、它是如何工作的、发明它的目的是什么以及您自己如何制作一台这样的设备?当然,它不是为了让人们的头发直立而发明的……或者,您是否曾经在干燥的冬日里拖着赤足走过地毯,然后在碰到某个金属物体时受到从未有过的电击?您是否曾想了解静电和静电贴纸的奥秘? 如果您曾思考过上述任一问题,那么本文将为您提供完美的答案。在本篇博闻网文章中,我们将对范德格拉夫起电机和静电进行一般性的讨论。您甚至将学会如何制作自己的范德格拉夫起电机! 要了解范德格拉夫起电机以及它的工作方式,您需要了解静电。我们几乎全都熟悉静电,因为我们能在冬天看到并感觉到它。在干燥的冬日,静电能够在我们的身体中累积,并且使电火花从我们的身体跳到金属物体或其他人的身体上。当电火花跳跃时,我们能够看到、感觉到它,并听到电火花的声音。 词根英语中“electron”(电子)一词来自于希腊语中意思为amber(琥珀)的单词!

在科学课上,您还可能用静电做过一些实验。例如,如果您用丝绸摩擦玻璃棒或用毛线摩擦琥珀,那么玻璃和琥珀将产生静电荷,能够吸引小的纸片或塑料。 要了解在身体或玻璃棒产生静电荷时发生了什么事情,您需要了解组成我们日常所见之万物的原子。所有物质都由原子组成,原子本身由带电粒子组成。原子具有由中子和质子组成的原子核。它们还具有由电子组成的“外壳”。通常,物质呈电中性,这意味着电子和质子的数量相等。如果原子具有的电子数超过质子数,则原子带负电。如果它的质子数超过电子数,则带正电。 一些原子保持电子的能力比其他原子强。物质保持电子能力的强弱决定了它在摩擦电序中的位置。如果一种材料在与其他材料接触时更容易放弃电子,则它在摩擦电序中具有更高的正电性。如果一种材料在与其他材料接触时更容易“捕获”电子,则它在摩擦电序中具有更高的负电性。 下表显示了您可以在家中找到的许多材料的摩擦电序。摩擦电序中的正电性材料位于顶部,负电性材料位于底部: 人手(尽管通常过于潮湿)极强正电性 兔皮 玻璃 人的头发 尼龙 毛线 毛皮 铅 丝绸 铝 纸 棉花 钢电中性 木头 琥珀 硬橡胶 镍、紫铜 黄铜、银 金、铂

一道感应起电习题的解析

一道感应起电习题的解 析 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

1.1对感应起电一道习题的解析 对静电感应起电,有这样一道题:当带正电导体A靠近一个绝缘导体B时,由于静电感应,B两端感应出等量异种电荷。将B左端接地,绝缘导体B带何种电荷 错误的解答:多数学生认为,由于静电感应导体B左端带负电,右端带正电。左端接地电荷被导走,导体B带正电。 正确的解答:接地后B整个物体相当于近端,大地为远端,所以B 带负电。 解答完此题后脑海闪出一个问题,导体一端接地,分离后电荷在导体上究竟是如何分布的 实验验证 (一)实验器材 J2310感应起电机(一个)、带有金属箔片的绝缘导体A与B(一对)、绝缘球形导体C(一个)、验电器(一个)、橡胶棒(一个)、毛皮(一片)。 (二)实验过程 1.使绝缘球形导体C带负电。 方法:摇动起电机,使其起电机一极与C接触。用毛皮摩擦过的橡胶棒与验电器的小球接触,使它带上负电。使球形导体接触验电器,发现验电器金属铂片张开的角度变大,说明球形导体代的是负电荷。 2.探究当导体一端接地时,电荷在导体的分布情况。

(1)使B端接地,观察现象。过程:当绝缘导体A与B靠在一起,放在带负电的绝缘导体C旁边,发现AB两端箔片都张开。用手摸一下B 端,发现B端箔片合拢,A端箔片仍张开,如图1。移开手指,发现AB 两端箔片没有变化。移去C发现A端箔片张角减小,B端箔片张开。分开AB,发现AB两端箔片仍张开。用验电器检验枕形导体AB两端带的都是正电。当用手摸A端时,以上观察结果没有变化。 分析:用手摸一下导体B端,人便把导体与大地连通,使大地参与了电荷转移。因此,导体本身的电荷不再守恒,而是导体与大地构成的系统中电荷守恒。由于静电感应,A端仍为正电荷,大地远处感应出等量负电荷,则B端的负电荷通过人体流走,B端不带电,即此时电荷只分布在A端。移开手指,大地与导体分离,由于异种电荷相互吸引,正电荷仍分布在A端。移去C后,A端电荷在AB上重新分配,使得AB都带上正电荷。当用手摸A端时,分析相同。 图解:如图2。 (2)用手摸一下A端,移去手指,分开AB,发现A端箔片仍张开,B端箔片仍合拢,移去C,A端箔片仍张开,B端箔片仍合拢。用验电器检验A带的是正电。当用手摸B端时,以上观察结果没有变化。 分析:用手摸一下导体A端时,由于静电感应,A端仍为正电荷,大地远处感应出等量负电荷,则B端的负电荷经A端通过人体流走,B端不带电,所以B端箔片合拢。先分开AB,后移去C,则A端电荷不能重新

织物感应静电测试仪原理

织物感应静电测试仪原理 做为测量对象的静电可认为有两种类型。一种是工厂某地已经产生的;另一种是在实验室的基础研究中使之产生的。前者需要正确地掌握带电状况,考虑此时所具有的诸条件,找出排除故障的适当方法。后者要求能准确地控制实验条件,得到有再现性的实验结果。为此,必须充分理解测量的方法,进而预先研究分析产生静电的因素,也是完全必要的. 1.感应起电 感应起电通常是对导体来说的。这里介绍的是电介质在静电场中由极化而使其带电的方法,也把它称为感应起电。在电场中,电介发生极化,极化后的电介质,其电场将周围介质中的某种自由电荷吸向自身和电介质上与之符号相反的束缚电荷中和。外电场撤走后,电介质上的两种电荷已无法恢复中性,因而带有一定量的电荷,这就是感应起电. 放电衰减 物体带电后,内部电荷的逸散符合指数衰减规律。 Q=Q0e-t/ε0εrρr (1) 将电量衰减的时间常数τ=ε0εrρr代入(1)式得:Q=Q0e-t/τ(2) 电量衰减时间常数τ可用静电衰减测量仪来测量,而在实际的纤维和织物的静电测试中,人们直接取电量衰减至原测试值的一半(Q=1/2Q0)时所用的时间,也就是静电半衰期t1/2表征静电荷的逸散能力。它是衡量纤维消除静电荷性能的一个重要指示,将式(2)加以变换得 τ=t/lnQ0/Q (3) 以Q=Q0/2代入式(3)得到静电半衰期t1/2与电量衰减时间常数τ之间的关系:

t1/2= 1/1.44·τ=0.69τ 2.试验方法 使被测试样起电的方法有很多种。在试验当中,需要一种能够提供稳定的并能够穿透一定空间(空气)的电源,以及在检测中受环境的影响比较小的条件下进行。这种办法就是电晕放电和比较电极法检测。. 2.1电晕放电 需要说明的是场带电和扩散带电需要高浓度的单极性离子。由于它们相互排斥和高的迁移率,这种离子寿命很短。因此要用这些带电方法,必须要连续不断地产生离子。放射性的放电、紫外线照射、火焰及电晕放电能在空气中产生离子。只有最后一种方法——电晕放电能产生高浓度的单极离子以使试样保持稳定带电状态。 为产生电晕放电,必须建立一个不均匀的电场。像针与平板之间、空气和其它通常是良好的绝缘体,但在电场强度足够高的区域中空气受到电离并成为可导电的。根据场的几何形状不同,这种电荷可能是电弧放电或电晕放电。 在电晕区域,电子被加速到相当高的速度,可以在撞击一个空气分子时把一个电子撞出来,于是产生一个正离子和一个电子。在电晕区域内是以自维持雪崩的形式发生这个过程,从而在导线周围产生了浓密的自由电子云和正离子云,这叫电晕放电。 2.2非接触式的测量方法 静电电位的测量分为接触式和感应式两种。 由于物体所带的静电大都有静电压高,而电流小,且一次性损耗后不易再补上的特点。所以接触性仪表大都采用了光反射法,不仅体积较大,量度不精确,使用范围也受到了限制。 直接感应仪表测量法是用电容分压原理。它的精度取决于电压表固有电容和测试板对地的分布电容,且感应电荷会通过表内电阻而逐步泄漏。因此,电压表上读出的电压将随时间逐渐衰减。

第一节 反应堆和加速器

第一节反应堆和加速器 一、核反应堆技术 研究性重水反应堆1956年,苏联援建的以重水作为慢化剂和冷却剂的中国第一座试验性重水反应堆在房山坨里兴建。6月13日,反应堆达到临界,最大热功率为10000千瓦。6月30日,反应堆正式运转。该反应堆主要是进行中子物理试验、材料辐照试验和其他科学研究,并生产放射性同位素。 1959年2月,中科院原子能所在朱光亚领导下,自行设计、制造和安装了中国第一座轻水零功率装置,并进行了试验,为掌握研究性反应堆物理实验技术跨出了第一步。此后,开展了以改进堆的性能、扩大堆的用途、提高经济性为中心的技术改进。1960年,实现了在不停堆情况下远距离、半自动化操作和连续生产。1967年,用先进的离子交换法取代蒸馏法,使核燃料得到了充分利用。 1978年至1983年,中科院原子能所结合1958年建成的试验性重水堆的改建,开展了低浓铀重水栅格物理特性的理论和实验研究;配合北京核工程研究设计院重水堆核电站研究设计工作,开展了高浓铀重水物理特性研究。1980年6月27日,该所改建的反应堆达到临界。1981年11月6日,改建后的反应堆功率提升到15000千瓦,最大功率提高了50%,最大热中子通量密度提高了一倍多,活性区可利用的实验管道增加了2.6倍,而所投资金仅相当于新建一座同样反应堆的十分之一。1983年,该所在改建后的研究性重水堆内,建立了一条高温高压考验回路,从1984年底开始对秦山核电厂的燃料元件进行考验和检验。 潜艇核动力与陆上模式堆1958年,中科院原子能所开始了潜艇核动力的研究。翌年组建了中国第一个反应堆热工水力实验室,并陆续建立起十多个高温高压水回路等实验装置,为潜艇核动力堆做了临界热流密度、元件盒内流速分布及若干部件的阻力等试验,为解决设计中的一些关键技术提供了依据。1960年6月,提出了“潜艇核动力方案设计(草案)”。1961年后,该所开展了材料试验堆、元件考验堆、生产堆的物理理论计算工作,并建造了几个零功率装置,对计算结果进行了实验验证。同时,中科院计算技术研究所完成了压水堆有效增殖因子计算、动力堆燃耗计算;与有关单位合作,为中国自行设计建造潜艇核动力反应堆、高通量实验反应堆及秦山核电厂反应堆开发出计算程序,并在零功率装置上进行了实验验证。1965年,清华大学核能技术研究所建立了热工水力试验装置。 1959年,北京有色金属研究院为中国自行设计建造的潜艇核动力反应堆提供Zr-2合金包套材料,并在宝鸡有色金属加工厂建立了生产线;提供了核能级的金属铍及氧化铍材料,在宁夏有色金属冶炼厂投产;提供了银铟镉控制棒材及铪棒等控制材料等。 1970年4月至7月,中科院原子能所等完成核潜艇陆上模式堆的安装试车,并达到满功率。 工程试验堆1958年至1965年4月,中科院原子能所以苏联ИPT-1000物理试验堆为原型建成了游泳池式研究试验堆,并提升至额定功率。1967年8月,该堆的热功率由1000瓦提高到3500瓦,改进了堆的物理性能,扩大了堆的物理用途,且为以后设计高通量工程试

静电感应起电机

静电感应起电机 工作原理 当顺时针摇动转轮上的摇柄时,分开的两个小球之间会有电火花产生,同时会听到噼里啪啦的放电声。这就是感应起电机的放电现象。这样的现象是如何产生的呢?下面我们就介绍一下它的原理。 由于在静电序列中铝排在铜之前,所以在圆盘转动时铝片与电刷上的铜丝摩擦而带上正电荷,铜丝带负电荷。如图:假设刚摩擦时金属铝片S1带电量为Q1,与其在同一直径上的铝片S2带电量为Q2,Q1与Q2有大小之分。如图: (1) 转过90° (2) 转过45° (3) 转过45° (4) 转过45° (5) 转过45° (6) 转过45° (7)当圆盘转过90°时,S1与反面电刷Bˊ相对,此时S2ˊ、S1ˊ分别与S1、S2相对。假设Q1>Q2,由于S1ˊ与S2ˊ之间有电刷连接,会引起自由电子移动,使得S1ˊ带正电荷,S2ˊ带负电荷。 当圆盘再转过45°时,S1、S2分别顺时针转至与电极相接的悬空电刷E2、E1处,并在该处放电使E1、E2带正电荷,这些正电荷又被积聚在莱顿瓶C1、C2中。 当圆盘再转过45°即S1转到与正面电刷B相对应时, S1与S1ˊ相对,S2与 S2ˊ相对,刚经过放电的S1与S2恰好不再带有电荷。S2ˊ带负电使得S2感应带正电,又由于与金属刷上铜丝摩擦也使它带正电,在二者共同作用下S2带上了正电荷;对于S1来说,S1ˊ上的正电荷使其感应带负电荷,由于金属刷的连接作用,S2所带的正电荷会导致电子移动(如图4)使S1带负电,这样,虽然有摩

擦产生的正电荷也会被以上两种作用所产生的负电荷抵消,因此S1还是带负电荷。 圆盘再转过45°时,S1ˊ与S2ˊ恰好分别转到悬空电刷E2ˊ与E1ˊ处。带正电的S1ˊ在E2ˊ处放电后不再带电,E2ˊ上的负电荷被中和使E2ˊ带正电,这些正电荷被莱顿瓶C2积聚到放电叉T2的放电小球上;带负电的S2ˊ在E1ˊ处放电后也不再带电,且E1ˊ上的正电荷被中和使E1ˊ带负电,这些负电荷被莱顿瓶C1积聚到放电叉T1的放电小球上。 如果圆盘又转过45°, S1又与S2ˊ相遇,S2与S1ˊ相遇,且此时S1﹑S2与反面电刷Bˊ相对,S1ˊ﹑S2ˊ分别在E2、E1处放电后不再带电。此时的电荷变化与过程(4)相似, 因此与S1相对的S2ˊ带正电荷, 与S2相对的S1ˊ带负电荷。 当圆盘再转过45°,此时S1﹑S2恰好分别转到悬空电刷E1﹑E2处。S1在E1 处放电使得负电荷被积聚到放电叉T1的放电小球上,S2在,E2处放电使得正电荷被积聚到放电叉T2的放电小球上。之后转动摇柄,电荷的变化情况将重复过程(3)~(7),由于两盘的逆向旋转,转至与电极相接的悬空电刷E2、E2ˊ处的金属片将全部带正电,转至与电极相接的悬空电刷E1、E1ˊ处的金属片将全部带负电。莱顿瓶C2感应到放电小球T2上的正电荷会越来越多,而被莱顿瓶C1感应到放电小球T1上的负电荷也会越来越多,当小球聚集一定电荷时,就会产生放电现象。在莱顿瓶盖内放电叉与悬空电刷之间的空气也会被电离,使放电叉与悬空电刷在短时间内相当于一个导体,将事先聚集在莱顿瓶中的电荷大部分中和之后,再一次重复上述过程。 但是,起电机并不是从一开始就可以放电的,因为空气被击穿需要一定的电压,这就需要积聚一定的电荷,而放电叉T1、T2上电荷的积累需要一定时间,所以当起电机长时间不用后要摇动摇柄一定时间后T1、T2间的电压才能达到击穿电压而产生放电现象。 那么,反向转动摇杆时是否也会达到相同的效果呢?回答是否定的,因为反转时虽然起电机原理和正转一样,但由于正反两面的铝片在摩擦起电后都没有再经过另一侧电刷,而是直接在悬空电刷处放电,使两个莱顿瓶带有同种电荷,因此不会放电。

范德格拉夫起电机最全的介绍

范德格拉夫静电起电机范德格拉夫静电起电机范德格拉夫静电起电机范德格拉夫静电起电机静电加速器是加速质子、α粒子、电子等带点粒子的一种装置,静电加速器的电压可高达数百万伏,它主要是靠静电起电机产生的,静电起电机最常用的一种是1931年由范德格拉夫(R.J.V an de Graaff,1901-1967)研制出来的,故亦称范德格拉夫静电起电机。图6-29是静电起电机的工作原理图。图中金属球壳A是起电机的高压电极,它由绝缘支柱C支撑着。球壳内和绝缘支柱底部装有一对转轴D和D`,转轴上装有传送电荷的输电带(绝缘带B),并由电动机驱使它们转动。在输电带附近装有一排针尖E(叫喷电针尖),而针尖与直流高压电源的正极相接,且相对地面的电压高达几万伏,故而在喷电针尖E附近电场很强,使气体发生电离,产生尖端放电现象。在强电场的作用下,带正电的电荷从喷电针尖飞向输电带B,并附着在输电带上随输电带一起向上运动。当输电带B上的正电荷进入金属球壳A 时,遇到一排与金属球壳相连的针尖F(叫刮电针尖),因静电感应使刮电针尖F带负电,同时使球壳A带正电并分布在球壳的外表面上。由于针尖F附近电场很强,产生尖端放电使刮电针尖上的负电荷与输电带上的正电荷中和,从而使输电带B恢复到不带电的状态而向下运动。就这样,随着输电带的不断运转,金属球壳外表面所积累的正电荷越来越多,其对敌的电压也就越来越高,成为高压正电极。同样道理,如果喷电针尖E与直流高压电源的负极相接,则将使金属球壳成为高压负电极。不同极性的高压电极,可分别用来加速不同电荷符号的带电粒子。由于尖端放电、漏电、电晕等原因,金属球壳的对地电压不可能很高,即使把金属球可放到有几个大气压的氮气中,其对地电压也只能达到数百万伏。如果在金属球壳内放一离子源,离子将被加速而成为高能离子束。近代范德格拉夫静电加速器可将氮和氧的离子加速到具有100MeV的动能。目前静电加速器除用于核物理的研究外,在医学、化学、生物学和材料的辐射处理等方面都有广泛的应用。 美国物理学家罗伯特·杰米森·范德格拉夫(Robert Jemison Van de Graaff)于1931年发明了范德格拉夫起电机。这种以他的名字命名的设备能够产生非常高的电压——高达2000万伏。范德格拉夫发明起电机的目的是为早期的粒子加速器提供所需的高能量。这些加速器称为原子粉碎机,因为它们能够将亚原子颗粒加速至非常高的速度,然后将它们“撞击”到目标原子中。碰撞能够产生其他亚原子颗粒和高能量放射线(例如X射线)。能够产生这些高能量碰撞是粒子物理和核物理的基础。 范德格拉夫起电机被描述为“恒定电流”静电设备。当您为范德格拉夫起电机加上负载后,电流(安培数)保持不变。随负载变化的是电压。对于范德格拉夫起电机,当您使接地物体靠近输出端子(球面)时,电压将降低,但电流保持不变。与之相反,电池是“恒定电压”设备,因为当您为电池加上负载后,电压将保持不变。汽车电池就是这方面的典型例子。充满电的汽车电池能够产生约12.75伏的电压。如果您打开前灯,然后检查电池电压,您将发现电压会保持相对不变(前提是电池工作状况良好)。同时,电流将随负载变化。例如,您的前灯可能需要10安培的电流,但您的风挡刮水器可能只需要4安培的电流。无论您打开哪个设备,电压都将保持不变。 范德格拉夫起电机有两种:一种使用高压电源来充电,另一种使用传动带和滚轴来充电。这里,我们将讨论传动带和滚轴起电机。 这种范德格拉夫起电机由以下部件组成: 电机 两个滚轴

带电体吸引小物体的原理(1)

带电体吸引小物体的探讨 摘要:带电体能吸引小物体的原因是小物体在带电体的电场作用下也带上了电,金属类的小物体和电介质类的小物体带电的原理不同。 关键词:带电体吸引小物体静电感应电介质极化 在中学物理教材里面讲到带电体能吸引轻小物体,为什么带电体会吸引轻小物体的呢?在教学中发现很多学生对这个问题的理解存在疑问。 带电体的周围存在电场,使轻小物体在靠近它的一端出现异种电荷,在远离它的一端出现等量的同种电荷。两电荷之间的作用力是跟它们的电量的乘积成正比,跟它们间的距离的平方成反比。因此,带电体对较近的异种电荷的吸引力大于对较远的同种电荷的排斥力,所以带电体能吸引轻小物体。构成轻小物体的物质不同,它两端出现等量异种电荷的情况也不同。 通常讲的小物体包括金属和电介质。金属在靠近带电体的时候会发生静电感应现象从而带上电。电介质是指不导电的物质,内部没有可以移动的电荷。若把电介质放入静电场场中,电介质原子中的电子和原子核在电场力的作用下在原子范围内作微观的相对位移,而不能象导体中的自由电子那样脱离所属的原子作宏观的移动。达到静电平衡时,电介质内部的场强也不为零。这是电介质与导体电性能的主要差别。 一、带电体吸引导体类小物体的原理 电荷能够从产生的地方迅速转移或传导到其他部分的物体称作导体,如金属、电解液、人体、地球等。带电体靠近金属小物体靠近小金属物体时,在外电场的作用下向与电场方向相反的方向移动,使导体在靠近带电体的一面出现与带电体异种的电荷,远的一端出现与带电体同种的电荷,这种现象叫静电感应。小金属物在带电体的电场作用下发生静电感应现象,小金属物体就变成了一个两端带异种电荷的带电体。从宏观上看,小金属物体由于两端带等量异种电荷而表现出不带电,但是从微观分析小金属物的受力可以发现带电体给小金属物两端的异种电荷的库伦力并不能相平衡。如图1示,假设一带正电小球靠近一个小金属物,小金属物左端将带 上负电,右端带上等量的正电。由于右端比左端离带电球距离更大,因此F 1>F 2 ,小 金属物受的合力方向指向带电球,这个合力使小金属物往带电球靠近,直到被吸引到带电体上。实验证明起电机上的带电金属球靠近铁屑时,铁屑马上会在电场的影响下有震动,有的会直立起来,再靠近点时,就会有被吸到金属球上,且马上被弹下来的现象,可以清晰的听到被弹下来的铁屑打在纸上的啪啪声。产生这个现象的原因是:带电金属球上的电荷是自由电荷可以转移给铁屑,使得铁屑与带电金属球带同种电荷,因此铁屑在吸到带电金属球上后会受到斥力而马上落下来。

高压静电现象研究

高压静电现象研究 一.实验目的: 了解静电产生的机理和静电发电机的工作原理,掌握静电高压的测量方法 二.注意事项: 高压电有危险,不要用手随意触摸金属电极,即使没有通电也可能被点击,如果需要触摸某金属电机,先用接地导线放电。 三.实验仪器: 静电感应起电机(手摇式),范德格拉夫起电机(电动,电机带动皮带致使上端金属球壳带高压静电),高频交流高压发生器(利用高频变压器产生高频高压),万用表(测量时仅用20V或者200V档,接错有危险),高压探棒(1:1000分压,测量时万用表显示乘以1000即为真实测到电压) 四.实验原理 两种物质发生摩擦时可以使它们都带上电,称为静电。为什么物体摩擦后带有电荷?这些电荷是从哪里来的?这涉及到物质的内部结构。一切宏观物体(固体、液体和气体)都是由分子组成的。分子由更小的原子构成。原子内部有一个带正电的原子核,周围是一些带负电的电子围绕着原子核运动。通常,原子核所带的电量和它周围的电子所带的电量总是相等的,原子作为一个整体呈电中性,由电子组成的物体当然也显示出不带电的性质。但是当两个物体相互摩擦或者接触时,其中一个物体失去一些电子,另一个物体则获得一些电子。例如用丝绸摩擦玻璃棒时,在一般情况下,玻璃棒就失去一些电子,丝绸则获得一些电子。这样就破坏了原来两个物体的电中性。当两个物体分开后,失去电子的物体,其体内的正电荷总数多于负电荷,表现为带正电;而获得电子的物体正相反,体内的负电荷总数多于正电荷,表现为带负电。所以从物质的电结构来看,无论用摩擦起电,还是用其他方法来使物体带电的过程,斗不过是使物体中原有的正负电荷分离和转移的过程而已。但是由于物质的种类不同,它们带电的极性和带电量的大小是不同的,而且又和温度、湿度、有无杂质、摩擦力大小、物质的电阻率、泄露电阻等一系列条件有关。总之静电现象较为复杂,想要考虑的因素很多,必须视具体情况作具体分析。最简单的静电发电机相当于一只起电盘(见图)。

加速器概述

加速器概述 accelerator 定义 定义:一种使带电粒子增加速度(动能)的装置。加速器可用于原子核实验、放射性医学、放射性化学、放射性同位素的制造、非破坏性探伤等。粒子增加的能量一般都在0.1兆电子伏以上。加速器的种类很多,有回旋加速器、直线加速器、静电加速器、粒子加速器、倍压加速器等。加速器是用人工方法把带电粒子加速到较高能量的装置。利用这种装置可以产生各种能量的电子、质子、氘核、α粒子以及其它一些重离子。利用这些直接被加速的带电粒子与物质相作用,还可以产生多种带电的和不带电的次级粒子,象γ粒子、中子及多种介子、超子、反粒子等。目前世界上的加速器大多是能量在100兆电子伏以下的低能加速器,其中除一小部分用于原子

核和核工程研究方面外,大部分用于其他方面,象化学、放射生物学、放射医学、固体物理等的基础研究以及工业照相、疾病的诊断和治疗、高纯物质的活化分析、某些工业产品的辐射处理、农产品及其他食品的辐射处理、模拟宇宙辐射和模拟核爆炸等。近年来还利用加速器原理,制成各种类型的离子注入机。以供半导体工业的杂质掺杂而取代热扩散的老工艺。使半导体器件的成品率和各项性能指标大大提高。很多老工艺不能实现的新型器件不断问世,集成电路的集成度因此而大幅度提高。加速器的发展 1919年英国科学家卢瑟福(E.Rutherford)用天然放射源中能量为几个MeV、速度为2×109厘米/秒的高速α 粒子束(即氦核)作为“炮弹”,轰击厚度仅为0.0004厘米的金属箔的“靶”,实现了人类科学史上第一次人工核反应。利用靶后放置的硫化锌荧光屏测得了粒子散射的分布,发现原子核本身有结构,从而激发了人们寻求更高能量的粒子来作为“炮弹”的愿望。 静电加速器(1928年)、回旋加速器(1929年)、倍压加速器(1932年)等不同设想几乎在同一时期提了出来,并先后建成了一批加速装置。 粒子加速器particle accelerator 用人工方法产生高速带电粒子的装置。是探索原子核和

云的起电理论

关于云的起电理论很多,但目前还没有一种理论能够圆满地解释上述的所有问题,因为大气的运动在实验室里是模拟不出来的。下面介绍几种比较完善的理论。 (1)温差起电理论 一般情况下,如果一块物体冷热不均,热端带负电,冷端带正电。云中的冰晶、水滴、冰雹等因接触、碰并、破碎、摩擦等作用,使得冰晶带正电,水滴、冰雹等带负电。冰晶的密度小于水滴,小而轻,漂浮在云的上部。 (2)感应起电理论 在晴天电场的作用下,云滴被极化,使它们下半部带正电,上半部带负电,通过云内的运动,产生上正下负两个主要的电荷中心,两个中心建立后,方向向下的电场得以加强,便会产生一个正反馈机制。 (3)切割磁力线理论 北半球的云一般自西向东移动,而地球的磁力线则是由南极指向北极根据右手定则判断,正电荷向上移动,负电荷向下运动。 (4)破碎起电理论 水滴在气流的剧烈运动中分裂成带负电的较大颗粒和带正电的较小颗粒,后者被上升气流带到高空。 云底带少量的正电:地面的感应或地面的尖端物体带的正电荷被强烈的上升气流带入云底。 雷电的形成机理是大气物理学的一个分支。主要研究电离层以下大气中发生的各种电现象和它们的产生与相互作用过程的规律及应用。大气电学有两大主要部分:晴天电学和扰动天气电学。晴天电学主要研究晴天大气电场、大气电导率、地空电流和全球大气电平衡等;扰动天气电学主要研究雷雨云电结构和起电机制、雷与闪电过程、尖端放电过程与避雷方法等。大气电场 把地表面视为下极板、电离层导电层视为上极板,组成巨大球形电容两极板中间的大气基本不含电荷,上极板导电层含有正电荷,下极板的地表面含负电荷,这巨大电容器中间的电场称大气电场。规定大气电场方向从低电位的地面朝上(与物理学静电学规定相反)。尽管雷雨云移到某处时,雷雨云底部与相对应下垫面间的电场方向是向下的,但对全球而言,雷雨云区所占比例很小(约1%),故总体大气电场的方向是朝上的。晴天电场常被看作正常大气电场,其场强随纬度增大而增强、随离地面高度而变小,全球平均看,陆区地表面附近电场强度为120伏/米左右,海面上则约为130伏/米。在工业区污染严重、气溶胶粒子多的地方,晴天电场强度可达300~400伏/ 米。晴天电场场强随高度减弱是很强烈的,在10公里高度处的值仅为地面值的3%即约4伏/米。晴天电场强度有日变化和年变化。陆面在地方时04-06时和12-16时出现极小值,07─10时和19─21时为极大值;一年之中,冬季为极大值、夏季为极小值。在海面和两极地区,在世界时19时出现极大值,04时左右为极小值,这些地区大气电场年变化不明显。 大气电导率和离子迁移率 大气不仅含中性分子和原子,还含有一些离子,这些离子分为轻离子(由几个分子聚集在一起而带一个正电荷或负电荷,直径约千分之一微米)和重离子(荷电的气溶胶粒子,常带一个正电荷或负电荷,比轻离子大成千上万倍)。描述大气离子在电场中移动快慢的参数称迁移率,由于大气离子基本上都只带一个单位电荷,所以在同样的电场强度的电场中,轻离子的迁移率要比重离子的大得多。例如在场强为1伏/厘米的电场中,大气轻离子移动速率为115厘米/秒,而重离子的移动速率只是这个数的几百分之一。

相关文档
最新文档