超硬材料和硬质金属

超硬材料和硬质金属
超硬材料和硬质金属

刀具材料应具备的基本性能

1.高硬度和高耐磨性:

刀具材料的硬度必须高于被加工材料的硬度才能切下金属,这是刀具材料必备的基本要求,现有刀具材料硬度都在60HRC以上。刀具材料越硬,其耐磨性越好,但由于切削条件较复杂,材料的耐磨性还决定于它的化学成分和金相组织的稳定性。

2.足够的强度与冲击韧性

强度是指抵抗切削力的作用而不致于刀刃崩碎与刀杆折断所应具备的性能。一般用抗弯强度来表示。冲击韧性是指刀具材料在间断切削或有冲击的工作条件下保证不崩刃的能力,一般地,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。

3.高耐热性

耐热性又称红硬性,是衡量刀具材料性能的主要指标。它综合反映了刀具材料在高温下保持硬度、耐磨性、强度、抗氧化、抗粘结和抗扩散的能力。

4.良好的工艺性和经济性

为了便于制造,刀具材料应有良好的工艺性,如锻造、热处理及磨削加工性能。当然在制造和选用时应综合考虑经济性。当前超硬材料及涂层刀具材料费用都较贵,但其使用寿命很长,在成批大量生产中,分摊到每个零件中的费用反而有所降低。因此在选用时一定要综合考虑。

如何选购钻石:外形美观(净度高,颜色白,切工好),性价比高。

金刚石刀具为什么不适合加工铁基材料

用金刚石刀具加工铁系材料,金刚石表面碳元素易与切屑、切割表面发生粘

附,导致刀具不锋利,引起加工区域温度升高,温度一高,加之有空气中的氧气,金刚石就容易发元素碳化,宏观表现为金刚石石墨化。

刀具材料的种类

1.高速钢:高速钢特别适用于制造结构复杂的成形刀具,孔加工刀具例如各类铣刀、拉刀、齿轮刀具、螺纹刀具等;由于高速钢硬度,耐磨性,耐热性不及硬质合金,因此只适于制造中、低速切削的各种刀具。高速钢按其性能分成两大类:普通高速钢和高性能高速钢。

2.硬质合金:硬质合金大量应用在刚性好,刃形简单的高速切削刀具上,随着技术的进步,复杂刀具也在逐步扩大其应用。

3.涂层刀具材料:硬质合金或高速钢刀具通过化学或物理方法在其上表面涂覆一层耐磨性好的难熔金属化合物,既能提高刀具材料的耐磨性,而又不降低其韧性。

4.其它刀具材料:

(1)陶瓷刀具:是以氧化铝(Al2O3)或以氮化硅(Si3N4)为基体,再添加少量金属,在高温下烧结而成的一种刀具材料。

(2)人造金刚石:它是碳的同素异形体,是目前最硬的刀具材料,显微硬度达10000HV。

影响材料硬度的因素:晶体结构,价键

测量刀具材料硬度的两种基本方式:洛氏,维氏。

洛氏硬度与维氏硬度区别:

1.洛氏硬度(HR)

洛氏硬度(Rockwell hardness)是美国人洛克维尔于1919年提出。试验方法是用一个顶角为120度的金刚石圆锥体或直径为1.59mm/3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕深度求出材料的硬度。根据实验材料硬度的不同,可分为三种不同标度来表示: HRA 是采用60Kg载荷和钻石锥压入被测工件测试工件硬度,用于硬度极高的材料,例如:硬质合金;HRB 是采用100Kg载荷和直径1.59mm/3.18mm淬硬的钢球求得的硬度,用于硬度较低的材料,例如:退火钢、铸铁、各种退火钢、正火钢、软钢、部分不锈钢及较硬的铜合金等;HRC 是采用150Kg载荷和钻石锥压入被测工件测试工件的硬度,用于硬度很高的材料,例如:淬火钢、回火钢、调质钢和部分不锈钢等,是金属加工行业应用最多的硬度试验方法。三种标尺的初始压力均为98.07N(10Kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(60Kgf);标尺B使用的是直径为1.588mm (1/16英寸)的钢球作为压头,然后加压至980.7N(100Kgf),因此标尺B 适用于较软的材料检测,标尺C适用于较硬的材料检测。

2. 维氏硬度(Vickers hardness)是表示材料硬度的一种标准,由英国科学家维克斯首先提出,表示为HV。以49.03~980.7N的负荷,将相对面夹角为136°的方锥形金刚石压入器压材料表面,保持规定时间后,用材料压痕凹坑的表面积除以负荷值,即为材料的维氏硬度值。它适用于较大工件和较深表面层的硬度测定。维氏硬度尚有小负荷维氏硬度,试验负荷1.961~49.03N,它适用于较薄工件、工具表面或镀层的硬度测定;显微维氏硬度,试验负荷<1.961N,适用于金属箔、极薄表面层的硬度测定

3. 洛氏硬度适合硬度较高的金属,比如热处理后的各种合金钢等。洛氏硬度对材料表面有一定要求.

维维氏硬度适合精确测量微区的硬度,通常用来检测金属渗碳后有效硬化层。

维式硬度要求测试表面平整度非常高,必须为抛光过的表面才行。

4. 维氏硬度试验测量范围较宽,从较软材料到超硬材料,几乎涵盖各种材料。洛氏硬度操作简便,可直接读数,且压痕较小,适用于批量、成品生产,但需多点测试,才能保证精度。

金刚石

晶体结构:立方结构,共价键

物理性质:颜色:由杂志决定,含微量硼为褐色,含Ni,Mn呈黄绿色,含氮呈黄色

密度:3.51525g/cm3

硬度:HV=105N/mm2各向异性(111)>(110)>(100)

其他性质:高杨氏模量、低压缩系数、高熔点、高导热率、低比热、低热膨胀系数

化学性质:化学稳定性:常温稳定;高温纯氧>600℃反应;高温空气>740℃反应

石墨化:真空和惰性气氛>1500℃;有氮气参与~1000℃

与过渡金属的化学作用:溶解C:过渡族金属(Fe、Co、Ni、Mn 及Pt系金属)

形成强碳化物:W、V、Ti、Ta、Zr等。

金刚石合成方法:直接转变、熔媒法、外延生长法。

合成压力与温度特点:静态高压高温法、动态(超)高压高温法、动态低压(常压)高温法、静压触媒法(压力5-7GPa、1300-1700℃

金刚石合成机理:

1.固相转变说:2700℃,13GPa。石墨直接转变为金刚石。金属触媒作用石墨转变金刚石(1200℃,5-7GPa)

2.溶剂说:碳和金属在高压高温条件下所形成的溶液对石墨是不饱和的,对金刚石的过饱和。

3.溶剂-催化说:石墨和触媒在高温高压下作用互相溶解,在碳原子表面形成金属薄膜,碳原子进入金属薄膜,然后在薄膜内触媒作用下,结构逐渐发生重排,以金刚石析出。

金刚石合成原料:

1.石墨:

较高石墨化程度(>90%);

高密度,有一定分布均匀的气氛(28%),促进分散溶解;

纯度高,有害杂质尽可能消除。

2.触媒材料:

对碳的溶解度和扩散系数要大,不形成稳定的碳化物,合金化

活性好,易于催化碳原子sp2向sp3转化

晶格常数接近金刚石,与碳的共晶温度低,比电阻值大

晶粒度大小均匀,与石墨相匹配

3.传压介质

叶腊石:四面体SiO2连续层状结构含水硅铝酸盐:Al2O3·4SiO2·H2O

高密度,有一定分布均匀的气孔(28%)

叶腊石在高温高压下相变引起体积收缩、引起内部压力下降、摩擦力增加,加入氯化钠。白云石等形成符合传压介质。

金刚石应用:

1.金刚石磨具:利用金刚石磨削、研磨或抛光的工具

粘结剂:树脂、金属和陶瓷等

提高寿命及精度

2.金刚石锯切工具:圆锯片和圆绳锯

3.金刚石钻头

4.单晶金刚石刀具

聚晶金刚石的性质:

高硬度、好的耐磨性

摩擦系数小

热膨胀系数小

与有色金属和非金属材料的亲和性小

聚晶金刚石的应用:

1. 聚晶金刚石刀具

加工对象:非铁金属(Al及合金、铜及合金、硬质合金、钛、镁等各种有色金属及合金)、非金属材料(木材、增强塑料、橡胶、石墨、陶瓷)

优点:

●聚晶金刚石层晶粒呈无序排列,各向同性,无解理面

●PCD复合片有硬质合金衬底支撑,既弥补了PCD强度差的缺点,又使PCD

焊接性差的问题迎刃而解

●可制备不同尺寸以及复杂异形刀坯材料

刀具的选择:

●PCD的性能与金刚石的晶粒尺寸及结合剂的含量有关,结合剂越多,硬度

越差。晶粒尺寸越大,耐磨性越好,但刃口质量稍差,难以制成高精度刀具。相反,用细晶粒PCD制成的刀具、刃口质量好。

●PCD粒度的选择与刀具加工条件有关,如设计用于精加工或超精加工的刀

具时,应选用细晶粒的PCD。粗晶粒PCD刀具则可用于一般的粗加工

2. 聚晶金刚石拉丝模

3. 聚晶金刚石钻头

金刚石涂层制备:

通常条件下,石墨的生长速率远大于金刚石的生长速率其竞争生长使石墨覆盖了任何可能形成的金刚石晶核。过饱和氢和碳气氛的混合气体等离子体活化的作用下,在衬底上沉积金刚石。

提高形核密度:金刚石形核的有利位置是高能的表面缺陷及各种类金刚石结构的碳基团族或衬底研磨留下的磨料颗粒(金刚石研磨膏)。

●对基体进行表面预处理如用金刚石研磨膏或其他磨料机械研磨或超声处

理、离子注入或在基体上形成蹲便和缺陷等;

●对基体施加偏;

●沉积过渡层。

氮气的作用:

●使其激活、离化成氢原子,有助于有机气体碳化物的离解,以利用产生

活性的甲基原子团的化学反应

●有利于稳定金刚石的sp3键,不利于形成石墨的sp2键

●氢原子对膜层中生成的石墨具有很强的刻蚀作用,可以除去膜层中的石

墨保留膜层中的金刚石。

涂层制备方法:

●火焰法:沉积速率高、面积小、石墨含量高

●(直流、微波、射频……)等离子体法:沉积温度<700℃,沉积速率较

快,沉积面积大,但设备费用及涂层成本高

●热丝法:灯丝电流加热,离化气体,在衬底偏压作用下生成金刚石,设

备简单,成本低,沉积面积大,适合工业化生产。

热丝法:

◆沉积温度:5000-1000℃,过低生成类金刚石(DLC),过高生成无定型碳

和石墨

◆气源成分:含碳氢(CH2、C2H2、C3H3OH)和氢气构成的混合气体,气体中

碳含量在0.1%-10%之间。过低,降低金刚石涂层的形核密度和生长速率;

过高,石墨相增加

◆气体温度:促进气体活化,成为热等离子体状态

◆衬底偏压:增加沉积离子能量

◆气体压强:过高、过低均会促进石墨相的形成

1.PCD合成选用Co做粘结剂:Co使PCD易于粘结,随着合成的进行,Co粉会扩散至表面易于除去粘结剂,残留在PCD中的Co很少。

2.在金刚石表面沉积能得到更大的金刚石吗?

a.沉积时应力较大,涂层会脱落。

b.即使未脱落,也难以得到纯净的金刚石涂层。

3.钢刀具基体主要问题:

1.沉积涂层时,活化的含碳气体和铁基衬底基础时,因铁对碳的形成有强的催化作用,促进sp2杂化的无定型碳和石墨的生长;

2.碳在铁基材料中的扩散系数高,易在表面附近生成铁的碳化物,使衬底表面变脆,严重降低其使用性能;

3.金刚石涂层和铁基衬底有如前所述的含碳层以及金刚石和铁基材料的热导率差别很大,降低涂层和铁基材料的结合强度。

解决办法:过渡层:CrN、SiC、AlN、TiN、渗碳(氮、铬、硅、铝)等

硬质合金基体主要问题:

1.硬质合金的粘结相Co对碳有较高的固溶度,只是金刚石涂层不易形核;

2.Co(其他过渡层金属)促进石墨相形成,降低结合强度;

3.热膨胀系数不匹配,结合强度差。

解决办法:

1.用酸溶液侵蚀去除表面Co层

2.添加过渡层

3.采用低Co或无Co性质合金

4.激光处理:表面粗糙化和选择性蒸发Co

5.化学热处理:渗硼,形成硼化物过渡层

4.类金刚石的适用温度和原因:

a.在高温下,sp3会向sp2转化,且sp3含量越高,转化速度越快

b.含H的稳定性更差,100℃便开始转化

5.人造金刚石的生成条件及触媒加入后的条件?

2700℃,13GPa;1200-1700℃,5-7GPa。

6.什么叫做聚晶金刚石PCD?

细晶粒金刚石(单晶金刚石微粉副产品)和粘结剂通过高温高压方法烧结

7.金刚石涂层中H的作用?

a.使其激活,离化成氢原子;

b.有利于稳定金刚石sp3键;

c.刻蚀石墨相

金刚石涂层应用:

?刀具:硬度高、模量高、摩擦系数低

?半导体器件:好的电绝缘体

?光学应用:透射光谱带宽,抗辐射损伤性强,促进气体活化,成为等离子态。

?热学:热导率最高的材料

类金刚石涂层:

分类:非晶碳(a-C);含氢的非晶碳(a-C:H);四面体非晶碳(ta-C)

与金刚石涂层相比,DLC是非晶态,没有晶界,所以涂层相当光滑致密,没有晶界缺陷,可以作为很好的耐腐蚀涂层。DLC可在常温沉积,DLC涂层内应力大,与基体结合差,因此厚度不能太厚,特别是在铁基材料和硬质合金基体。(1.基体表面预处理,清洁抛光,Ar离子刻蚀等;2.碳化物过渡层或

梯度结构;3.多层涂层。)

类金刚石涂层性能:

?力学性能:硬度、模量(sp3和sp2的比例)、结合强度、摩擦磨损、内应力、耐腐蚀性能。

?热稳定性能:H释放:含H30%在空气中。100℃开始,400℃完全析出;

真空400℃开始,800℃完全

a-C涂层sp3和sp2转化:随sp3键降低而降低,含80% sp3键1000℃稳定,含60% sp3键400℃开始石墨化

添加Si可阻止金刚石涂层石墨化。

立方氮化硼(cBN)

物理性质:

?颜色:由杂质决定

?密度:3.48g/cm3

?硬度:HV72-98GPa

?晶体结构:与金刚石相同

?其他性质:良好的热稳定性(>1400℃)、化学惰性、高热导率等

化学性质:

?化学稳定性:抗氧化想>1400℃,化学惰性

?热稳定性

BN晶体结构:

?六方氮化硼h:石墨类似结构

?菱方氮化硼r:具有六方氮化硼相同性质,易于向CBN转变

?立方氮化硼c:类似金刚石晶体结构

?纤锌矿氮化硼w:一个平面是硼原子,一个平面是氮原子。

合成机理:

溶剂学说:hBN溶于由hBN与触媒形成的中间相中,由于cBN在中间相中的溶解度小于hBN故而形成cBN的过饱和溶液,使得cBN以井体的形式在过饱和溶液中析出

固相转变学说:hBN不经融化由固相直接转变为cBN,7GPa压力下温度降至900℃

PcBN的性质:

硬度:HV3000-5000

热稳定性:1400℃

抗氧化性:>1000℃

导热性:仅次于PCD,随温度升高增加

摩擦系数:切削速率提高,摩擦系数减小

PcBN合成方法

1.直接转化法

由单晶cBN直接聚结形成聚晶立方氮化硼所需的温度和压力相当高,在无粘结剂条件下合成PcBN需要在8GPa和1800-2200℃的条件下进行合成。

2.烧结法

用单晶cBN粉在添加结合剂(钴、镍、TiC、TiN、Al/Al2O3、ALN等)的情

况下高压高温烧结方式(5-6GPa和1200-1500℃)

结合剂选用原则:

?低熔点原则:熔融的结合剂在温度超过熔点不多和高压作用下,仍保留

有序结构并能渗透到各cBN晶粒间,与cBN晶粒有良好的湿润性,有利于与cBN晶面充分接触而扩大烧结面;

?与cBN粒子起适量反应形成硬度高、热导性好、耐磨的高熔点化合物原

则;

?结合剂中应含有能消除氧或其他杂质对cBN的污染;

?能填充cBN晶粒间的间隙,阻碍或抑制cBN颗粒烧结对成长,特别是在

制造用于加工PcBN刀具材料时,阻碍和抑制超细cBN晶粒的长大很是重要。

PcBN应用:

1.整体PcBN刀具

2. PcBN复合刀具

立方氮化硼涂层制备方法:真空蒸镀;溅射;离子镀;离子束震动沉积;CVD 涂层结构:

?非晶层:a-BN

?t-BN过渡层:六角(h-)BN或石墨结构BN

?c-BN

主要问题:

?结合强度低、涂层直接脱落。解决:高的基体偏压提高涂层应力,沉积

过渡层

?生长的涂层厚度薄。解决:h-BN(B4C或B)靶+N2、Ar或者两者的混合气

?非c-BN相存在(底层sp2涂层存在)

?成分偏离化学配比

?成核和生长机理不清楚

涂层性能:

?硬度:一般获得的非晶涂层为β-C3N4和a-C3N4的混合结构,最高硬度达

到73GPa。β-C3N4的含量越高,硬度越大。C、N比也会影响其硬度。

?低的摩擦性能

?高的抗腐蚀性和耐热性

多层涂层是由两种或两种以上具有不同成分或结构的涂层在垂直于涂层一

维方向上相互交替沉积生长而形成的多层结构。

调制周期:纳米多层涂层中每相邻的两层形成一个基本的重复单元。

调制比:在一个重复单元中,调制层A厚度和调制层B厚度的比值

通常将调制周期小于100nm的多层涂层称为纳米多层涂层。

纳米多层膜强化理论:

1.模量差理论和位错的层内滑移:在具有不同剪切模量的材料中,为位错线能量不同。在多层膜中,位错将停留在具有低剪切模量的材料涂层中,只有在外应力作用下才能使其进入具有高模量的调制层内,也就是说位错穿过界面时将受到映向位错对其施加的映向力作用。

2.Hall-Petch强化理论:用于解释多晶中晶粒尺寸和强度的关系,多层涂

层的变形随着位错在层内的运动随着涂层厚度的减小,层内位移数量也减小,开动这些位移所需的应力相应地减小。当层厚大于某一临界值后,在存在晶

格失配的多层膜中将会产生位错阵列,位错阵列对位错运动的阻滞导致材料强度增加。

3.共格应变理论:多层涂层间因点阵错配而产生的共格应变是导致硬度升高的主要原因。

超点阵涂层种类:

?同构纳米多层涂层:涂层的两种组成材料的晶体结构相同

同构纳米多层涂层膜调制层间很容易形成共格界面,但是在高温时会发生很快的层间扩散,从而导致多层涂层硬度增量的消失。

?异构纳米多层涂层:涂层的两种组成材料的晶体结构不同

异构纳米多层涂层满足共格条件时,也常形成低能共格界面,这种异构共格界面对其高温下的结构稳定性有重要意义,然而当两调制材料的晶格错错配度较大时,共格界面就难以形成。

共格界面的形成:

界面能:晶体结构、晶体错配度

应变能:厚度增加而增加

TiAlN是目前应用最广泛的切削刀具涂层材料。

性能:

硬度:-30GPa

热稳定性:>1000℃

抗氧化温度:<850℃

三次函数的性质及在高考中的应用(附解答)

三次函数的性质及在高考中的应用 一、三次函数的常用性质 性质1:函数y ax bx cx d a =+++320()≠, 若a >0,当?≤0时,y =f(x)是增函数;当?>0时,其单调递增区间是(][)-∞+∞,,x x 12,单调递增区间是[]x x 12,; 若a <0,当?≤0时,y f x =()是减函数;当?>0时,其单调递减区间是(]-∞,x 2,[)x 1,+∞,单调递增区间是[]x x 21,。 推论:函数y ax bx cx d a =+++320()≠,当?≤0时,不存在极大值和极小值;当?>0时,有极大值f x ()1、极小值f x ()2。 根据a 和?的不同情况,其图象特征分别为: 性质2:函数y ax bx cx d a =+++320()≠是中心对称图形,其对称中心是(--b a f b a 33,())。 二、三次函数的性质在高考中的应用 高考试题对三次函数主要考查:函数图象的切线方程,函数的单调性,函数的极值,函数的最值,证明不等式,函数零点的个数等。 1.(2004重庆卷)设函数()(1)(),(1)f x x x x a a =--> (1)求导数/()f x ; 并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤恒成立,求a 的取值范围。 2. (2008福建卷)已知函数321()23 f x x x =+-. (1)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求 证:点(n ,S n )也在y =f ′(x )的图象上; (2)求函数f (x )在区间(a -1,a )内的极值.

超硬材料的结构特征与材料硬度的关系

超硬材料的结构特征与材料硬度的关系 材料中的化学键按其特性可分成三类:即金属键、共价键和离子键材料。一般说来,共价键材料具有最高的硬度;离子键材料具有较好的化学稳定性;金属键材料具有较好的综合性能。 材料硬度的大小,主要决定于物质内部结构中原子间结合力的强弱。结合力越强,抵抗外力作用的强度就越大,材料的硬度就越高。金属键一般不很强,故金属键结合成的材料硬度通常不高。共价键则因其键力很强,所以共价键结合成的材料均具有很高的硬度,如金刚石是世界上最硬的材料。离子键的键力较强,因而离子键材料有较高的硬度。 材料的硬度与材料的内部结构特征如离子半径、价键、配位数有关。其规律如下: ①对于结合力类型相同的材料,其离子半径减小,硬度也可提高; ②离子电价高,键力提高,硬度也可提高; ③质点堆积越紧密,密度越大,硬度越高; ④阳离子配位数越高,硬度越高。 1.元素的共价半径 元素周期表中给出了元素的共价半径。共价半径小,材料硬度高。为什么碳是最符合生成超硬材料的元素呢?下面我们分析一下元素的性能。 ①惰性气体 它们是满壳层的元素,其化合价为零,通常呈气态,可用降温或加压的方式使其变为液态,但是除去温度、压力条件则又变成气体,所以它很难变为超硬材料。 ②氢 在通常状况下呈气态。氢原子(H)只有一个电子,当它与其他原子(x)形成共价键后,氢核就暴露在外面,于是可通过库仑作用再与其他电负性较大的原子(Y)相结合。因而,氢键可表示为X —H —Y 的形式。当X 与H 结合时,形成共价键x —H ,结合得紧密;当H 再与Y 结合时,形成氢键,结合力弱。尽管氢还可以通过特殊的形式形成有诸多性能的固态金属氢,但它没有超硬的性能。 ③第二周期中的元素 当把第二周期以外的元素分析过之后,就余下第二周期的锂(Li )、铵(Be)、硼(B)、碳(C)、氮(N)、氧(O)、氟(F)等几种元素了,它们的共价半径见表1—3。 对于N ,O ,F :通常呈气态,凡气体从其特性出发,不可能形成超硬的材料。 对于Li ,Be ,B :它们的共价半径均大于碳,若从共价半径小,硬度高的规律来考虑,就只剩下碳元素了。 综上所述,碳是最符合生成最坚硬物质的元素。 2.价键 从价键的观点出发,半满键的碳,呈4价,它既可“捕获”4个电子变成稳定态,也可“奉献”4个电子而呈稳定态。因此,碳通常以共价键结合,具有很高的硬度。 (1)杂化轨道理论 杂化轨道是相当普遍的原子结合形式之一。杂化轨道理论最先是由鲍林(Paning L)和斯来托(Slater J .C)于1931年提出的。鲍林把d 轨道组合进去,得到了s —p —d 杂化轨道(图l —3)。唐敖庆等把f 轨道组合进去,得到了s —p —d —f 杂化轨道,使该理论更加完善。对金刚石而言,仅讨论s —p 轨道杂化,而不去讨论d —f 更为复杂的杂化轨道。 在量子力学里有叠位原理和简并状态,如金刚石的3 sp ,可写为s 、x p 、y p 、z p ,它

《合金固态相变》教学大纲

《合金固态相变》教学大纲 课程编号:2080113 学时:40 (实验学时另计,8学时) 学分:2.5 一、课程基本情况 1.课程名称:合金固态相变 2.课程性质:必修课程 3.适用年级专业:四年制材料科学与工程、材料成型与控制工程专业,三年级本科生 4.先修课程:材料科学基础、金属学、物理化学 5.教材:“合金固态相变”,赵乃勤主编,中南大学出版社,2008 6.开课单位:材料科学与工程学院 二、课程性质目的、任务和基本要求 1.性质目的和任务 固态相变是材料科学与工程专业的主要专业课之一,它是以物理、数学、物理化学和金属学原理等课程为基础,着重讲授与合金固态相变有关的基本理论,主要包括金属(特别是钢)在加热、冷却过程中相变的基本原理和规律以及组织结构与性能之间的关系,为提高产品质量、充分发挥现有材料的潜力、合理制定热处理工艺、发展新材料和新工艺打下坚实的基础。本课程的内容应适当反映现代固态相变理论的发展和成就。 2. 课程的基本要求 学生通过学习本课程,应达到:1.掌握金属材料中相变的基本理论,重点是钢中组织转变的基本规律;2.有运用金属材料中相变基本规律,分析和研究金属热处理工艺问题的能力; 3.初步掌握成分组织与性能之间的关系,从而对金属材料具有一定的分析和研究能力。 三、课程教学环节、内容及学时分配 (一)课程内容 第一章绪论 合金固态相变的定义。金属固态相变在工业中的地位和作用。本课程的研究对象、内容以及与其它课程的关系。 教学重点:固态相变的一般特征,包括驱动力和阻力,相变的形核、长大、扩散、相界面等。 第二章合金固态相变的常用研究方法 具体介绍研究物相类型、分布和相变过程的各种手段。 教学重点:材料的物相种类、相分布和相变过程所采用的不同研究手段,并对各研究手段在相变研究中的用途和基本原理有所了解。

高三数学三次函数的性质以及在高考中的应用

三次函数的性质以及在高考中的应用 三次函数y ax bx cx d a =+++320()≠已经成为中学阶段一个重要的函数,在高考和一些重大考试中频繁出现有关它的单独命题。2004年高考,在江苏卷、浙江卷、天津卷、重庆卷、湖北卷中都出现了这个函数的单独命题,特别是湖北卷以压轴题的形式出现,更应该引起我们的重视。单调性和对称性最能反映这个函数的特性。下面我们就来探讨一下它的单调性、对称性以及图象变化规律。 函数y ax bx cx d a =+++320()≠的导函数为y ax bx c '=++322。我们不妨把方程3202ax bx c ++=称为原函数的导方程,其判别式?=-432()b ac 。若?>0,设其两根为 x b b ac a x b b ac a 12223333=---=-+-、,则可得到以下性质: 性质1:函数y ax bx cx d a =+++320()≠, 若a >0,当?≤0时,y =f(x)是增函数;当?>0时,其单调递增区间是(][)-∞+∞,,x x 12,单调递增区间是[]x x 12,; 若a <0,当?≤0时,y f x =()是减函数;当?>0时,其单调递减区间是(]-∞,x 2, [)x 1,+∞,单调递增区间是[]x x 21,。 (证明略) 推论:函数y ax bx cx d a =+++320()≠,当?≤0时,不存在极大值和极小值;当?>0 时,有极大值f x ()1、极小值f x ()2。 根据a 和?的不同情况,其图象特征分别为: 图1 性质2:函数f x ax bx cx d a x m n ()()[]=+++∈32 0≠,,,若x m n 0∈[],,且f x '()00=,则: f x f m f f n ()m a x {()()()}max =,,0; f x f m f x f n ()m i n {()()()}min =,,0。 (证明略) 性质3:函数y ax bx cx d a =+++320()≠是中心对称图形,其对称中心是(--b a f b a 33,())。

浅析中国文化现状及未来的发展方向

浅析中国文化现状及未来的发展方向1978年改革开放以后,中国的经济进入了飞速发展的时代,目前已经成为全球第二大经济体。但是,与飞速发展的经济不相适应的是,中国在文化方面的发展一直起色不大,成为了制约中国均衡和可持续发展的关键因素。在十八大政府报告上,党中央明确提出了深化文化体制改革,促进社会主义文化大发展大繁荣的发展战略,吹响了新时代促进中华民族伟大复兴的号角。 想要把握中国文化的发展脉搏,首先需要对中国文化的现状加以了解,发扬长处,克服短处,才能更好地满足中国人民文化方面的需 求,进一步向全世界展现一个文明,负责的大国形象。 关于中国文化发展中的不足,我总结了如下几个方面: 一、创新性不足。 这一点在中国的影视业中尤为明显,遍观中国这几年比较有影响的几部大片,类似于《英雄》,《卧虎藏龙》,《满城尽带黄金甲》,《赤壁》等影片,总是摆脱不了宫廷片,历史片,武打片等范畴,尤其是《笑傲江湖》,《龙门客栈》等电影的一再翻拍,更是将这一问题反映的淋漓尽致。 不光是电影,连电视节目也是如此,春晚缺乏创新性的言论在这些年中被提了好多次,许多青年人反映春晚越看越没意思,固定的套路,不变的人物,较少的参与度,使得春晚的可观赏性越来越差,而与之相对应的山寨春晚却越来越红火。不得不令我们更加重视这个问题。 二、技术落后,基础设施不完善。 这是一直困扰中国文化发展的重要因素之一,如果说思想性是文化发展的软件,那么技术和设施就是硬件。文化的传播与交流需要技术的支持,中国的造纸术与印刷术在以前被称为改变世界的发明,正是由于他们使文化的广泛传播成为可能。 而在近代,技术的落后,基础设施的短缺却成为了制约中国文化进一步发展的障碍,举个例子,现在人们看电影时十分热衷于3D电影,但是中国的3D技术并不是十分成熟,应用也并不广泛,当外国的电影以火爆的场景,绚丽的特技,身临其境般的感受牢牢吸引住中国观众时,中国电影市场却无法及时挽回观众,长此以往,必将为外国的文化侵略创造条件,影响十分深远。

超硬材料报告

超硬材料的性能和应用 材料成型及控制工程2009级2班张天珍学号:20091420224 摘要:超硬材料在工业发展进程中扮演了至关重要的角色。随着时代发展和技术的更新,将越来越受到人们的关注。本文立足事实基础,以超硬材料多年的发展历史为背景,详细介绍了超硬材料的基本性能以及在工业、军工、航空航天、电子、机械、汽车、机床工具、精密制造、医疗、石材、建材等方面的应用。重点介绍了金刚石和立方氮化硼的性能和应用关键词:超硬材料金刚石立方氮化硼性能应用 1、引言 金刚石及立方氮化硼称为超硬材料,是因为它们具有超凡的高硬度特性。金刚石是自然界已知物质中最硬的物质, 还具有高绝缘性、优异的耐磨性和良好的导热性。立方氮化硼的硬度仅次于金刚石, 还具有高耐磨、低摩擦系数、优异的耐热性和化学稳定性,特别是对铁族金属呈化学惰性,尤其适合于加工硬而脆的铁族金属材料。立方氮化硼的这一特点是金刚石所不能比拟的。这样, 立方氮化硼就以其独特的优越性与金刚石相互补充,构成了超硬材料的两大体系。超硬材料具有其他材料无可比拟的优异力学、热学、光学、声学、电学和生物等性能,享有“材料之王”赞誉,是用途广泛的极端材料,不仅可加工世界上所有的已知材料,而且可制成性能极端的功能性器件,在诸多应用领域具有不可替代性。超硬材料及制品已广泛应用于军工、航空航天、电子、机械、汽车、机床工具、精密制造、医疗、石材、建材、机场、清洁能源、高速铁路、公路、石油与天然气钻井、地质勘探、煤炭及矿物采掘、救灾抢险、家庭装修等国计民生的各个领域。 2、金刚石的性能和应用 2.1金刚石的发展史 人类最早发现先金刚石是在公元前800年,但直到18实际末,才开始对金刚石有了系统科学的研究。法国人拉瓦锡发现金刚石可燃烧,英国人费南腾研究证实金刚石是碳的同素异形体。1955年由美国通用电气公司首次以石墨为原料在高温高压条件下合成出金刚石,从此,工业技术领域进入新的时代。 2.2金刚石的性能 金刚石是自然界已知物质中硬度最高的材料。莫氏硬度为10 ,是石英8.5倍,刚玉的4.4倍,立方氮化硼的1.56倍。特别指出,(111)面的硬度大于(110)

中国有色金属牌号和状态

中国有色金属牌号和状态 牌号是对产品的命名,是用来识别产品的名称、符号、代号或它们的组合,一般应尽可能直观地显示产品的类别、品种、状能或性能等。 状态表明金属或合金经受各种方式的加工和热处理之后具有物理和(或)力学性能的特征状况。 有色金属材料或牌号和状态的表示方法有其一定的规律。随着我国对外交往日渐广泛,涉及有色金属牌号和状态的情况日益增多,现将中国各国际标准化组织(ISO)关于有色金属材料牌号和状态的表示方法说明如下。 中国有色金属料材牌号表示方法 1. 总则 在编制有色金属及合金产品的牌号、代号时,应遵循以下原则。 1.在编写产品技术标准时,所涉及的产品牌号、合金代号等必须按国家标准GB340-76『有色金属及合金产品牌号表示 方法』的规定表示和编写。GB340-76未规定的有色金属及合金产品的牌号、代号,应根据该国家标准规定的原则编制,并报标准主管部门审核。 2.产品牌号的命名,以代号字头或元素符号后的成分数字或顺序号结合产品类别或组别名称表示。 3.产品代号,采用GB340-76规定的汉语拼音字母(见表1、表2)、化学元素符号及阿拉伯数字相结合的方法表示。 采用的汉语拼音字母,原则上只取第一个汉语拼音字母。若这个字母与另一个符号重复时,则取第一个汉语拼音的第二个字母(或第三个字母),或者同时取前两个汉语拼音的第一个字母。 4.产品的统称(如铝材、铜材)、类别(如黄铜、青铜)以及产品标记中的品种(如板、管、棒、线、带、箔等),均用汉 字表示。 表1: 常用金属、合金名称及其汉语拼音字母的代号

铜铜tong T 大写铝铝lu L 大写镁镁mei M 大写镍镍nie N 大写黄铜黄huang H 大写青铜青qing Q 大写白铜白bai B 大写钛及钛合金钛tai T 大写表2: 专用金属、合金名称及其汉语拼音字母的代号 名称采用的汉字及汉语拼音采用代号字体 汉字汉语拼音 防锈铝铝、防lu fang LF 大写锻铝铝、锻lu duan LD 大写硬铝铝、硬lu ying LY 大写超硬铝铝、超lu chao LC 大写特殊铝铝、特lu te LT 大写硬焊焊铝铝、lu qian LQ 大写无氧铜铜、无tong wu TU 大写金属粉末粉fen F 大写喷铝粉粉、铝、喷fen lu pen FLP 大写涂料铝粉粉、铝、涂fen lu tu FLU 大写

国内外研究现状及发展趋势

国内外研究现状及发展趋势 世界银行2000年研究报告《中国:服务业发展和中国经济竞争力》的研究结果表明,在中国有4个服务性行业对于提高生产力和推动中国经济增长具有重要意义,它们是物流服务、商业服务、电子商务和电信。其中,物流服务占1997年服务业产出的42.4%,是比重最大的一类。进入21世纪,中国要实现对WTO缔约国全面开放服务业的承诺,物流服务作为在服务业中所占比例较大的服务门类,肯定会首先遭遇国际物流业的竞争。 物流的配送方式从手工下单、手工核查的方式慢慢转变成现今的物流平台电子信息化管理方式,从而节省了大量的人力,使得配送流程管理自动化、一体化。 当今出现一种智能运输系统,即是物流系统的一种,也是我国未来大力研究的方向。它是指采用信息处理、通信、控制、电子等先进技术,使人、车、路更加协调地结合在一起,减少交通事故、阻塞和污染,从而提高交通运输效率及生产率的综合系统。我国是从70年代开始注意电子信息技术在公路交通领域的研究及应用工作的,相应建立了电子信息技术、科技情报信息、交通工程、自动控制等方面的研究机构。迄今为止以取得了以道路桥梁自动化检测、道路桥梁数据库、高速公路通信监控系统、高速公路收费系统、交通与气象数据采

集自动化系统等为代表的一批成果。尽管如此,由于研究的分散以及研究水平所限,形成多数研究项目是针对交通运输的某一局部问题而进得的,缺乏一个综全性的、具有战略意义的研究项目恰恰是覆盖这些领域的一项综合性技术,也就是说可以通过智能运输系统将原来这些互不相干的项目有机的联系在一起,使公路交通系统的规划、建设、管理、运营等各方面工作在更高的层次上协调发展,使公路交通发挥出更大的效益。 1.国内物流产业发展迅速。国内物流产业正处在前所未有的高速增长阶段。2008年,全国社会物流总额达89.9万亿元,比2000年增长4.2倍,年均增长23%;物流业实现增加值2万亿元,比2000年增长1.9倍,年均增长14%。2008年,物流业增加值占全部服务业增加值的比重为16. 5%,占GDP的比重为6. 6%。预计“十一五”期间,我国物流产业年均增速保持在15%以上,远远高于美国的10%和加拿大、西欧的9%。 2.物流专业化水平与服务效率不断提高。社会物流总费用与GDP 的比例体现了一个国家物流产业专业化水平和服务效率。我国社会物流总费用与GDP的比例在近年来呈现不断下降趋势,“十五”期间,社会物流总费用占GDP的比例,由2000年的19.4%下降到2006年的18. 3%;2007年这一比例则下降到18. 0%,标志着我国物流产业的专业化水平和服务效率不断提高。但同发达国家相比较,我国物流

超硬材料及制品的基本知识

超硬材料及制品基本知识 一、超硬材料概念:对于超硬材料的含义至今没有一 个公认为满意的解释。1981年国际硬物质科学会议认为,硬度大于1000HV的物质均可称为硬物质,这就自然包括了金刚石和立方碳化硼。后来对这个定义进行了补充,认为能加工诸如硬质合金(硬度1600—1800HV)、刚玉(—2000HV)、碳化硅(—2200HV)等这一类物质的材料称为超硬材料。目前由于金刚石和立方氮化硼等材料有其极高的硬度,所以统称为超硬材,具有硬度高、耐磨和热传导性能好、热膨胀系数低等优异性能。 二、超硬材料的分类:分为单晶超硬材料和聚晶超硬 材料(也称为“复合超硬材料”)及3.金刚石薄膜三类。 单晶超硬材料和聚晶超硬材料的主要区别为:单晶金刚石/立方氮化硼材料的特点为硬度更高、耐热性更好,但尺寸较小,多用于制造锯片等切割工具;聚晶金刚石/立方氮化硼是指以金刚石和立方氮化硼微粉等单晶超硬材料为主要原料,添加金属或非金属粘结剂通过超高压高温烧结工艺制成的聚晶复合材料。它的特点是硬度、耐热性略逊于单晶材料,但是由于聚晶超硬材料是内部结构紧密的金刚石致密体,可以增加工具的切割面积,同时克服了单晶超硬材料由于粘结面积小造成的轻易从锯片表面脱落的弊端,具有更高的耐磨性。 金刚石薄膜是用化学气相沉积(CVD)法或其它方法在非金刚石衬底上制备出的超硬薄

膜。它不仅可用于制作各种金刚石刀具,还可作为功能材料用于制作声传感器、扬声器振动膜、红外窗口、X光检测窗口等,应用领域十分广泛。国际上从七十年代初开始进行金刚石薄膜的试制并迅速掀起金刚石薄膜研究开发热潮。我国从八十年代中期开始此项研究,并已列入国家“863计划”,现已能制备出80mm、厚2mm的金刚石薄膜,并在应用研究方面取得了不少成果,但目前总体上仍处于研制阶段,尚未达到工业化应用阶段。有人预计,金刚石薄膜将是21世纪金刚石工业的主要材料,各国科学家都在为使金刚石薄膜产业化而不懈努力。 三、金刚石按用途分为两类:质优粒大可用作装饰品的称宝石级金刚石,质差粒细用于工业的称工业用金刚石。 宝石级金刚石,又称钻石,光泽灿烂,晶莹剔透,被誉为“宝石之王”,价值昂贵,是世界公认的第一货品,其占有程度和消费水平往往被视为是衡量个人和国家经济富裕程度的标志。达不到宝石级的金刚石(工业用金刚石),以其超硬性广泛用于机电、光学、建筑、交 ?总的来说,复合超硬材料相对于传统合金材料具有强大的替代性,市场潜力更大,广泛应用于机械、冶金、地质、石油、煤炭、石材、建筑等传统领域,电子信息、航天航空、国防等高技术领域以及汽车、家电等新兴产业。 1.1复合超硬材料的主要产品用途?当前,复合超硬材料的产品主要分为四类:石油天然气钻头用聚晶金刚石复合片、煤田矿山用聚晶金刚石复合片、聚晶金刚石高品级拉丝模坯和刀具用聚晶金刚石/聚晶立方氮化硼复合片。 (1)石油天然气钻头用聚晶金刚石复合片 石油天然气聚晶金刚石复合片是由无数微小金刚石颗粒和粘结剂混合组成的切削层和硬质合金衬底层在高温高压下烧结合成的,具有很高强度、硬度、耐磨性、抗冲击

有色金属分类及牌号表示

有色金属分类及牌号表示方法 一、有色金属的分类 (1)有色纯金属 分为重金属、轻金属、贵金属、半金属和稀有金属五类。 (2)有色合金 按合金系统分:重有色金属合金、轻有色金属合金、贵金属合金、稀有金属合金等;按合金用途则可分:变形(压力加工用合金)、铸造合金、轴承合金、印刷合金、硬质合金、焊料、中间合金、金属粉未等。 (3)有色材 按化学成份分类:铜和铜合金材、铝和铝合金材、铅和铅合金材、镍和镍合金材、钛和钛合金材。按形状分类时,可分为:板、条、带、箔、管、棒、线、型等品种。 二、产品牌号的表示办法 (1)命名原则 有色金属及合金产品牌号的命名,规定以汉语拼音字母或国际元素符号作为主题词代号,表示其所属大类,如用L或AL表示铝,T或Cu表示铜。主题词以后,用成份数字顺序结合产品类别来表示。即主题词之后的代号可以表示产品的状态、特征或主要成份,如LF为防(F)锈的铝(L)合金;LD为锻(D)造用的铝(L)合金;LY为硬(Y)的铝(L)合金,这三种合金的主题词是铝合金(L)。又如QSn为青(Q)铜中主要的添加元素为锡(Sn)的一类;QAL9-4为青(Q)铜中含有铝(AL),成分中添加元素铝为9%,其他添加元素为4%,这两种合金的主题词是青铜(Q)。因此,产品代号是由标准(GB340-78)规定的主题词汉语拼音字母、化学元素符号及阿拉伯数字相结合的方法来表示。见表1及表2: 表1 常用有色金属和合金元素的名称及代号 表2 专用有色金属合金名称及其代号

有色金属及合金产品的状态、加工方法、特征代号,采用规定的汉语拼音字母表示。如热加工的R(热),淬火的C(淬),不包铝的B(不),细颗粒的X(细)等。但也有少数便外,如优质表面O(形象化表示完美无缺)等。其状态、特性代号见表3。 表3 有色金属及合金产品的状态、特性代号 (2)牌号表示方法举例见表4 表4 有色金属和合金产品的牌号表示方法举例

金属材料工程专业指导性培养方案

金属材料工程专业指导性培养方案 部门:机械与汽车工程学院 部门负责人:许德章 审核:陶庭先 校长:干洪 制订日期:2013年4月 一、培养目标与基本要求 培养目标: 本专业培养德智体美全面发展、诚信实干、基础扎实、实践能力强、综合素质高、具有创新精神,具备金属材料基础理论、铸造及热处理、表面工程等专业方向相关的工程技术知识,能在冶金、金属材料的制备、金属材料的铸造成型及热处理、材料结构研究与分析、材料表面处理等领域从事科学研究、技术与产品开发、工艺和设备设计、生产和经营管理等方面的应用型高级工程技术人才。 基本要求: 1、热爱社会主义祖国,拥护中国共产党的领导,树立正确的人生观、世界观和价值观,具有良好的思想品德、社会公德和职业道德。 2、掌握专业所需的基础科学理论知识,掌握本专业扎实的专业基础理论及必要的专业知识,具有本专业所必需的基本技能,具有良好的业务素养。 3、掌握科学的思维方法,具有创新能力和较强实践能力,具有较强的终身学习能力、获取及处理信息能力。 4、具有良好的心理素质和适应能力,掌握科学锻炼身体的基本技能,受到必要的军事训练,达到国家规定的大学生体育和军事训练合格标准。 毕业生应获得的知识和达到的能力: 1、掌握金属材料的铸造成型及热处理、材料表面处理、材料耐蚀与磨损的基础理论,以及表面处理、腐蚀与防护、耐蚀与磨损等方面的专业知识和技能;

2、掌握金属材料铸造成型工艺及设备的设计与制造方法; 3、掌握电镀、化学镀、涂装、真空镀、离子喷涂等原理与工艺方法; 4、具有从事金属材料及其耐蚀、耐磨及防腐材料的研究,正确地制定生产工艺及选用设备的初步能力; 5、具有本专业必需的机械、电工与电子技术、计算机应用的基本知识和技能; 6、具有研究开发和应用新材料、新工艺和相关设备的初步能力; 7、具有较强的创新意识及获取知识和运用知识解决实际问题的能力。 业务范围: 1、从事金属材料的铸造成型及热处理、表面工程、材料的腐蚀与防护等行业的技术工作; 2、从事金属材料的设计、制备、成型及其性能的检测与分析; 3、从事材料生产组织、技术管理和材料性能的检测、缺陷分析等技术监督工作; 4、从事金属材料生产技术管理、设备维护运行管理和经营销售等工作; 5、从事金属材料工程方面的科研、教学等工作。 二、专业方向 金属材料工程 三、学制:本科四年 四、主干学科、主要课程、主要实践教学环节 主干学科:材料科学与工程 主要课程:马克思主义基本原理、毛泽东思想和中国特色社会主义理论体系概论、高等数学Ⅰ、大学英语、画法几何及机械制图I、机械设计基础Ⅱ、工程力学Ⅱ、材料化学、材料科学基础、材料力学性能、金属固态相变原理、金属材料学(Metal Material Science)、表面工程学、液态成型原理、电化学原理、铸造工艺学主要实践教学环节:专业认识实习、专业生产实习、专业综合设计/实验、毕业设计(论文) 五、课程配置流程图、专业教育内容与课程体系

07310710有色金属冶金学

有色金属冶金学 Nonferrous Metals Metallurgy 课程编号:07310710 学分:3 学时:45 (其中:讲课学时:45 实验学时:0 上机学时:0)先修课程:无机化学、物理化学、冶金物理化学、传输原理、湿法冶金原理 适用专业:冶金工程材料成型及控制工程 教材:《有色金属冶金学》;邱竹贤主编;冶金工业出版社,2006 开课学院:材料科学与工程学院 一、课程的性质与任务 课程性质:必修课。 有色金属冶金是GB/T 13745-2009《学科分类与代码》中与冶金物理化学、钢铁冶金等并列的二级学科之一,学科代码45040。 本课程是冶金工程专业学生有色冶金方向的重要专业课。 通过本课程的教学,要求本科生掌握常用有色金属的冶炼工艺、原理、主体设备的构造和技术经济指标控制,使学生了解常用有色金属产品及其原料的性质、用途以及有色金属冶炼工艺的发展动态; 拓宽并提升学生在提取冶金及无机盐化工等领域的知识面和业务能力,为其今后从事或涉及有色金属生产技术或相关新产品开发,以及开展环境保护和资源综合利用工作奠定基础。 课程基本任务是: 1.掌握典型有色金属冶炼主要工艺及设备的原理与特点、冶炼方法与目的; 2.针对具体适用有色金属的冶炼要求,学习选择最优化的有色金属冶金工艺; 3.促进有色金属产品之高效、优质、低耗、环保的绿色制造理念的树立和新工艺新产品的开发。 二、课程的内容及要求 前言有色冶金基础知识 1.教学内容 (1)本课程的性质、研究对象与方法、目的、任务; (2)本课程的学习方法、授课计划、参考资料、考核要求; (3)本课程的发展及在冶金学科的地位,GB/T 13745-2009《学科分类与代码》; (4)有色冶金基础知识,金属分类及有色冶金单元过程。 2.基本要求

三次函数的三大性质初探

三初探 随着导数内容进入新教材,函数的研究范围也随之扩大,用导数的方法研究三次函数的性质,不仅方便实用,而且三次函数的性质变得十分明朗,本文给出三次函数的三大主要性质. 1 单调性 三次函数)0()(23>+++=a d cx bx ax x f , (1) 若032 ≤-ac b ,则)(x f 在),(+∞-∞上为增函数; (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中a ac b b x a ac b b x 33,332221-+-=---=. 证明 c bx ax x f ++=23)('2, △=)3(412422ac b ac b -=-, (1) 当0≤? 即032 ≤-ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞-∞为增函数. (2) 当0>? 即032 >-ac b 时,解方程0)('=x f ,得 a ac b b x a ac b b x 33,332221-+-=---= 0)('>x f ?1x x <或2x x > ?)(x f 在),(1x -∞和),(2+∞x 上为增函数. ?<0)('x f 21x x x <+++=a d cx bx ax x f , (1) 若032≤-ac b ,则)(x f 在R 上无极值; (2) 若032>-ac b ,则)(x f 在R 上有两个极值;且)(x f 在1x x =处取得极大值,在2x x =处取得极小值.

计算机网络发展现状和方向

计算机网络发展现状和发展方向 计算机网络的发展: 计算机网络近年来获得了飞速的发展。20年前,在我国很少有人接触过网络。现在,计算机通信网络以及Internet已成为我们社会结构的一个基本组成部分。网络被应用于工商业的各个方面,包括电子银行、电子商务、现代化的企业管理、信息服务业等都以计算机网络系统为基础。从学校远程教育到政府日常办公乃至现在的电子社区,很多方面都离不开网络技术。可以不夸张地说,网络在当今世界无处不在。 1997年,在美国拉斯维加斯的全球计算机技术博览会上,微软公司总裁比尔盖茨先生发表了著名的演说。在演说中,“网络才是计算机”的精辟论点充分体现出信息社会中计算机网络的重要基础地位。计算机网络技术的发展越来越成为当今世界高新技术发展的核心之一。 网络的发展也是一个经济上的冲击。数据网络使个人化的远程通信成为可能,并改变了商业通信的模式。一个完整的用于发展网络技术、网络产品和网络服务的新兴工业已经形成,计算机网络的普及性和重要性已经导致在不同岗位上对具有更多网络知识的人才的大量需求。企业需要雇员规划、获取、安装、操作、管理那些构成计算机网络和Internet的软硬件系统。另外,计算机编程已不再局限于个人计算机,而要求程序员设计并实现能与其他计算机上的程序通信的应用软件。 计算机网络发展的阶段划分 在20世纪50年代中期,美国的半自动地面防空系统(Semi-Automatic Ground Environment,SAGE)开始了计算机技术与通信技术相结合的尝试,在SAGE系统中把远程距离的雷达和其他测控设备的信息经由线路汇集至一台IBM计算机上进行集中处理与控制。世界上公认的、最成功的第一个远程计算机网络是在1969年,由美国高级研究计划署 (Advanced Research Projects Agency,ARPA)组织研制成功的。该网络称为ARPANET,它就是现在Internet的前身。 随着计算机网络技术的蓬勃发展,计算机网络的发展大致可划分为4个阶段。 第一阶段:诞生阶段 20世纪60年代中期之前的第一代计算机网络是以单个计算机为中心的远程联机系统。典型应用是由一台计算机和全美范围内2 000多个终端组成的飞机定票系统。终端是一台计算机的外部设备包括显示器和键盘,无CPU和内存。随着远程终端的增多,在主机前增加了前端机(FEP)。当时,人们把计算机网络定义为“以传输信息为目的而连接起来,实现远程信息处理或进一步达到资源共享的系统”,但这样的通信系统已具备了网络的雏形。 第二阶段:形成阶段 20世纪60年代中期至70年代的第二代计算机网络是以多个主机通过通信线路互联起来,为用户提供服务,兴起于60年代后期,典型代表是美国国防部高级研究计划局协助开发的ARPANET。主机之间不是直接用线路相连,而是由接口报文处理机(IMP)转接后互联的。IMP和它们之间互联的通信线路一起负责主机间的通信任务,构成了通信子网。通信子网互联的主机负责运行程序,提供资源共享,组成了资源子网。这个时期,网络概念为“以能够相互共享资源为目的互联起来的具有独立功能的计算机之集合体”,形成了计算机网络的基本概念。 第三阶段:互联互通阶段

超硬材料市场分析

1 复合超硬材料简介 1.1 复合超硬材料基本情况 金刚石和立方氮化硼等材料由于其极高的硬度,统称为超硬材料,具有硬度高、耐磨和热传导性能好、热膨胀系数低等优异性能。 目前,超硬材料主要分为单晶超硬材料和聚晶超硬材料(也称为“复合超硬材料”)两类。单晶超硬材料主要为单晶金刚石/立方氮化硼微粉;聚晶超硬材料主要是指以金刚石或立方氮化硼与相关粘结剂经过烧结工艺制备的复合材料。 两类材料的主要区别为:单晶金刚石/立方氮化硼材料的特点为硬度更高、耐热性更好,但尺寸较小,多用于制造锯片等切割工具;聚晶金刚石/立方氮化硼的特点是硬度、耐热性略逊于单晶材料,但是由于聚晶超硬材料是内部结构紧密的金刚石致密体,可以增加工具的切割面积,同时克服了单晶超硬材料由于粘结面积小造成的容易从锯片表面脱落的弊端,具有更高的耐磨性。 总的来说,复合超硬材料相对于传统合金材料具有强大的替代性,市场潜力更大,广泛应用于机械、冶金、地质、石油、煤炭、石材、建筑等传统领域,电子信息、航天航空、国防军工等高技术领域以及汽车、家电等新兴产业。 1.2 复合超硬材料的主要产品用途

当前,复合超硬材料的产品主要分为四类:石油天然气钻头用聚晶金刚石复合片、煤田矿山用聚晶金刚石复合片、聚晶金刚石高品级拉丝模坯和刀具用聚晶金刚石/聚晶立方氮化硼复合片。 (1)石油天然气钻头用聚晶金刚石复合片 石油天然气聚晶金刚石复合片是由无数微小金刚石颗粒和粘结 剂混合组成的切削层和硬质合金衬底层在高温高压下烧结合成的,具有很高强度、硬度、耐磨性、抗冲击性以及良好的自锐性,这些优良特性使其能够应用在岩石的钻探领域。该产品主要作为石油天然气钻头的切削齿,是钻头上起到切削和掘进的核心部件。 (2)煤田矿山钻头用聚晶金刚石复合片 由于具有硬度高、耐磨性强、抗冲击韧性良好等特点,复合超硬材料除了可用于制作石油天然气用钻头外,还可用于制作煤田矿山钻头用PCD复合片,其用途并不局限制造于煤田和矿山作业用的钻进和切割工具,还可广泛应用于制造建筑建造、水电工程施工、凿岩破碎、公路修补等众多领域的钻进工具。 (3)聚晶金刚石高品级拉丝模坯 拉丝模是各种金属线材生产厂家(如电线电缆厂、钢丝厂、焊条焊丝厂等)拉制线材的一种非常重要的易消耗性模具。拉丝模的适用范围十分广泛,主要用于拉拔棒材、线材、丝材、管材等直线型难加

机械工程方向国内外现状与发展趋势

机械制造技术国内外现状与发展趋势 新中国建立后持别是近三十年来,机械制造技术发展速度很快,向机械产品大型化、精密化、自动化和成套化的趋势发展,在有些方面已经达到或超过了世界先进水平。而且这一时期还没有结束.只要我们能够用好科技发展规律并勇于创新,我国的机械制造技术还将向更高的水平发展.重新引领世界机械工业发展潮流。 现代意义上的机械制造技术主要有以下几个方面的特点,第一,机械制造技术具有工程性的特点:在现代意义上,机械制造技术充分强调计算机技术、传感技术、信息技术、管理技术、以及自动化技术的融合,要求在机械制造技术的应用全过程当中,实现与传统机械制造技术的融合,从而确保整个系统性的工程能够实现能量流、信息流、以及物质流的相互契合;第二,机械制造技术具有综合性的特点:现阶段,对于现代机械制造技术的应用目标在于——确保企业的综合竞争实力能够得到提升,并为国家经济水平的增长“添砖加瓦”。从这一角度来说,现代机械制造技术的应用并不会被局限在制造过程的框架中,还应当覆盖到制造过程的前后阶段,形成一个完整的整体;第三,机械制造技术具有统一性特点:即在市场经济发展不断发展的过程当中,相关企业为了能够赢取在参与市场竞争过程中的绝对优势,最需要解决的一点问题是:将发展的重点从对劳动生产率的提升,转变成为以时间、成本、和质量为中心的提升。而在现代机械制造技术当中,就充分实现了上述要素的有机结合,实现了技术应用的统一性;第四,机械制造技术具有全球性特点:随着现代经济社会的不断发展,全球经济一体化建设进程日益加剧,西方发达国家大多是通过金融、科技、以及信息的方式实现对市场占有份额的扩大,这直接导致了整个市场竞争行为的激烈性。为了更好的与此种发展趋势相适应,就需要通过对机械制造技术的应用,将其与现代高新技术充分融合,以达到支持制造业全面发展的目的。 在现阶段的技术条件支持下,我国现代机械制造技术所取得的发展成效主要体现在柔性制造、虚拟制造、以及敏捷制造这几个方面。首先,对于现代机械制造技术中的柔性制造技术而言,其所指的是:建立在成组技术的基础之上,以常规意义上的数控机床(可以为不同的类型、以及多台台数)以及数控柔性机床指导

超硬磨料及其磨具的选择与应用

超硬磨料及其磨具的选择与应用 磨削过程就是磨具中的磨粒对工件的切削过程。选择磨具就是要充分利用磨粒的切削能力去克服工件材料的物理力学性能产生的抗力。由于磨具的品种规格繁多,而每一种磨具都不是万能的切削工具,只有一定的适用范围。因此对每一种磨削工作,都必须适当选择磨具的特性参数,才能达到良好的磨削效果。磨具特性主要包括磨粒、粒度、硬度、结合剂、组织、形状和尺寸。这里从磨具特性方面叙述选择磨具的一般原则。 一.超硬磨料及其磨具 (一)超硬磨料磨具的加工特点 超硬磨料系指金刚石和立方氮化硼均属立方晶系。与刚玉和碳化硅相比,具有硬度高、强度好、颗粒形状好、良好的导热性和低的热膨胀系数等特点。磨削能力强及良好的磨削性能。是非常优异的磨削材料。 由超硬磨料制成的磨具,其磨削性能突出,主要加工特点有: 1.极高的磨料硬度 2.耐磨损性能好 3.形状和尺寸保持性能好 4.能长时间保持磨粒微刃的锋锐性 5.磨削温度低 (二)超硬磨料磨具的特性 1.超硬磨料磨具结构 超硬磨料磨具的结构与普通 磨具不同,其结构形式由工作 层、过渡层和基体三部分组成。 如图一所示。工作层即磨料层, 由金刚石或立方氮化硼磨料、结 合剂及填料组成。是磨具 进行磨削加工的部分。过渡层是 由结合剂和其它材料组成,以保图一超硬磨料金刚石、立方氮化硼磨具结构

证工作层的充分使用,不含超硬磨料,将工作层牢固把持在基体上。近年来,有些厂家取消了过渡层,直接将过渡层把持在基体上。基体是磨具的基本形体,起支承工作层的作用。 2.超硬磨料磨具的特性及标志 ⑴磨料超硬磨料的品种有天然金刚、人造金刚石及立方氮化硼(CBN)。人造金刚石又有多种牌号。人造金刚石、立方氮化硼的品种、代号及适用范围列于表一表一人造金刚石和立方氮化硼品种、代号及适用范围(摘自GB/T6405-1994) ⑵粒度粒度系标志超硬磨料金刚石、立方氮化硼颗粒尺寸的大小。粒度的标记按国家标准的规定,超硬磨料的各粒度颗粒尺寸范围及粒度组成按表二规定。 ⑶结合剂结合剂起着把持超硬磨料和使磨具具有正确的几何形状的作用。超硬磨料磨具的结合剂分四大类,即树脂结合剂(B)、金属(青铜)结合剂(M),陶瓷结合剂(V),电镀金属结合剂(M) ⑷浓度浓度是超硬磨料磨具所特有的概念。它表示磨具工作层单位体积中超硬磨料的含量。一般规定为每立方厘米体积中含4.4克拉(1克拉=0.2g,0.88g/cm3)的超硬磨料磨具的浓度为100%;每增加或减少1.1克拉磨料,则浓度增加或减少25%。不同浓度超硬磨料磨具中磨料含量及代号列于表三。

三次函数的图象与性质

三次函数的图象与性质 河源市河源中学 钟少辉 三次函数()f x =32(0)ax bx cx d a +++≠是中学阶段一个重要的函数,已经成为高考的高频考点。本文研究了三次函数的图象,并且得到它的几个性质,以及例说性质的应用。 已知三次函数:32(0)y ax bx cx d a =+++≠定义域(,)-∞+∞ 则232y ax bx c '=++ , 62y ax b ''=+。由0y '=得 2320ax bx c ++= (1) 依一元二次方程根的判别式知: 1.1若24120b ac ?=-> , 即23b ac >。则方程(1)必有两个不相等的实根12,x x ,即三次函数必有两个驻点12,x x (这里不妨设21x x >), 且123()()y a x x x x '=--。由函数极值的判定定理则有: 1.a >0 当1(,)()0x x f x '∈-∞时,>,()f x 单调递增。 当12(,)()0x x x f x '∈时,<, ()f x 单调递减。当2(,)()0x x f x '∈+∞时,> ,()f x 单调递增。 驻点即为极值点,且在两个驻点中值较小的一个点上取得极大值,在值较大的一个点上 取得极小值,且12,x =。 Ⅱ.0a < 情况正好与I 相反,在此不再赘述。 由以上讨论知:1223b x x a +=-,而由0y ''= 得33b x a =-,因而:6()3b y a x a ''=+,当a>0, (,)3b x a ∈-∞- 时,()0f x ''<,曲线是(向下凹) 。(,)3b x a ∈-+∞时,()0f x ''>曲线是(向上凹)。当 0a <, (,)3b x a ∈-∞-时,()0f x ''>,曲线是(向上凹),(,)3b x a ∈-+∞时,()0 f x ''<曲线是(向下凹)。 所以,无论a 的正负,3x 为曲线拐点的横坐标,且12 32 x x x += 即:曲线拐点的横坐标为两极值点(或二驻点)连线的中点 通过以上的讨论知:三次函数3 2 y ax bx cx d =+++,当23b ac >时,其图形的一般形状见 图1。 图1 0a > 0a <

超硬材料的性能与应用

超硬材料的性能与应用 摘要:本文在超硬材料的基础上讨论了其良好性能及在工业上的应用,同时提出超硬材料在其领域内所应该开发的新应用。重点分析了超硬材料在应用过程中所表现出其他材料所不能替代的性能。本文通过查阅相关文献阐述了超硬材料综述了超硬料的结构及其性能特点,为今后超硬材料在工业上的进一步发展有提供前景。关键字:超硬材料、金刚石、立方碳化硼、性能、应用等 一、超硬材料的简介所谓的超硬材料则是指硬度可与金刚石相比拟的材料。目前使用的超硬材料主要是立方氮化硼与金刚石,但是还是许多超硬材料正在研发中,如碳化硼,富硼氧化物等。金刚石包括天然金刚石和人造金刚石,天然金刚石是目前世界上最硬的工业材料,它具有硬度高、耐磨损、热稳定性能好等特性,而且抗压强度高、散热速率快、传声速率快、电流阻抗、防蚀能力、透光、低热胀率等物理性能,是工业材料中不可替代的材料;人造金刚石是加工业最硬的磨料,电子工业最有效的散热材料,半导体最好的晶片,通讯元器件最高频的滤波器,音响最传真的振动膜,机件最稳定的抗蚀层等等,已经被广泛应用于冶金、石油钻探、建筑工程、机械加工、仪器仪表、电子工业、航空航天以及现代尖端科学领域。 立方氮化硼CBN是硬度仅次于金刚石的材料,但是目前并未发现天然立方氮化硼的存在,工业和日常生活中使用的都是人造的。它具有与金刚石的许多特性相比拟的特点,同时也具有更高的热稳定性和对铁族金属及其合金的化学惰性。它作为工程材料,已经广泛应用于黑色金属及其合金材料加工工业。同时,它又具有优异的热学、电学、光学和声学等性能,在一系列高科技领域得到应用,成为一种具有发展前景的功能材料。 二、超硬材料的性能A)结构组成:金刚石是碳原子按四面体成键方式互相连接,组成无限的三维骨架,是典型的原子晶体。每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。由于C-C键很强,所以所有的价电子都参与了共价键的形成,没有自由电子,所以钻石不仅硬度大,熔点极高,而且不导电。氮化硼是立方结构。 B)力学性能:金刚石是目前地球上最硬的物质,莫氏硬度为10。新摩氏硬度15,显微硬度10000kg/mm2,显微硬度比石英高1000倍,比刚玉高150倍。金刚石硬度具有方向性,八面体晶面硬度大于菱形十二面体晶面硬度,菱形十二面体晶面硬度大于六面体晶面硬度。较脆,在不大的冲动力下会沿晶形解理面裂开质纯、结晶完好的为3520 kg/m3,一般为3470~3560 kg/m3。具有平行八面体的中等或完全解理,平行十二面体的不完全解理。呈贝壳状或参差状。金刚石具有极大的弹性模量,是自然界最高的磨削材料,弹性模量达90000kg/mm。摩擦系数小,有极高的抗磨能力,因此在金刚石选矿中利用这一特性,采用球磨机、锥形磨矿机来分离金刚石。但金刚石极脆,不能承受正向的外力撞击。硬度高、耐磨性好。 立方氮化硼烧结体的硬度一般在3500~4000Hv,陶瓷;2400 Hv,硬质合金1800 Hv左右。高硬度带来了相当好的耐磨性,一般讲,立方氮化硼的耐磨性是涂层合金的30倍,是无涂层硬质合金的50倍,是陶瓷刀片的15~20倍。C)热学性能:熔点:金刚石熔点达4000℃,在空气中燃烧温度为850~1000℃,在纯氧中720~800℃燃烧,金刚石发出浅蓝色火焰,并转化成二氧化碳。热导率一般为138.16W/(m?K)。但Ⅱa型金刚石的热导率特别高,在液氮温度下为铜的25倍,并随温度的升高而急剧下降。低温时热膨胀系数极小,随温度的升高,热膨胀系数迅速增大。 立方氮化硼在1370o以上才开始由立方晶体向六方晶体转化;在1000oC的高温下切削,其表面不会产生氧化,高温下硬度降低程度也比硬质合金和陶瓷刀片小的多,这就为高速切削创造了条件。导热系数为79.54w/m,k,仅次于金刚石,随温度提高,导热系数逐渐增大,有利于散热。D)磁电性能:金刚石为无磁性重部分矿物(p>2.9)因此在选矿中不能采用电

相关文档
最新文档