加速老化实验

加速老化实验
加速老化实验

加速寿命试验

寿命试验(包括截尾寿命试验)方法是基本的可靠性试验方法。在正常工作条件下,常常采用寿命试验方法去估计产品的各种可靠性特征。但是这种方法对寿命特别长的产品来说,就不是一种合适的方法。因为它需要花费很长的试验时间,甚至来不及作完寿命试验,新的产品又设计出来,老产品就要被淘汰了。所以这种方法与产品的迅速发展是不相适应的。经过人们的不断研究,在寿命试验的基础上,找到了加大应力、缩短时间的加速寿命试验方法。 加速寿命试验是用加大试验应力(诸如热应力、电应力、机械应力等)的方法,加快产品失效,缩短试验周期。运用加速寿命模型,估计出产品在正常工作应力下的可靠性特征。 下面就加速寿命试验的思路、分类、参数估计方法及试验组织方法做一简单介绍。 1 问题

高可靠的元器件或者整机其寿命相当长,尤其是一些大规模集成电路,在长达数百万小时以上无故障。要得到此类产品的可靠性数量特征,一般意义下的载尾寿命试验便无能为力。解决此问题的方法,目前有以下几种:

(1)故障数r =0的可靠性评定方法。 如指数分布产品的定时截尾试验

θχαL S t =2202()

()

)(20t S 为总试验时间。α为风险, α=0.1时,21.0χ(2)=4.605≈4.6;当α=0.05时,205.0χ(2)=5.991≈6。

(2)加速寿命试验方法

如,半导体器件在理论上其寿命是无限长的,但由于工艺水平及生产条件的限制,其寿命不可能无限长。在正常应力水平0S 条件下,其寿命还是相当长的,有的高达几十万甚至数百万小时以上。这样的产品在正常应力水平0S 条件下,是无法进行寿命试验的,有时进行数千小时的寿命试验,只有个别半导体器件发生失效,有时还会遇到没有一只失效的情况,这样就无法估计出此种半导体器件的各种可靠性特征。因此选一些比正常应力水平0S 高的应力水平1S ,2S ,…,k S ,在这些应力下进行寿命试验,使产品尽快出现故障。

(3)故障机理分析方法

研究产品的理、化、生微观缺陷,研究缺陷的发展规律,从而预测产品的故障及可靠性特征量。

2 加速寿命试验的思路

由产品故障的应力—强度模型(见图5-5)

图5-5 应力—强度模型

其中:)(t R =P (强度>应力),)(t F =P (应力≥强度)

当强度与应力均为确定型时,产品在2t 故障。实际上强度与应力是概率风险型的,当均服从正态分布时,产品则可能提前在1t ,以一定概率发生故障。

由此可知:要使产品早一点出现故障,要么加大应力,要么减少强度。因当产品一经加工形成后,其强度也就基本固定了,所以可行的办法是提高应力,以缩短寿命试验周期。 3 加速寿命试验的分类

通常分为以下三种:

(1)恒定应力加速寿命试验(目前常用).它是将一定数量的样品分为几组,每组固定在一定的应力水平下进行寿命试验,要求选取各应力水平都高于正常工作条件下的应力水平。试验做到各组样品均有一定数量的产品发生失效为止,如图5-6所示。

(2)步进应力加速寿命试验。它是先选定一组应力水平,譬如是1S ,2S ,…,k S ,它们都高于正常工作条件下的应力水平0S 。试验开始是把一定数量的样品在应力水平1S 下进行试验,经过一段时间,如1t 小时后,把应力水平提高到2S ,未失效的产品在2S 应力水平继续进行试验,如此继续下去,直到一定数量的产品发生失效为止,如图5-7所示。

(3)序进应力加速寿命试验。产品不分组,应力不分档,应力等速升高,直到一定数量的故障发生为止。它所施加的应方水平将随时间等速上升,如图5-8所示。这种试验需要有专门的设备。

图5-6 恒定应力 图5-7 步进应力 图5-8 序进应力

在上述三种加速寿命试验中,以恒定应力加速寿命试验更为成熟.尽管这种试验所需时间不是最短,但比一般的寿命试验的试验时间还是缩短了不少.因此它还是经常被采用的试验方法。目前国内外许多单位已采用恒定应力加速寿命试验方法来估计产品的各种可靠性特征,并有了一批成功的实例。下面主要介绍如何组织恒定应力加速寿命试验及其统计分析方

法,包括图估计和数值估计方法。

4 恒定应力加速寿命试验的参数估计

产品不同的寿命分布应有不同的参数估计方法,下面以威布尔寿命分布的产品为例说明,其他寿命分布的估计问题可参考有关文献。

4.1 基本假定

在恒定应力加速寿命试验停止后,得到了全部或部分样品的失效时间,接着就要进行统计分析。一定的统计分析方法都是根据产品的寿命分布和产品的失效机理而制定的。因此一个统计分析方法成为可行就必须要有几项共同的基本假定。违反了这几项基本假定,统计分析的结果就不可靠,也得不到合理的解释。因为这几项基本假定是从不少产品能够满足的条件中抽象出来的,所以这几项基本假定对大多数产品来说不是一种约束,只要在安排恒定应力加速寿命试验时注意到这几项基本假定,它们就可以被满足。

(1)设产品的正常应力水平为0S ,加速应力水平确定为1S ,2S ,…,k S ,则在任何水平i S

下,产品的寿命都服从或近似服从威布尔分布,其间差别仅在参数上。

这一点可在威布尔概率纸上得到验证。 其分布函数为 i i m i i i T t t F ???????

???=ηexp 1)(,0≥i t ,k i ,....,2,1,0= (2)在加速应力1S ,2S ,…,

k S 下产品的故障机理与正常应力水平0S 下的产品故障机

理是相同的。 因为威布尔分布的形状参数m 的变化反映了产品的故障机理的变化,故有

0m =1m =2m =…=k m

这一点可在威布尔概率纸上得到验证。若不同档次的加速应力所得试验数据在威布尔概率纸上基本上是一族平行直线,则假定(2)就满足了。

(3)产品的特征寿命η与所加应力s 有如下关系: ln ()η?=+a b s

a ,

b 是待估参数,)(s ?是应力s 的某一已知函数,上式通常称为加速寿命方程。 此假定是根据阿伦尼斯方程和逆幂律模型抽象出来的: ∵ KT E e βη=, ∴

]1[ln ln T K E +=βη 令

K E b ==,ln βα,则有)(ln T b a ?η+= 又 ∵

c dV 1=η ∴ V c

d ln ln ln ??=η

令 c b d a ?=?=,ln

则 )(ln V b a ?η+=

国内外大量实验数据表明,不少产品是可以满足上述三项基本假定的,也就是说对不少产品是可以进行恒定应力加速寿命试验的。

4.2 图估法

(威布尔分布)

步骤:

① 分别绘制在不同加速应力下的寿命分布所对应的直线。

② 利用威布尔概率纸上的每条直线,估计出相应加速应力下的形状参数i m 和特征寿命i η。

③ 由假定(2)取k 个i m 的加权平均,作为正常应力0S 的形状参数0m 的估计值,即:

k k k n n n m n m n m n m

++++++=...?....???2122110 诸i n 为第i 个分组中投试的样品数。

④ 由假定(3),在以)(s ?为横坐标,以ηln 为纵坐标的坐标平面上描点,根据k 个点 ()(1s ?,1ln η),()(2s ?,2ln η),…,(

)(k s ?,k ηln )配置一条直线,并利用这条直线,

读出正常应力0S 下所对应的特征寿命的对数值0?ln η,取其反对数,即得ηo 的估计值0?η。

⑤ 在威布尔概率纸上作一直线L o ,其参数分别为0?m 和0?η。

⑥ 利用直线L o ,在威布尔概率纸上对产品的各种可靠性特征量进行估计。

5 恒定应力加速寿命试验的组织

当我们随机地从一批产品中任取n 个样品,分成k 组,在k 个应力水平下进行恒加试验时,必须事前作周密考虑,慎重仔细地做好试验设计、安排、组织工作,因为恒加试验要花费较多的人力、物力、时间,事先考虑周到才能得到预期效果。在组织工作和实施过程中应注意以下几个方面。

5.1 加速应力S 的选择

因为产品的失效是由其失效机理决定的,因此就要研究什么应力会产生什么样的失效机理,什么样的应力加大时能加快产品的失效.根据这些研究来选择什么应力可以作为加速应力。通常在加速寿命试验中所指的应力不外乎是机械应力(如压力、振动、撞击等),热应力(温度),电应力(如电压、电流、功率等)。在遇到多种失效机理的情况下,就应当选择那种对产品失效机理起促进作用最大的应力作为加速应力。如温度对电子元件的加速作用,可用“阿伦尼斯方程”描述,即寿命为

kT E e

t β= 式中:β――是个正常数,β>0

k ――玻尔兹曼常数,k =0.8617×10-4ev/K

T ――绝对温度

E ――激活能(ev)

直流电压对电容器等的加速作用,可用逆幂率描述 即寿命

c dV t 1=

d ,c 为正常数,d >0,c >0

经验数据为c =5。经验还表明:灯泡与电子管灯丝的寿命大约与电压的13次方成反比,如此等等。

值得注意的是:对于电子元器件“温度+振动”这种组合应力,更能加速其故障的出现,只是在统计处理上要困难一些。

5.2 加速应力水平1S ,2S ,…,k S 的确定

在恒加试验中,安排多少组应力为宜呢?k 取得越大,即水平数越多,则求加速方程中两个系数的估计越精确。但水平数越多,投入试验样品数就要增加,试验设备、试验费用也要增加,这是一对矛盾。在单应力恒加试验中一般要求应力水平数五不得少于4,在双应力恒加试验情况下,水平数应适当再增加。

确定加速应力水平1S <2S <…<k S 的一个重要原则,就是在诸应力水平i S 下产品的失效机理与在正常应力水平0S 下产品的失效机理是相同的。因为进行加速寿命试验的目的就是为了在高应力水平下进行寿命试验,较快获得失效数据,估计出可靠性指标,再利用加速方程外推正常工作应力0S 下产品的可靠性指标。假如在加速应力水平1S ,2S ,…,k S 和正常应力水平0S 下产品的失效机理有本质不同,那么外推将有困难,所以在确定应力水平1S ,2S ,…,k S 时,违背这条原则将会导致加速寿命试验的失败。

最低应力水平1S 的选取,应尽量靠近正常工作应力0S ,这样可以提高外推的精度,但是1S 又不能太接近0S ,否则收不到缩短试验时间的目的。最高应力水平k S 应尽量选得大一些,但是应注意不能改变失效机理,特别不能超过产品允许的极限应力值。如要估计晶体管常温下的储存寿命,提高储存温度是一个方法,在常温储存时,管芯表面的化学变化是导致晶体管故障的故障机理,温度升高,肯定加速其变化。但当温度升得过高时,会引起焊锡灰化,内引线脱落开路等新的故障机理,于是温度便不能选的过高。合理的确定1S 和k S 需有丰富的工程经验与专业知识,也可以先作一些试验后再确定1S 和k S 确定了1S 和k S 后,中间的应力水平2S ,…,1?k S 应适当分散,使得相邻应力水平的间隔比较合理。一般有下列三种取法:

(1)k 个应力水平按等间隔取值;

(2)温度按倒数成等间隔取值 )1/(11(1??=?k T T k , ??=?)1(111j T T j ,1,,3,2?=k j L

(3)电压V 按对数等间隔取值

)1/()ln (ln 1??=?k V V k ,??+=)1(ln ln 1j V V j ,1,,3,2?=k j L

5.3 试验样品的选取与分组

整个恒加试验由k 组寿命试验组成,每个寿命试验都要有自己的试验样品,假如在应力水

平i S 下,投入i n 个试验样品,i =1,2,…,k ,那末恒加试验所需要的样品数是

∑==k

i i n n 1。这n 个样品应在同一批产品中随机抽取,切忌有人为因素参与作用,将n 个产品随机地分成是k 组,注意同一组的样品不能都在某一部分抽取。

每一应力水平下,样品数i n

可以相等,也可以不等。由于高应力下产品容易失效,低应力下产品不易失效,所以在低应力下应多安排一些样品,高应力水平可以少安排一些样品,但一般每个应力水平下样品数均不宜少于5个。 5.4 明确失效判据,测定失效时间

受试样品是否失效应根据产品技术规范确定的失效标准判断,失效判据一定要明确,如有自动监测设备,应尽量记录每个失效样品的准确失效时间。

假如没有办法测出失效产品的准确失效时间,可以采用定周期测试方法,即预先确定若

干个测试时间

l ττττ<<<<=L 2100 当i n 个样品在应力i S 下进行寿命试验到j τ时,对受试样品逐个检查其有关指标,判定其是否失效,这样可以得到在测试周期(1?j τ,j τ]内样品失效数j l ,而这j l 个失效产品的准确失效时间是无法获得的,这种情况称为定周期测试,在这种试验情况下给我们提出了两个问题:

(1)测试时间1τ,2τ,…,l τ如何确定比较合理;(2)在定出诸j τ,且知在(1?j τ,j τ]内失效j l 个样品,如何估算出这j l 个失效样品的失效时间,下面分别加以讨论。

(1)测试时间的确定。大家知道,测试时间不能定得太密,否则会增加测试工作量, 但是定得太疏,又给统计分析增加困难。要注意测试时间的确定与产品的失效规律和失效机理有关,在可能有较多失效的时间间隔内应测得密一些;而在不大可能失效的时间间隔内可少测几次,尽量使每一测试周期内都有产品发生失效,不应使失效产品过于集中在少数几个测试周期内,如估计产品失效规律是递减型,则测试周期安排时,可先密后疏,如基本上用对数等间隔,取j τ为

1,2,5,10,20,50,100,200,500,1000,2000,…

或3,10,30,100,300,1000,3000,…

如估计产品失效是递增型,则测试周期安排时,应先疏后密。

(2)失效时间的估算。已知在(

1?j τ,j τ]时间内有j l 个样品失效,可以用等间隔方式 估计此j l 个失效样品的失效时间,即在(1?j τ,j τ]内第h 个失效时间可用下式计算:

h

l j j j j jh 11

1+?+=??ττττ, h =1,2,…,j l

有时也可以使幻个失效时间的对数均匀地分布在(1ln ?j τ,j τln ]内,即在(1?j τ,j τ]内第h 个失效时间用下式计算

h l t j j j j jh 1ln ln ln ln 1

1+?+=??τττ, h =1,2,…,j l

5.5 试验的停止时间

最好能做到所有试验样品都失效,这样统计分析的精度高,但是对不少产品,要做到全部失效将会导致试验时间太长,此时可采用定数截尾或定时截尾寿命试验,但要求每一应力水平下有50%以上样品失效。如果确实有困难,至少也要有30%以上失效。如一个应力水平下只有5个受试样品,则至少要有3个以上失效,否则统计分析的精度较差。

NBR加速老化试验预测橡胶使用寿命

加速老化预测NBR橡胶的使用寿命 摘要:橡胶材料的性能及橡胶组件使用寿命的预测、估算在橡胶组件的设计过程中有着重要的作用。我们通过加速老化试验和模拟相结合的办法,对橡胶材料在氧气环境中的寿命预测做了很多年的研究。这篇论文研究了热老化对橡胶性能的影响,同时也对冷冻机用,丁腈橡胶(NBR)橡胶组件的使用寿命进行了预测。实验结果表明橡胶组分影响着橡胶的交联密度;老化时间及活化能可以很好的用以描述老化行为;通过单轴拉伸试验得到应力应变曲线。为了预测NBR的使用寿命,对NBR橡胶做了50℃到100℃,1天到180天的加速老化试验,并测试了一系列的物理性能试验。通过阿伦尼乌斯方程进行了计算,并通过压缩永久变形试验,本文提出了一系列方程用以预测橡胶材料使用寿命。 关键词:加速试验,丁腈橡胶,活化能,交联,三元乙丙橡胶,热老化,寿命预测,橡胶材料。 符号缩写:C.S 压缩永久变形;d0 样品的厚度;d1压缩状态下样品厚度;d2 卸载后厚度 k 交联密度变化程度;(K)T 反应速率;A,B 常数;E 反应活化能;R 气体常数;T 绝对温度 I 前言 橡胶是一种最为通用的材料,有着广泛的用途,甚至很难说清它到底有多少用途。从普通的家用,商用,汽车制造等到高尖端的航天航空工业都有橡胶的身影。许多橡胶组件在使用中需要承受一定的机械力作用,为了保证橡胶组件的安全性和可靠性,使用寿命的预测估算是一项关键技术。如何防止橡胶组件在使用过程中损坏是一个关键问题。橡胶组件在使用过程中承受着一定的载荷,还受到温度,辐射以及一些其它的有害物质的影响。所有的影响因素结合在一起,导致了橡胶物理及化学结构的改变,最终表现为橡胶机械性能的降低。橡胶在使用了一段时间后,开始老化,通常表现为挺性增加,阻尼性能下降。老化不光光影响了性能,同时也影响了组件的使用寿命。橡胶组件所处环境的不同,使得它们的降解方式也不一样。橡胶组件的逐步老化降解,不仅与外部因素有关,同时与橡胶基体本身以及橡胶里面的添加剂有关。广义上讲,橡胶的老化是这些因素的一个加和。这些因素具体起到了多大的作用,很难计算出来。它们的分类可以见表1。 表1 橡胶老化因素表 冷冻机中空压机部分所使用的橡胶组件的使用寿命是它的一项关键指标。在使用过程中,直到这些橡胶组件被替换下来之前,它们必须保持足够的物理机械性能,但是受到温度、湿度、紫外光、臭氧、化学物质、载荷的影响,它们的使用寿命又很难估算。所以找到橡胶的统一属性和它处于的环境影响,并预计它的寿命显得非常重要。通过对橡胶材料降解老化的研究,可以为提高使用寿命,增加可靠性提供必要的条件。 橡胶硫磺硫化体系形成的交联网络,随着热老化的不断进行而发生着改变。受到热老化后,高硫磺含量硫化体系形成的交联网络的变化要大于低硫磺含量硫化体系所形成的交联网络。

常用三种加速老化测试模型

在环境模拟试验中,常常会遇到这样一个问题:产品在可控的试验箱环境中测试若干小时相当于产品在实际使用条件下使用多长时间?这是一个亟待解决的问题,因为它的意义不仅仅在于极大地降低了成本,造成不必要的浪费,也让测试变得更具目的性和针对性,有利于测试人员对全局的掌控,合理进行资源配置。 在众多的环境模拟试验中,温度、湿度最为常见,同时也是使用频率最高的模拟环境因子。实际环境中温度、湿度也是不可忽略的影响产品使用寿命的因素。所以,迄今将温度、湿度纳入考量范围所推导出的加速模型在所有的老化测试加速模型中占有较大的比重。由于侧重点的不同,推导出的加速模型也不一样。下面,本文将解读三个极具代表性的加速模型。 模型一.只考虑热加速因子的阿伦纽斯模型(Arrhenius Mode) 某一环境下,温度成为影响产品老化及使用寿命的绝对主要因素时,采用单纯考虑热加速因子效应而推导出的阿伦纽斯模型来描述测试,其预估到的结果会更接近真实值,模拟试验的效果会更好。此时,阿伦纽斯模型的表达式为: AF=exp{(E a/k)·[(1/T u)-(1/T t)]} 式中: AF是加速因子; E a是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385×10-5; T u是使用条件下(非加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位; T t是测试条件下(加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位。 案例:某一客户需要对产品做105℃的高温测试。据以往的测试经验,此种产品的激活能E a取0.68最佳。对产品的使用寿命要求是10年,现可供测试的样品有5个。若同时对5个样品进行测试,需测试多长时间才能满足客户要求? 已知的信息有T t、E a,使用的温度取25℃,则先算出加速因子AF:AF=exp{[0.68/(8.617385×10-5)]·【[1/(273+25)]- [1/(273+105)]】}最终: AF≈271.9518 又知其目标使用寿命: L目标=10years=10×365×24h=87600h 故即可算出: L测试= L目标/AF=87600/271.9518h=322.1159h≈323h 现在5个样品同时进行测试,则测试时长为:

常见紫外老化试验标准

常见紫外老化试验标准 阳光中紫外线是照成产品光降解和光老化的主要原因,因此新产品和新材料的选择必须进行产品的耐候性能测试。紫外线老化测试是评估新产品耐紫外线光照性能的一类测试方法,通常是在实验室中通过紫外加速老化试验箱进行测试。 需要进行耐紫外线老化测试的产品以及材料主要有:非金属材料、有机材料(例如:涂料、油漆、染料、布料、印刷包装、粘合剂、化妆品、金属、电子、电镀、橡胶、塑胶及其制品等)。以下是部分行业的紫外老化试验标准。 通用标准 ISO 4892-1 塑料-实验室光源暴露方法-第1部分:概述 ASTM G-151 非金属材料暴露于使用实验室光源的加速测试设备中的测试方法标准 ASTM G-154 非金属材料暴露于荧光设备的紫外线中的测试方法标准 英国标准BS 2782:第5 部分540B方法(实验室光源的暴露方法) SAE J2020 用荧光紫外/冷凝设备对汽车外饰件进行加速暴露测试 JIS D 0205 汽车配件的老化测试方法(日本) 常见测试仪器QUV/se,,quv/pray等皆可满足以上标准。 涂料标准 韩国标准M 5982-1990 加速老化测试方法 西班牙标准UNE 104-281-88 用荧光紫外灯对油漆和粘合剂进行加速测试 以色利标准NO.330 钢窗 以色利标准NO.385 塑料窗 以色利标准NO.935 路标油漆

以色利标准NO.1086 铝窗 NISSAN M0007 荧光紫外/冷凝试验 JIS K 5600-7-8 油漆的测试方法 ASTM D-3794 卷材涂料测试标准 ASTM D-4587 油漆的光照/凝露环境暴露的标准实施规范 ISO 11507 色漆和清漆-涂层暴露于人工老化环境-暴露在荧光紫外线和凝露环境中ISO 20340 色漆和清漆-用于近海建筑及相关结构的防护涂料系统的性能要求 美国政府标准FED-STD-141B 美国联邦政府规范TT-E-489H 磁漆,醇酸树酯,高光泽,低VOC 美国联邦政府规范TT-E-527D 磁漆,醇酸树酯,无光泽,低VOC 美国联邦政府规范TT-E-529G 磁漆,醇酸树酯,半光泽,低VOC 美国联邦政府规范TT-P-19D 油漆,乳胶,丙烯酸乳液,木材和建筑外立面NACE标准TM-01-84 大气表面涂层的筛选方法 GM4367M 面漆层材料-外饰 GM9125P 汽车材料的实验室加速暴露 MS 133:F16部分色漆和清漆的测试方法:F16 部分:涂料暴露于人工老化环境- 暴露于荧光紫外线和凝露环境(ISO 11507) prEN 927-6 色漆和清漆-户外木器涂层材料和涂层体系-第6 部分:. 木器涂层的荧光紫外线/凝露环境的人工老化测试。

加速老化实验

山东华普医疗科技有限公司 加速老化试验 版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准:

加速老化实验计划 一、使用范围 本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验:2012年5月20日前 包装验证实验:2012年5月22日前 阻菌实验:2012年5月24日前 老化实验时间:2012年5月26日前 加速第一年验证 无菌实验:2012年6月18日前 全能性实验:2012年6月25日前 包装验证实验:2012年6月25日前 阻菌实验:2012年6月27日前 加速第二年验证 无菌实验:2012年7月1日前 全能性实验:2012年7月8日前 包装验证实验:2012年7月8日前 阻菌实验:2012年7月10日前 加速第三年验证 无菌实验:2012年7月15日前 全能性实验:2012年7月22日前 包装验证实验:2012年7月22日前 阻菌实验:2012年7月24日前 加速第四年验证 无菌实验:2012年7月29日前 全能性实验:2012年8月6日前 包装验证实验:2012年8月6日前

阻菌实验:2012年8月8日前 加速第五年验证 无菌实验:2012年8月13日前 全能性实验:2012年8月20日前 包装验证实验:2012年8月20日前 阻菌实验:2012年8月22日前 目的:在有效期三年内和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。

橡胶热老化试验标准

橡胶热老化试验标准 警告:使用本标准的人员应熟悉正规实验室操作规程。本标准无意涉及因使用本标准可能出现的所有安全问题。制定相应的安全和健康制度并确保符合国家法规是使用者的责任。 1 范围 本标准适用于硫化橡胶或热塑性橡胶在常压下进行热空气加速老化和耐热试验。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 2941-1991橡胶试样环境调节和试验的标准温度、湿度及时间(eqv ISO 471:1983) GB/T 9865.1-1996硫化橡胶或热塑性橡胶样品和试样的制备第一部分物理试验(idt ISO 4661-1:1993) GB/T 14838-1993 橡胶与橡胶制品试验方法标准精密度的确定(neq ISO/TR 9272:1986) 3 原理 试样在高温和大气压力下的空气中老化后测定其性能,并与未老化试样的性能作比较。与使用权有关的物理性能应用来判定老化程度,介在没有这些性能的确切鉴定的情况下,建议测定拉伸强度、定伸应力、拉断伸长率和硬度。 3.1 热空气加速老化 在本试验方法中,氧气浓度很低,即使氧化作用很快,氧气也无法充分扩散到橡胶内部以保持一致的氧化作用。因此,在标准试验方法中规定的厚度的样品适合于本试验方法使用时,本老化试验方法对老化性能差的橡胶可能得出错误的结果。 3.2 耐热试验 在本试验方法中,试样经受与使用时间相同温度和规定时间后,测定适当的性能,并与未老化试样的性能作比较。 4 试验装置 橡胶试样采用热空气老化箱进行试验,老化箱应符合下列要求: a)具有强制空气循环装置,空气流速0.5m/s~1.5m/s,试样的最小表面积正对气流以避免干扰空气流速; b)老化箱的尺寸大小应满足样品的总体积不超过老化箱有效容积的10%,悬挂试样的间距至少 中华人民共和国国家质量监督检验检疫总局2001-08-28批准2002-05-01实施 为10㎜,试样与老化箱壁至少相距50㎜;

医疗器械加速老化实验方案及报告

华普医疗科技 加速老化试验 版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准:

加速老化实验计划 一、使用围 本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验: 2012年5月20日前 包装验证实验: 2012年5月22日前 阻菌实验: 2012年5月24日前 老化实验时间: 2012年5月26日前 加速第一年验证 无菌实验: 2012年6月18日前 全能性实验: 2012年6月25日前 包装验证实验: 2012年6月25日前 阻菌实验: 2012年6月27日前 加速第二年验证 无菌实验: 2012年7月1日前 全能性实验: 2012年7月8日前 包装验证实验: 2012年7月8日前 阻菌实验: 2012年7月10日前 加速第三年验证 无菌实验: 2012年7月15日前 全能性实验: 2012年7月22日前 包装验证实验: 2012年7月22日前 阻菌实验: 2012年7月24日前 加速第四年验证 无菌实验: 2012年7月29日前 全能性实验: 2012年8月6日前 包装验证实验: 2012年8月6日前

阻菌实验: 2012年8月8日前 加速第五年验证 无菌实验: 2012年8月13日前 全能性实验: 2012年8月20日前 包装验证实验: 2012年8月20日前 阻菌实验: 2012年8月22日前 目的:在有效期三年和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。

人工加速老化试验条件的选择

人工加速老化试验条件的选择 这个问题实际上可以理解为应该模拟哪些老化因素,高分子材料在使用过程中,气候环境里许多因素都有可能对高分子材料的老化产生作用。如果事先知道产生老化的主要因素,就可以有针对性的选择试验方法。我们可以从该材料的运输、储存、使用环境以及其老化机理等方面考虑,确定试验方法。例如硬聚氯乙烯型材,使用聚氯乙烯为原料,添加稳定剂、颜料等助剂加工而成,主要用于室外。 从聚氯乙烯的老化机理考虑,聚氯乙烯受热易分解;从使用环境考虑;空气中的氧、紫外光、热、水分都是引起型材老化的原因。 因此,国标GB/T8814-2004《门、窗用未增塑聚氯乙烯(PVC-U)型材》中,既规定了光氧老化试验方法,采用GB/T 16422.2《塑料实验室光源曝露试验方法第二部分:氙弧灯》老化4000h或6000h,模拟了室外紫外光及可见光、温度、湿度、降雨等因素,同时又规定了热氧老化项目:加热后状态,150℃放置30min,目测观察是否出现气泡、裂纹、麻点或分离现象,以考察型材的耐热性能。 又如我国在国际市场上有竞争力的一个产品:外贸出口鞋。在使用过程中,阳光中的紫外线是引起鞋子变色、褪色的主要原因,因此,有必要用紫外线试验箱对其进行耐黄变测试。常用的鞋类耐黄变试验箱

采用30WUV灯,样品离光源20cm,照射3h后观察颜色变化。同时,在运输过程中,集装箱内闷热、潮湿的恶劣环境会引起鞋面、鞋底、胶水的变色、斑点,甚至是变质。因此,在装船运输之前,有必要考虑进行耐湿热老化试验,模拟集装箱内高热、高湿环境,在70℃、95%相对湿度的条件下,进行48h试验后观察外观、颜色变化。

材料老化的试验方法

材料老化的试验方法 材料老化的因素有很多,目前市场上常用的是老化试验箱;老化试验箱是橡、塑胶产品耐久性之试验,老化试验箱主要在测试其材料在老化前与老化后之强度、伸长率等变化,一般认为材料在70℃的老化箱中24小时相当与自然界中6个月,本机具观测窗在使用时亦能看出内部之变化,不须打开门使试验造成误差. 目前市场上关于材料老化实验在市场上使用较多的是人工加速老化实验,对于自然老化实验的方法周期长效果等对于企业生产是不适用的,但是这里标准集团(香港)有限公司还是为大家简单过的讲解关于这两类实验的方法和特点: 一、人工加速老化实验 人工加速老化实验是用人工的方法,在室内或设备内模拟近似于大气环境条件或某种特定的环境条件,并强化某些因素,以期在短期内获得实验结果。可以相对比较不同材料的抗老化性能,并对材料的使用寿命提出指导性意见。因此,各国标准大都采用这种方法来评价材料的抗老化性能。人工加速老化实验方法主要包括:人工气候实验、热老化实验(绝氧、热空气、热氧化吸氧等实验)、臭氧老化实验、气体腐蚀实验等,其中热老化是较为普通方便的实验方法。 热老化实验通过加速材料在氧、热作用下的老化进程,反映材料耐热氧老化性能。根据材料的使用要求和实验目的确定实验温度。温度上限可根据有关技术规范确定,一般对于热塑性材料应低于其维卡软化点,对于热固性材料应低于其热变形温度,或者通过探索实验,选取不致造成试样分解或明显变形的温度。主要通行的实验方法硫化橡胶或热塑性橡胶热空气加速老化和耐热实验。 二、自然环境老化实验 自然环境老化实验是利用自然环境条件或自然介质进行的实验,主要包括:大气老化实验、埋地实验、仓库贮存实验、海水浸渍实验等等。自然环境老化实验结果更符合实际、所需费用较低而且操作简单方便,是国内外广泛采用的方法。其中对高分子材料而言,应用最多的是自然气候曝露实验(又称户外气候实验)。自然气候曝露实验就是将试样置于自然气候环境下曝露,使其经受日光、温度、氧等气候因素的综合作用,通过测定其性能的变化来评价塑料的耐候性。

老化试验作业指导书

1目的 全面了解产品性能,提升产品品质,消除产品潜在故障及缺陷,保证产品出货合格率。2适用范围 适用于本公司所有产品的老化试验。 3职责 3.1生产部负责产品的老化试验,在试验过程中记录试验信息,反馈异常情况。 3.2质管部负责老化试验中、试验后的产品检验和异常情况的追踪。 3.3技术部负责异常情况出现后改善方案的拟定。 4内容 4.1老化试验的时机 ◆新产品试产时; ◆对产品质量有怀疑时; ◆其他认为需要时,如: A、顾客反应质量异常情况或退回、返修产品分析; B、旧产品改进时; C、重要元器件更换供应商时; ◆产品出货前的老化试验。 4.2老化试验步骤 4.2.1给产品上电,电压220VAC,频率50Hz,设定机械臂各关节运动范围、运动速度 均为最大,在室温(20℃±5℃)情况下连续运行168h。 4.2.2老化试验人员每30min监视一次产品老化情况,观察各轴机械结构运动中是否有 异常摩擦卡阻、异响,电机温度是否异常(室温下,电机外壳温度超过65℃)、噪 音是否超标等,保留相关老化记录。质管部相关人员定时对老化情况监督检查。 4.2.3老化过程中发现设备异常或报错,应首先关闭设备电源,再报送质管部人员记录异 常情况,技术部负责制定改善方案,经生产部维修后重新老化;若一台设备连续三 次老化失败,则放弃本次老化试验,送生产部进行全面问题排查和维修。 4.2.4老化试验合格后,质管部对该产品再次检验,确保产品符合技术要求后可出货。 4.3老化试验规定 4.3.1因紧急情况需要出货,产品未老化、老化未达到规定时间或需要缩短老化时间的, 由需求部门填写《出货特采申请单》,经总经理批准后方可出货。若无特采申请,任

常用三种加速老化测试模型

常用三种加速老化测试模型 在环境模拟试验中,常常会遇到这样一个问题:产品在可控的试验箱环境中测试若干小时相当于产品在实际使用条件下使用多长时间?这是一个亟待解决 的问题,因为它的意义不仅仅在于极大地降低了成本,造成不必要的浪费,也让测试变得更具目的性和针对性,有利于测试人员对全局的掌控,合理进行资 源配置。 在众多的环境模拟试验中,温度、湿度最为常见,同时也是使用频率最高的模拟环境因子。实际环境中温度、湿度也是不可忽略的影响产品使用寿命的因素。所以,迄今将温度、湿度纳入考量范围所推导出的加速模型在所有的老化测试加速模型中占有较大的比重。由于侧重点的不同,推导出的加速模型也不一样。下面,本文将解读三个极具代表性的加速模型。 模型一.只考虑热加速因子的阿伦纽斯模型( Arrhenius Mode ) 某一环境下,温度成为影响产品老化及使用寿命的绝对主要因素时,采用单纯考虑热加速因子效应而推导出的阿伦纽斯模型来描述测试,其预估到的结果会更接近真实值,模拟试验的效果会更好。此时,阿伦纽斯模型的表达式为: AF=exp{(E a/k) ? [(1/T u)-(1/T t)]} 式中: AF是加速因子; E a是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385 X 10-5; T u是使用条件下(非加速状态下)的温度值。此处的温度值是绝对温度值, 以K(开尔文)作单位; T t是测试条件下(加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位。 案例:某一客户需要对产品做105C的高温测试。据以往的测试经验,此种产品的激活能E a取0.68最佳。对产品的使用寿命要求是10年,现可供测试的样品有5个。若同时对5个样品进行测试,需测试多长时间才能满足客户要求? 已知的信息有T t、E a,使用的温度取25C,贝U先算出加速因子AF: 5 AF=exp{[0.68/(8.617385 X 10-)] ?【[1/(273+25)]-[1/(273+105)] 】} 最 终: AF^ 271.9518 又知其目标使用寿命: L 目标=10years=10 X 365X 24h=87600h 故即可算出: L 测试=L 目标/AF=87600/271.9518h=322.1159h ?323h 现在5个样品同时进行测试,则测试时长为: L 最终=323/5h=65h 这即是说明,若客户用5个产品同时在105C高温下测试65h后产品未发生故障,则说明产品的使用寿命已达到要求。 通过这个案例可以看出,利用阿伦纽斯模型可以提前预估测试的相关信息,指导客户该怎样进行测试才既能达到目标值而又最大限度的降低成本。本案例中,若客户急需测试结果,那么可以投入10个或者更多的样品来缩短整个测试时长;或者在允许的情况下进一步提高温度,加快完成测试。根据需求灵活的调整测试方案,这才能更完美地达到目标,提高工作效率,省去一些不必要的费用。 模型二.综合温度及湿度因素的阿伦纽斯模型(Arrhenius ModeWith Humidity )

一次性口罩加速老化试验报告

口罩加速老化试验报告 设备型号: 文件版本: V1 受控文件:口罩加速老化试验报告 编制: 审核: 批准:

目录 1, 目的---------------------------------------------------------------------- 3 2, 范围---------------------------------------------------------------------- 3 3, 验证设备及材料----------------------------------------------------------- 3 4, 验证小组及人员责任------------------------------------------------------ 3 5, 验证前确认-------------------------------------------------------------- 4 6, 加速老化方法和计划的确定----------------------------------------------- 4 7, 验证结果----------------------------------------------------------------- 4 8, 结论---------------------------------------------------------------------- 5 9, 结论--------------------------------------------------------------------- 6

医疗器械加速老化试验方案及报告

. . . .. .. . 华普医疗科技 加速老化试验

版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准: ... .. .s. . . . . .. .. . 加速老化实验计划 一、使用围

本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验:2012年5月20日前 包装验证实验:2012年5月22日前 阻菌实验:2012年5月24日前 老化实验时间:2012年5月26日前 加速第一年验证 无菌实验:2012年6月18日前 全能性实验:2012年6月25日前 包装验证实验:2012年6月25日前 阻菌实验:2012年6月27日前 加速第二年验证 无菌实验:2012年7月1日前 全能性实验:2012年7月8日前

包装验证实验:2012年7月8日前 阻菌实验:2012年7月10日前 加速第三年验证 无菌实验:2012年7月15日前 全能性实验:2012年7月22日前 包装验证实验:2012年7月22日前 阻菌实验:2012年7月24日前 加速第四年验证 无菌实验:2012年7月29日前 全能性实验:2012年8月6日前 包装验证实验:2012年8月6日前 ... .. .s. . . . . .. .. . 阻菌实验:2012年8月8日前 加速第五年验证 无菌实验:2012年8月13日前 全能性实验:2012年8月20日前 包装验证实验:2012年8月20日前 阻菌实验:2012年8月22日前 目的:在有效期三年和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。 ... .. .s. .

(完整)医疗器械加速老化试验验证资料模板

(完整)医疗器械加速老化试验验证资料模板 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)医疗器械加速老化试验验证资料模板)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)医疗器械加速老化试验验证资料模板的全部内容。

×××包装加速老化试验验证方案 1.0目的: 通过加速老化试验来验证产品包装的储存期限为2年。 2.0适用范围: 本规程适用于一次性血液净化体外循环×××产品的加速老化试验. 3。0职责: 3.1研发部负责方案的制定和试验的最终报告. 3.2质量保证部人员负责验证过程的操作监控并记录。 3.3质量保证部负责验证产品的检测。 4.0工作程序: 4.1概况:由于我公司产品包装的有效期要求2年,进行实时老化及留样观察时间2年太长,对产品包装的有效期2年内不能做出客观科学的评价,患者和制造商均存在一定的风险。而ASTM F1980-02提供了一个科学的方法:加速老化试验,该试验能在较短的时间内对产品的包装在2年的有效期内做出客观科学的评价,从而将患者和制造商的风险降到最低. 4.2引用标准: 4.2.1无菌医疗器械包装加速老化标准指南ASTM F1980—02,YY/T 0681。1-2009无菌医疗器械包装试验方法第1部分:加速老化试验指南; 4.2。2 YZB/国—2013 《一次性使用血液净化体外循环×××》; 4。2.3 GB/T16886.1—2011 医疗器械生物学评价第1部分:风险管理过程中的评价与试验; 4.2.4 ISO11607-1,-2:2006 最终灭菌医疗器械的包装; 4.2.5 YY/T 0681。1—2009 无菌医疗器械包装试验方法第1部分:加速老化试验指南; 4。3试验原理与要求: 4。3。1试验原理:加速老化技术以假设材料变质的化学反应遵循Arrhenius反应速率定律为基础. 4.3。2试验要求: 4.3。2。1仪器:恒温箱(±1℃),无菌检测系统,温湿度计,计时器。 注:计量器具均经过法定鉴定部门的校验并取得合格证书。 4.3.2.2试验条件:环境温度25℃,相对湿度62%(资料显示该条件较严谨科学)。4.3。2。2抽样计划:从同一批次中灭菌后抽样63套做加速老化试验,每隔30天抽18套样品作全性能检测,最后剩余27套继续作加速老化试验,到期后做全性能检测及包装完好性检测. 4。4试验步骤:

老化测试老化试验

老化测试老化试验 老化检测是可靠性检测的一部分,是模拟产品在现实使用条件中涉及到的各种因素对产品产生老化的情况进行相应条件加强实验的过程。 主要通过使用各种环境试验设备模拟气候环境中的高温、低温、高温高湿以及温度变化等情况,加速激发产品在使用环境中可能发生的失效,来验证其是否达到在研发、设计、制造中的预期的质量目标,从而对产品整体进行评估,以确定产品可靠性寿命。老化检测正是可靠性测试的重要部分。 一、主要的测试范围包括: 材料寿命推算 冷热冲击 盐雾测试 快速温变 老化检测气候老化(自然气候暴晒试验,人工气候老化) 紫外老化检测 臭氧老化检测 老化试验湿热老化检测 氙灯老化检测 碳弧灯老化检测 二、重点检测项目 1、紫外老化检测 采用荧光紫外灯为光源(有UVA,UVB不同型号灯源),通过模拟自然阳光中的紫外辐射和冷凝,对材料进行加速耐气候性试验,以获得材料耐候性的结果。 紫外老化测试,可以再现阳光、雨水和露水所产生的破坏。设备通过将待测材料曝晒放在经过控制的阳光和湿气的交互循环中,同时提高温度的方式来进行试验。试验设备采用紫外线荧光灯模拟阳光,同时还可以通过冷凝或

喷淋的方式模拟湿气影响。用来评估材料在颜色变化、光泽、裂纹、起泡、催化、氧化等方面的变化。 紫外老化试验机并不模拟全光谱太阳光,但是却模拟太阳光的破坏作用。通过把荧光灯管的主要辐射控制在太阳光谱的紫外波段来实现。这种方式是有效的,因为短波紫外线是造成户外材料老化的最主要因素。 2、盐雾老化检测 盐雾试验是一种主要利用盐雾试验设备所创造的人工模拟盐雾环境条件来考核产品或金属材料耐腐蚀性能的环境试验。 盐雾试验分为:天然环境暴露试验;人工加速模拟盐雾环境试验。 人工模拟盐雾试验: 包括中性盐雾试验、醋酸盐雾试验、铜盐加速醋酸盐雾试验、交变盐雾试验。 3、臭氧老化检测 臭氧老化就是将试样暴露于密闭无光照的含有恒定臭氧浓度的空气和恒温的试验箱中,按预定时间对试样进行检测,从试样表面发生的龟裂或其它性能的变化程度,以评定试样的耐臭氧老化性能。 臭氧老化分为静态拉伸测试和动态拉伸测试,在这个测试中臭氧浓度、温度、试样定伸比是非常重要的三个参数。 4、湿热老化检测 湿热老化检测适用于可能在温暖潮湿的环境中使用的产品,湿度试验、恒定湿热、交变湿热,是可靠性测试的一种。 试验的目的:检验产品对温暖潮湿的环境的适应能力。对塑性材料、PCB、PCBA多孔性材料或成品等而言,各种不同材料对温度与湿气有不同形态之物理反应,温度所产生效应多为塑性变形或产品过温或低温启动不良等等,多孔性材料在湿度环境下会应毛细孔效应而出现表面湿气吸附,渗入、凝结等情形,在低湿环境中会因静电荷累积效应诱发产品出现失效。 常见湿度效应:物理强度的丧失、化学性能的改变、绝缘材料性能的退化、电性短路、金属材料氧化腐蚀、塑性的丧失、加速化学反应、电子组件的退化等现象。

DJ5000 LED加速老化试验仪使用说明

DJ5000 LED加速老化试验仪使用说明 一、操作前必须注意以下事项 (1)本仪器使用的额定电压为220V±22V,确认供电电源在本仪器的额定电压范围内。 (2)连接好电源线,并确保本仪器已良好接地。 二、操作指南 1 按下电源开关,仪器显示初始状态,先预热15 分钟。 2 设置参数 2.1 通道选择:按通道键(CHANNEL),选择通道,当CH1~CH6 相应的指示灯点亮时,表示选择了该通道,电流窗口显示该通道的电流设定值。 2.2 电流参数的设定:先按电流键(CURRENT),当指示灯(CURRENT)点亮时,进入当前通道的电流设定状态,然后按左移键(<)选择设定位,通过参数调节旋钮(PARAMETER ADJUST)设置被选择位的参数,最后,当参数设置到期望值后,按电流键(CURRENT)保存当前通道的电流设置参数,并退出电流设置状态。 2.3 参考电流参数的设定步骤,设定频率、定时时间、占空比的试验数值。 3 测试 3.1 完成上面的接线及参数设置后,分清正负正确安装被测LED,然后将测试平台与仪器后面板上对应的输出通道接口相连。 3.2 按下前面板上的输出键(OUTPUT),指示灯(OUTPUT)点亮,仪器进入老化试验状态,仪器后面板上的输出通道(CH1~CH6)将按设定的参数输出。 3.3 按下前面板上的输出键(OUTPUT),指示灯(OUTPUT)灭,仪器退出老化试验状态,回到待机状态。 3.4 换负载 断开负载前,请务必先按输出键“OUTPUT”,输出指示灯(OUTPUT)灭,然后将原负载拆除,换接新负载。 4 关机 使用完毕,按电源开关(POWER),关机。 5 仪器自身过热保护功能和自动开启风机功能 当仪器内部散热元件的温度大于45℃时,仪器风机将自动开启。当内部散热元件的温度大于80℃时,仪器将自动停止输出,温度窗口将显示“OT”。 6 掉电保护功能和来电自动复机功能 在测试过程中,本仪器具有实时保存试验参数的功能,若发生因仪器供电原因导致仪器掉电的,本仪器将在复机后自动恢复到掉电时的状态,继续工作。

可靠性-LED加速老化寿命试验方法概论Word文档

一、可靠性理论基础 1.可靠度: 如果有N个LED产品从开始工作到t时刻的失效数为n(t),当N足够大时,产品在t时刻的可靠度可近似表示为: 随时间的不断增长,将不断下降。它是介于1与0之间的数,即。 2.累积失效概率: 表示发光二极管在规定条件下工作到t这段时间内的失效概率,用F(t)表示,又称为失效分布函数。 如果N个LED产品从开始工作到t时刻的失效数为n(t),则当N足够大时,产品在该时刻的累积失效概率可近 似表示为: 3.失效分布密度: 表示规定条件下工作的发光二极管在t时刻的失效概率。失效分布函数的导函数称为失效分布密度,其表达式如下: ?早期失效期; ?偶然失效期(或稳定使用期) ; ?耗损失效期。 二、寿命 老化:LED发光亮度随着长时间工作而出现光强或光亮度衰减现象。器件老化程度与外加恒流源的大小有关, 可描述为: B t为t时间后的亮度,B0为初始亮度。通常把亮度降到B t=0.5B0所经历的时间t称为二极管的寿命。 1. 平均寿命 如果已知总体的失效分布密度f(t),则可得到总体平均寿命的表达式如下: 2. 可靠寿命 可靠寿命T R是指一批LED产品的可靠度下降到r时,所经历的工作时间。T R可由R(T R)=r求解,假如该产品的失效分布属指数分布规律,则: 即可求得T R如下:

3. 中位寿命 中位寿命T0.5指产品的可靠度R(t)降为50%时的可靠寿命,即:对于指数分布情 况,可得: 二、LED寿命测试方法 LED寿命加速试验的目的概括起来有: ?在较短时间内用较少的LED估计高可靠LED的可靠性水平 ?运用外推的方法快速预测LED在正常条件下的可靠度; ?在较短时间内提供试验结果,检验工艺; ?在较短时间内暴露LED的失效类型及形式,便于对失效机理进行研究,找出失效原因; ?淘汰早期失效产品,测定元LED的极限使用条件 1. 温度加速寿命测试法 由于通常LED寿命达到10万小时左右,因此要测得其常温下的寿命时间太长,因此采用加速寿命的方法。 根据高温加速寿命得的结果外推其他温度下的寿命。LED温度加速老化寿命测试原理是基于Arrhenius 模型。 利用该模型可以发现由温度应力决定的反应速度的依赖关系,即 式中L为寿命,Ea为激活能,A为常数,k为玻尔兹曼常数,T为热力学温度。 因此测试温度应有两个,即还需测得另一个温度T2下器件寿命为L2。可以求得激活能Ea。样便可以求得温度 T1对某温度T3下的加速系数K3: 。有: 可见实验需要测得同一批器件在两个不同温度下的寿命,然后推得其他温度下的寿命。 这就要求被测器件的数量应足够多,才能避免个性影响,而得到共性,即得到统计寿命值才真实。 LED从正常状态进入劣化状态的过程中,存在能量势垒,跃过这个势垒所需要的能量必须由外部供给,这个能量势垒就称为激活能。

老化试验的标准

老化试验的标准 自然大气曝晒试验 直接自然大气曝晒(ASTM G7,ASTM D4141等) 黑箱曝晒(SAE J1976,ISO877等) 太阳跟踪IP/DP箱曝晒试验(ISO2810,ISO105-B03等) 玻璃下曝晒(GB/T3681,GB/T9276等) 太阳跟踪聚光加速试验(GB/T3511,GB/T15596等) 人工加速光老化试验 氙弧灯老化试验(ASTM G155,ASTM D4459,ASTM D2565,ASTM D6695,ISO4892-2,ISO11341,ISO105-B02,ISO105-B04,ISO105-B06,ISO4665,ISO3917,GB/T1865,GB/T16422.2,SAE J2412,SAE J2527等) 氙灯测试(高辐照度试验(ASTM G155,NES M0135中1-2-1A,2-2-1,NES M0141等) 荧光紫外灯老化试验(ASTM G154,ASTM D4329,ASTMD499,ASTM D5208,ASTM D4587,ISO4892-3,ISO11507,SAE J2020,GB/T16422.3,GB/T14522等) 金属卤素灯老化试验(DIN75220,IEC60068-2-5,ISO9022-9,ISO12097-2,MIL STD810F等)红外灯老化试验(NES M0131,PV2005等) 阳光碳弧灯老化试验箱(GB/T16422.4、ISO4892-4、ASTM G152、JIS B7753、JIS D0205等)紫外碳弧灯老化试验箱(JIS L08422004、AATCC16方法1、JIS A14151999,TSL0601G等)温湿度老化试验 高温试验(ISO188,GB/T2423.2,ASTM D573,IEC60068-2-2等) 低温试验(GB/T2423.1,IEC60068-2-1等) 恒温恒湿试验(GB/T2423.3,IEC60068-2-78等) 温度循环试验(GB/T2423.22) 温湿度循环试验(GB/T2423.4,IEC60068-2-30等) 冷凝水试验(ISO6270-2,DIN50017等) 耐温水试验(ASTM D870-09,ISO2812-2等) 老化后性能评估与分析 表观性能(色差、色牢度、光泽、外观) 力学性能(拉伸、弯曲、冲击、剥离、撕裂、压缩)

加速寿命试验公示计算汇总

加速寿命试验公示计算汇总 一、前言 新研究的医疗器械在上市前应确保在储存期( 通常1 到5 年) 内产品的质量不应发生任何影响安全性和有效性变化,新产品一般没有实时和储存周围环境条件下确定有效期的技术资料。如果按实际储存时间和实际环境储存条件进行检测需要很长的时间才能获得结果,为了在实时有效期结果获得以前,有必要进行加速老化实验提供确定有效期的实验数据。 医疗器械设计人员能够准确地预计聚合物性能的变化对于医疗器械产业化是非常重要的。建立聚合物材料退行性变的动态模型是非常困难和复杂的,事实上材料短期产生的变化或变性的单速率表达形式可能不能充分反映研究的产品或材料在较长有效期的真实情况。为了设计试验方案能准确模拟医疗器械时间相关的退行性变,有必要对材料的组成、结构、成品用途、组装和灭菌过程的影响、失效模型机制和储存条件有深入的了解。 一个给定的聚合物具有以各种方式( 晶体、玻璃、不定形等) 组成的许多化学功能基团,并含有添加剂如抗氧化剂、无机充填剂、色素和加工助剂。所有这些变量的总和结合产品使用和储存条件变量决定了材料的化学性能的退行性变。得庆幸的是,生产医疗器械的大部分都是采用常用的几种高分子材料,这些材料已经广泛使用并且都进行了良好的表征。根据以碰撞理论为基础的阿列纽斯(Arrhenius) 模型建立的老化简化实验方案(Simplified Protocol for Accelerated Aging) ,也称“10 度原则”(10-degree rule) ,可在中度温度范围内适用于良好表征的聚合物,试验结果可以在要求的准确度范围内。 医疗器械或材料的老化是指随着时间的延长它们性能的变化,特别是与安全性和有效性有关的性能。加速老化是指将产品放置在比正常储存或使用环境更严格或恶劣的条件下,在较短的时间内测定器械或材料在正常使用条件下的发生变化的方法。 采用加速老化实验合格测试的主要原因是可以将医疗器械产品尽早上市。主要目标是

F-1980-无菌医疗器械包装的加速老化试验标准指南

ASTM F 1980:2002 无菌医疗器械包装的加速老化试验标准指南 Standard Guide for Accelertated Aging of Sterile Medical Device Package 1 范围 1.1 本指南提供了开发加速老化方案的信息,以便快速确定包装的无菌完好性和包装材料的物理特性受所经历的时间和环境的影响。 1.2 用本指南获得的信息可用以支持产品包装的有效日期。 1.3 加速老化指南涉及初包装整体,不涉及包装与产品间的相互作用或相容性,这在新产品的开发中可能涉及到。在包装设计之前的材料分析过程中宜涉及包装与产品的相容性和相互作用。 1.4本指南不涉及实际时间老化方案,但进行实际时间老化研究能证实用同样评价方法的加速老化试验的结果。 1.5 用于包装过程确认的方法,包括机械过程、灭菌过程、运输、贮存的影响也不在本指南的范围内。 1.6 本标准不打算涉及标准使用中的所有安全问题,本标准的使用者在使用前有责任建立相应的安全和卫生规范,并确定法规限制的适用性。 2 规范性引用文件 2.1 ASTM 标准 D 3078 用气泡发射法测定软性包装的试验方法 D 4169 运输容器和系统的性能试验规范 D 4332 容器、包装或包装组件的试验用状态调节的规范

E 337 用干湿球温度计(测量湿球温度和干球温度)测定湿度的试验方法 F 88 软质屏障材料密封强度的试验方法 F 1140医疗应用无约束包装抗内压破坏试验方法 F1327 医用包装屏障材料的相关术语 F 1585 医用包装多孔屏障材料完好性试验指南 F 1608 医用包装多孔屏障材料的微生物等级的试验方法 F 1929 用染色穿透的方法测定多孔材料医用包装中密封泄漏的试验方法 2.2 AAMI 标准 ANSI/AAMI/ISO 11607 最终灭菌医疗器械的包装 AAMI TIR 17-1997 辐射灭菌材料鉴定 3 术语 3.1 定义 医疗器械包装的一般定义见ISO 11607。有关医用包装屏障材料的术语见F1327 3.2 本标准规定术语的定义: 3.2.1 加速老化(AA) 样品贮存在严酷的温度(T AA),以一种缩短时间的方式来模拟实际时间老化 3.2.2 加速老化因子(AAF) 一个估计的或计算出的与实际时间(RT)条件贮存的包装达到同样水平的物理性能变化的时间比率 3.2.3 加速老化温度(T AA) 进入老化研究的严酷温度,它是基于估计的贮存温度、估计的使用温度,或两者来推算出的。

相关文档
最新文档