流体力学-经典复习资料汇总

流体力学-经典复习资料汇总
流体力学-经典复习资料汇总

1..迹线:同一质点在不同时刻所占有的空间位置联成的空间曲线称为迹线。

2.定常流动定律:液体流动时,若流体中任何一点的压力,速度和密度都不随时间变化,则这种流动就称为定常流动。

3.流动相似特征:两个流动相应点上的同名物理量具有各自固定的比例,则这两个流动就是相似的。

4.湍流:流体质点的远动轨迹是极不规则的,各部分相互混杂,这种流动状态称为紊流。

5.沿程阻力:流体在均匀流段上产生的流动阻力,称为沿程阻力。

6.量纲:量纲是指物理量的特质和类别。

7.体积模量:

8.纲和谐原理:

9.局部阻力:由于流体速度或方向的变化,导致流体剧烈冲击,由于涡流和速度重新分布而产生的阻力。

10.层流:液体层间有规则的流动状态称为层流。

11.渐变流:流线之间的夹角β很小、流线的曲率半径r很大的近乎平行直线的流动。

12.淹没出流:容器中的液体通过孔口出流到另一个充满液体的空间。

13.薄壁孔口:出流流股与孔口接触只有一条周线,这种条件的孔口称为薄壁孔口。

14.动能修正系数:

15.流管:在流场内,取任意非流线的封闭曲线L,经此曲线上全部点做流线,这些流线组成的管状流面,称为流管。

问答练习题

1.何是等压面?等压面的条件有哪些?

等压面是指流体中压强相等的各点所组成的面。只有重力作用下的等压面应满足的条件是:静止、连通、连续均质流体、同一水平面。

2.流线的定义特质。

流线的定义:在某一时刻,个点的切线方向与通过该点的流体质点的流速方向重合的空间去曲线。

流线的特质: a、同一时刻的不同流线,不能相交。 b、流线不能是折线,而是一条光滑的曲线或直线。 c、流线越密处,流速越大,流线越稀处,流速越小。

4.试简要回答缓变流的定义及其两个主要特点。

缓变流(渐变流):流线之间的夹角β很小、流线的曲率半径r很大的近乎平行直线的流动。

特点:

5.试简要阐述局部能量损失的定义及大致归类。

6.简述孔口出流的归类情况。

按孔口直径D和孔口形心在液面下深度H分为大孔口和小孔口;按水头随时间变化,分为恒定出流和非恒定出流;按壁厚,分为薄壁孔口和厚壁孔口;按出流空间状况,分为自由出流和淹没出流。

孔口出流分三类:①孔口自由出流:容器中的液体自孔口留到大气中;②孔口淹没出流:容器中的液体通过孔口出流到另一个充满液体的空间;③管嘴出流:

当圆孔壁厚δ等于3~4d时或在孔口接一段长l=3~4d的圆管时,此时的出流称为管嘴出流。

7.流体粘度的定义并说明温度对流体粘性的影响。

流体粘度:流体内部质点或流层间因相对运动而产生内摩擦里以反抗相对运动,此内摩擦力称为粘滞力,即为粘度。

液体的粘度随温度升高而减小;气体的粘度随温度升高而增大。

8.温度变化对流体的粘度有什么影响,并简要说明原因。

液体的粘度随温度升高而减小;气体的粘度随温度升高而增大。

原因:粘滞性是分子间的吸引力和分子不规则的热运动产生动量交换的结果。温度升高,分子间吸引力降低,动量增大;反之,温度降低,分子间吸引力增大,动量减小。对于液体,分子间的吸引力是决定性因素。对于气体分子间的热运动产生动量交换是决定性因素。

9.迹线的定义及迹线方程。

同一质点在个各不同时刻所占有的空间位置联成的空间曲线称为迹线。

迹线方程:

11.相对平衡的流体的等压面是否为水平面?为什么?什么条件下的等压面是水平面?

不一定,因为相对平衡的流体存在惯性力,质量力只有重力作用下平衡流体的等压面是水平面。

12.简述紊流的定义及特点。

紊流:液体质点的运动轨迹是极不规则的,各部分流体掺混剧烈,这种流动状态称为紊流。

特点:无序性、随机性、有旋性、混掺性。流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。

13.简述层流的定义及特点。

层流:液体层间有规则的流动状态称为层流。

特点:有序性。水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。

14.流体力学研究中为什么要引入连续介质假设。

?不考虑微观分子的影响,只考虑外力作用下的宏观机械运动。②能运用数学分析的连续函数工具。

15.简述粘性流体绕流物体时产生阻力的原因。如何减小阻力?

16.何是粘滞性?何是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体?

粘滞性是当流体流动时,在流体内部显示出的内摩擦力特质

牛顿内摩擦定律是:

du

T A

dy

μ

=;不满足牛顿内摩擦定律的流体是非牛顿

流体。

17.在流体力学当中,三个主要的力学模型是指哪三个?

(1)连续介质;(2)无粘性流体;(3)不可压缩流体。

18.何是理想流体?

理想流体即指无粘性流体,是不考虑流体的粘性的理想化的流体。

19.何是实际流体?

考虑流体的粘性的流体。

20.何是不可压缩流体?

不计流体的压缩性和热胀性的而对流体物理特质的简化。

21.为什么流体静压强的方向必垂直作用面的内法线?

由于流体在静止时,不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向。

22.何是绝对压强和相对压强?

绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。

p为零点起算的压强。

相对压强:当地同高程的大气压强

a

23.何是等压面?满足等压面的三个条件有哪些?

等压面是指流体中压强相等的各点所组成的面。满足等压面的三个条件是同种液体连续液体静止液体。

24.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。

25.什么叫自由表面?

和大气相通的表面叫自由表面。

26.何是流线?何是迹线?流线与迹线的区别有哪些?

流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。

区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流体质点在某一固定瞬间运动方向的

曲线。而迹线则是在时间过程中表示同一流体质点运动的曲线。

27.何是流场?

我们把流体流动占据的空间称为流场,流体力学的主要任务就是研究流场中的流动。

28何是欧拉法?

通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。

29.何是拉格朗日法?

通过描述每一质点的运动达到了解流体运动的方法。

30.何是恒定流动?何是非恒定流动?

动平衡的流动,各点流速不随时间变化,由流速决定的压强、粘性力也不随时间变化,这种流动称之为恒定流动反之为非恒定流动。

31.何是沿程损失?

在沿程不变的管段上,流动阻力沿程也基本不变,称这类阻力为沿程阻力,克服沿程阻力引起的能量损失为沿程损失。

32.何是局部损失?

在边壁急剧变化的区域,阻力主要地集中在该区域中及其附近,这种集中分布的阻力称为局部阻力。克服局部阻力的能量损失为局部损失。

33.什么叫孔口自由出流和淹没出流?

在容器侧壁或底壁上开一孔口,容器中的液体自孔口出流到大气中,称为孔口自由出流。如出流到充满液体的空间,则称为淹没出流。

34.何是有旋流动?何是无旋流动?

流体微团的旋转角速度不完全为零的流动称为有旋流动,流场中各点旋转角

速度等于零的运动,成为无旋运动。

35在流体力学中,拉格朗曰分析法和欧拉分析法有何区别?

拉格朗曰法着眼于流体中各质点的流动情况跟踪每一个质点观察与分析该

质点的运动历程然后综合足够多的质点的运动情况以得到整个流体运动的规律。

欧拉法着眼于流体经过空间各固定点时的运动情况它不过问这些流体运动

情况是哪些流体质点表现出来的也不管那些质点的运动历程因此拉格朗曰分析

法和欧拉分析法是描述流体的运动形态和方式的两种不同的基本方法。

36.什么叫流管、流束、过流断面和元流?

在流场内,取任意非流线的封闭曲线L,经此曲线上全部点做流线,这些流

线组成的管状流面,称为流管。流管以内的流体,称为流束。垂直于流束的断面

称为流束的过流断面,当流束的过流断面无限小时,这根流束就称为元流。

37.何是单位压能?

p

是断面压强作用使流体沿测压管所能上升的高度,水力学中称为压强水

头,表示压力作功所能提供给单位重量流体的能量,称为单位压能。

38.什么是几何相似、运动相似和动力相似?

几何相似是指流动空间几何相似,即形成此空间任意相应两线段交角相同,

任意相应线段长度保持一定的比例。

运动相似是指两流动的相应流线几何相似,即相应点的流速大小成比例,方

向相同。

动力相似是指要求同名力作用,相应的同名力成比例。

39.何是水力半径?何是当量直径?

水力半径R 的定义为过流断面面积A 和湿周χ之比,即χA

R =;当量直径

R de 4=。

40.何是因次分析法?

因次分析法就是通过对现象中物理量的因次以及因次之间相互联系的各种特质的分析来研究现象相似性的方法。

41.要保证两个流动问题的力学相似所必须具备的条件有哪些?

如果两个同一类的物理现象,在对应的时空点上,各标量物理量的大小成比例,各向量物理量除大小成比例外,且方向相同,则称两个现象是相似的。要保证两个流动问题的力学相似,必须是两个流动几何相似,运动相似,动力相似,以及两个流动的边界条件和起始条件相似。

就这么多了,祝大家思修不挂科!!!

流体力学基础

第二章流體力學基礎 1.流動描述法 在質點力學和固體力學的學科中,因可以很清楚看到或想像質點或固體的運動情形,所以,也就比較容易去分析。流體雖然可視為由無數的流體質點或元素(element)所組成,但是,在分析或想像流體各質點的運動時,就可能引起困難。為研究流體流動的問題,通常有兩種不同定義流場流動的描述或分析的方法,分別是拉氏描述法(Lagrangian method of description)和歐拉氏(Eulerian method of description)描述法。 甲、拉氏描述法 這種描述法的觀念和分析質點力學的問題相同,即視流體 的流動是由無數個流體質點或元素所組成。茲假設某一流 體質點(取名為A質點)的運動軌跡或路徑(pathline)為已 知,則該運動軌跡在卡氏座標(Cartesian coordinates)上可表 示為: r= r(ξA, t) = x i+ y j+ z k 式中, ξA = x A i+ y A j+ z A k =流體A質點在已知時間t時的位置向量,故為已

知值。 因此,流體A 質點隨時間而運動的軌跡r ,應僅為時間t 的函數,其分量為 x = F x (ξA , t ) y = F y (ξA , t ) (2-1) z = F z (ξA , t ) 所以,流體A 質點運動的速度(u , v, w )和加速度(a x , a y , a z ),可依定義對時間t 微分而得。即: u = (dt dx )A ξ a x = (dt du )A ξ = (22dt x d )A ξ v = (dt dy )A ξ (2-2) a y = (dt dv )A ξ = (22dt y d )A ξ (2-3) w = (dt dz )A ξ a z = (dt dw )A ξ = (22dt z d )A ξ 顯然地,這些結果和質點力學所表示的式子是完全相同的。 乙 歐拉氏描述法 這種描述法的觀念是在流場中隨意選取某定點P 或固定區域,然後注視佔據該定點P 或固定區域上的流體,注意其流動變數(flow variables)的變動情形。歐拉假設流體的流動情形,可以一速度場ν表示: ν = ν(r , t ) = u i + v j + w k 流體質點P 的運動軌跡 x

流体力学例题

第一章 流体的性质 例1:两平行平板间充满液体,平板移动速度0.25m/s ,单位面积上所受的作用力2Pa(N/m2>,试确定平板间液体的粘性系数μ。 例2 :一木板,重量为G ,底面积为 S 。此木板沿一个倾角为,表面涂有润滑油的斜壁下滑,如图所示。已测得润滑油的厚度为,木板匀速下滑的速度为u 。试求润滑油的动力粘度μ。 b5E2RGbCAP 例3:两圆筒,外筒固定,内筒旋转。已知:r1=0.1m ,r2=0.103m ,L=1m 。 。 求:施加在外筒的力矩M 。 例4:求旋转圆盘的力矩。如图,已知ω, r1,δ,μ。求阻力矩M 。 第二章 流体静力学

例1:用复式水银压差计测量密封容器内水面的相对压强,如图所示。已知:水面高程z0=3m, 压差计各水银面的高程分别为z1 = 0.03m, z2 = 0.18m, z3 = 0.04m, z4 = 0.20m,水银密度p1EanqFDPw ρ′=13600kg/m3,水的密度ρ=1000kg/m3 。试求水面的相对压强p0。 例2:用如图所示的倾斜微压计测量两条同高程水管的压差。该微压计是一个水平倾角为θ的Π形管。已知测压 计两侧斜液柱读数的差值为L=30mm ,倾角 θ=30°,试求压强差p1 –p2 。DXDiTa9E3d 例 3:用复式压差计测量两条气体管道的压差<如图所 示)。两个U 形管的工作液体为水银,密度为ρ2 ,其连接管充以酒精,密度为ρ1 。如果水银面的高度读数为z1 、 z2 、 z3、 z4 ,试求压强差pA –pB 。RTCrpUDGiT 例4:用离心铸造机铸造车轮。求A-A 面上的液体 总压力。 例5:已知:一块平板宽为 B ,长为L,倾角 ,顶端与水面平齐。求:总压力及作用点。 例7:坝的园形泄水孔,装一直径d = 1m 的 平板闸门,中心水深h = 3m ,闸门所在斜面与水平面成,闸门A 端设有铰链,B 端钢索

流体力学计算题

水银 题1图 高程为9.14m 时压力表G 的读数。 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3 /850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力: RB R H g A h P z c x ?- ==)2 (ργ…….(3分) N 1.14668.02.0)2 2 .02.1(8.9850=??- ??=,方向向右(2分)。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.15428.04 2.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分) 。 l d Q h G B A 空 气 石 油 甘 油 7.623.66 1.52 9.14m 1 1

2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。 解题思路:(1)水平分力: l H H p p p x )(2 12 22121-=-=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的 大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?='=右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

流体力学在土木工程中的应用

流体力学在土木工程中的应用 摘要:流体力学作为土木工程的重要学科,对于土木工程中的一些建筑物的工程设计,施工与维护有着重要作用,不仅是在工程时间上降低了成本,还在材料等物质方面降低了成本。对于实现科学,合理施工有这很高的地位。 关键词:高层渗流地基稳定风荷载给排水路桥高铁风炮隧道 流体力学是力学的一个分支,是研究以水为主体的流体的平衡和运动规律及其工程应用的一门学科, 土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 土木建构物的建筑环境不可避免会有地下及地表流水的影响,对于高层,或者高出建筑物,风对建筑物的影响也是不可小觑的。在建

筑物设计之初不但要考虑这些流体对施工的影响,在建成后,也得防范流体的长期作用对建构物的负面影响。怎么认识这些影响正如兵家所言,知己知彼,百战不殆,流体力学作为土木工程一门重要学科,通过对流体力学的学习,会使我们对流体形成一种客观正确的认识。 流体力学在工业民用建筑中的应用: 工业民用建筑是常见建筑,对于低层建筑,地下水是最普遍的结构影响源,集中表现为对地基基础的影响。 如果设计时对建筑地点的地下基地上水文情况了解不到位,地下水一旦渗流会对建筑物周围土体稳定性造成不可挽救的破坏,进而严重影响地基稳定,地基的的破坏对整个建筑主体来说是寿命倒计时的开始。一些人为的加固可能及耗材费力,又收效甚微。地下水的浮力对结构设计和施工有不容忽视的影响,结构抗浮验算与地下水的性状、水压力和浮力、地下水位变化的影响因素及意外补水有关。对于这些严重影响建筑物寿命和甚至波及人生安全的有水的流动性造成问题可以通过水力学知识在建筑物的实际和施工之前给以正确的设计与施工指导。避免施工时出现基坑坍塌等重大问题,也能避免施工结束后基地抵抗地下水渗流能力差的问题。 现在建筑越来越趋向于高层,高层节约了土地成本,提供了更多的使用空间,但也增加了设计施工问题。因为随着高度的增加,由于

流体力学基础知识

流体力学基础知识 第一节流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母T表示,单位为kg/m3。流体单位体积内所具有的重量称为重度,重度用表示,单位为N/m?,两者之间的关系为 =「g , g 为重力加速度,通常g = 9. 806m/s2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用」来表示。 所谓运动粘度是指动力粘度」与相应的流体密度「之比,用、来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升咼而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60C时,由于粘滞性下 降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60C下。 第二节液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△卩,当厶F逐渐趋近于零时作用在厶F面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示 某点的实际液体静压力就需要引出点静压力的概念。

流体力学考试试题(附答案)汇总

一、单项选择题 1.与牛顿内摩擦定律有关的因素是(A) A压强、速度和粘度;B流体的粘度、切应力与角变形率; 2C切应力、温度、粘度和速度; D压强、粘度和角变形。2.流体是一种(D)物质。 A不断膨胀直到充满容器的;B实际上是不可压缩的; C不能承受剪切力的; D 在任一剪切力的作用下不能保持静止的。0年考研《(毛中 3.圆管层流流动,过流断面上切应力分布为(B) A.在过流断面上是常数; B.管轴处是零,且与半径成正比; C.管壁处是零,向管轴线性增大; D. 按抛物线分布。2014年考研《政治》考前点题(毛中特) 4.在圆管流中,层流的断面流速分布符合(C) A.均匀规律; B.直线变化规律; C.抛物线规律; D. 对+曲线规律。 5. 圆管层流,实测管轴线上流速为4m/s,则断面平均流速为() A. 4m/s; B. 3.2m/s; C. 2m/s; D. 1m /s。2014年考研《政治》考前点题(毛中特) 6.应用动量方程求流体对物体的合力时,进、出口的压强应使用 () A 绝对压强 B 相对压强 C 大气压 D 真空度

7.流量为Q ,速度为v 的射流冲击一块与流向垂直的平板,则平板受到的冲击力为() A Qv B Qv 2 C ρQv D ρQv 2 8.在(D )流动中,伯努利方程不成立。 (A)定常 (B) 理想流体 (C) 不可压缩 (D) 可压缩 9.速度水头的表达式为(D ) (A)h g 2 (B)2ρ2v (C) 22v (D) g v 22 10.在总流的伯努利方程中的速度v 是(B )速度。 (A) 某点 (B) 截面平均 (C) 截面形心处 (D) 截面上最 大 2014年考研《政治》考前点题(毛中特) 11.应用总流的伯努利方程时,两截面之间(D ) 。 (A)必须都是急变流 (B) 必须都是缓变流 (C) 不能出现急变流 (D) 可以出现急变流 12.定常流动是(B )2014年考研《政治》考前点题(毛中特) A.流动随时间按一定规律变化; B.流场中任意空间点的运动要素不随时间变化; C.各过流断面的速度分布相同; D.各过流断面的压强相同。 13.非定常流动是 (B ) A. 0=??t u B. 0≠??t u C. 0=??s u D.0≠??s u 2014年考研《政治》考前点题(毛中特)

流体力学在医学中的应用

流体力学在医学中的应用 通过对流体力学这一章的学习,我发现在医学治疗疾病领域,流体力学有着丰富的应用,尤其在动脉病方面,通过对资料及文献的学习,了解到心血管疾病与其有密切关系,而且血流动力学不仅在动脉病变的发生和发展过程中起着决定性的作用,而且是外科医生在心血管疾病的手术和介入治疗等过程中必须充分考虑的因素,下面依次举例~ 1冠状动脉硬化斑块与血液流体动力学关系 原理:当冠状动脉粥样硬化斑块给血管造成的狭窄程度在20%-40%之间的时候,流经斑 块的速度剖面呈抛物线状态;当狭窄的程度是50%时,速度剖面出现紊乱,没有出现抛物线的分布,且不满足层流的规律,并伴有回流现象的发生;当狭窄程度在50%-75%之间时,斑块附近轴管的管轴速度小于周围速度,此时速度剖面呈现中心凹状,斑块的后部有明显的回流现象。 疾病成因及表象:软斑块可逆,且对血液动力学不造成明显的影响,但是它的不稳定与易破 碎等会引发急性冠状动脉的综合症状,是引发心脏事件的危险因素;钙化斑块不可逆,对血液动力学的影响较为明显,但其斑块稳定和不易破碎的特点是造成稳定性心绞痛的主要诱导原因,也是冠状动脉疾病的晚期表现。 检测及治疗方法:冠状动脉硬化斑块有较多的常规检查方法,比如多层CT冠状动脉成像、 血管的内超声检查以及冠状动脉造影,而其中冠状动脉造影是冠心病检查的金标准,但它主要是由填充造影剂的方法来判断血管腔的变化情况,而无法真正识别血管壁的结构,不能起到判断斑块性质的作用,也无法对血液动力学造成影响。而64排螺旋CT在空间和时间的分辨率上都有所提升,不仅能观察到管腔,还可以看到血管壁。由斑块特征的不同,可将其分成软斑块和纤维斑块以及钙化斑块,斑块不同,CT值也各异,其稳定性也存在差异,64排螺旋CT是目前为止无创检查冠心病最为常见的影像方法。本文主要研究患者在冠状动脉螺旋CT成像之后的软斑块和钙化斑块给血液动力学与诱发心脏事件带来的影响。 2与血液流体动力学关系

流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力: 重力、惯性力、非惯性力、离心力) 单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 ΔF ΔP ΔT A ΔA V τ 法向应力周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA F A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ) ,1pa=1N/㎡,表面力具有传递性。 B F f m =u u v v 2m s 3 /1000m kg =ρ3 /2.1m kg =ρ

牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体 无粘性流体,是指无粘性即μ=0的液体。无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。 (3) 压缩性和膨胀性 压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。 T 一定,dp 增大,dv 减小 膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。 P 一定,dT 增大,dV 增大 A 液体的压缩性和膨胀性 液体的压缩性用压缩系数表示 压缩系数:在一定的温度下,压强增加单位P ,液体体积的相对减小值。 由于液体受压体积减小,dP 与dV 异号,加负号,以使к为正值;其值愈大,愈容易压缩。к的单位是“1/Pa ”。(平方米每牛) 体积弹性模量K 是压缩系数的倒数,用K 表示,单位是“Pa ” 液体的热膨胀系数:它表示在一定的压强下,温度增加1度,体积的相对增加率。 du T A dy μ =? dt dr dy du ? =?=μ μτdu u dy h =ρ μν= dP dV V dP V dV ? -=-=1/κρ ρ κ d dP dV dP V K =-==1

流体力学典型例题及答案

1.若流体的密度仅随( )变化而变化,则该流体称为正压性流体。 A.质量 B.体积 C.温度 D.压强 2.亚声速流动,是指马赫数( )时的流动。 A.等于1 B.等于临界马赫数 C.大于1 D.小于1 3.气体温度增加,气体粘度( ) A.增加 B.减小 C.不变 D.增加或减小 4.混合气体的密度可按各种气体( )的百分数来计算。 A.总体积 B.总质量 C.总比容 D.总压强 7.流体流动时,流场各空间点的参数不随时间变化,仅随空间位置而变,这种流动称为( ) A.定常流 B.非定常流 C.非均匀流 D.均匀流 8.流体在流动时,根据流体微团( )来判断流动是有旋流动还是无旋流动。 A.运动轨迹是水平的 B.运动轨迹是曲线 C.运动轨迹是直线 D.是否绕自身轴旋转 9.在同一瞬时,流线上各个流体质点的速度方向总是在该点与此线( ) A.重合 B.相交 C.相切 D.平行 10.图示三个油动机的油缸的内径D相等,油压P也相等,而三缸所配的活塞结构不同,三个油动机的出力F1,F2,F3的大小关系是(忽略活塞重量)( ) A.F 1=F2=F3 B.F1>F2>F3 C.F1F2 12.下列说法中,正确的说法是( ) A.理想不可压均质重力流体作定常或非定常流动时,沿流线总机械能守恒 B.理想不可压均质重力流体作定常流动时,沿流线总机械能守恒 C.理想不可压均质重力流体作非定常流动时,沿流线总机械能守恒 D.理想可压缩重力流体作非定常流动时,沿流线总机械能守恒 13.在缓变流的同一有效截面中,流体的压强分布满足( ) A.p gρ +Z=C B.p=C C. p gρ + v g C 2 2 = D. p gρ +Z+ v g C 2 2 = 14.当圆管中流体作层流流动时,动能修正系数α等于( )

流体力学基本概念和基础知识..知识分享

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

流体力学总题库内部吐血整理

流体力学总题库 第一章 1.如图所示,转轴直径=0.36m,轴承长度=1m ,轴与轴承之间的缝隙,其中充满动力粘度的油,如果轴的转速=200r/min,求克服油的粘性阻力所消耗的功率。 解油层与轴承接触面上的速度为零,与轴接触面上的速度等于轴面上的线速度。 设油层在缝隙内的速度分布为直线分布,即,则轴表面上总的切向力为 克服摩擦所消耗的功率为 d L δ n 2.在温度不变的条件下,体积为的水,压强从增到,体积减少了,试求水的压缩率。 由流体压缩系数计算公式可知: 3.某种油的运动黏度是 4.28x10∧-7 ㎡/s,密度是ρ=678kg/m3,试求其动力黏度。 解:油的运动黏度v=4.28x10∧-7㎡/s。ρ=678kg/m3 v=u/p得u=pv=4.28x10*-7x678=2.9x10∧-4Pa.s 4.(习题1-8) 解:查表知:15℃时,空气的μ=17.84x10 6- Pa?s ∴ S=2πrx1x10 3 =0.2πm 2 ∴ F=μSu/h=(17.84x10 6- x0.2 πx0.3/1x10 3- )N≈3.36x10 3- N 5. 如图1-15所示,已知动力润滑轴承内轴的直径,轴承宽度,间隙,间隙内润滑油的动力黏度,消耗的功率 ,试求轴的转速n为多少? 解油层与轴承接触面上的速度为零,与轴接触面上的速度等于轴面上的线速度 60 D nπ υ= 设油层在缝隙内的速度分布为直线分布,即 δ υ υ = dy d x ,则轴表面上总的切向力T为 Db π δ υ μ τ= A = T 克服摩擦力所消耗的功率为 υ T = P

联立上式,解得 m in 2830r n= 6.两平行平板之间的间隙为2mm,间隙内充满密度为885 3 m kg、运动黏度为s m2 00159 .0的油,试求当两板相对速度为s m 4时作用在平板上的摩擦应力。 解油的动力黏度为 s Pa? = ? = =40715 .1 885 00159 .0 νρ μ 设油在平板间的速度分布为直线分布,即 δ υ υ = dy d x ,则平板上摩擦应力为 Pa 3. 2814 10 2 4 40715 .1 3 = ? ? = = - δ υ μ τ 第二章 1、如图2-16所示,一连接压缩空气的斜管和一盛水的容器相连,斜管和水平面的夹角为30°,从压强表上的读得的压缩空气的压强为73.56mmHg,试求斜管中水面下降的长度L。 解:压缩空气的计示压强为 由题意知 所以有L==2m 2、已知h1=600mm,h2=250mm,h3=200mm,h4=300mm,h5=500mm,ρ1=1000kg/m3,ρ2=800kg/m3,ρ3=13598kg/m3,求A、B两点的压强差。(图在书33页2-18): 解:图中1-1、2-2、3-3均为等压面,可以逐个写出有关点的静压强为: P1=pA+ρ1gh1 P2=p1-ρ3gh2 P3=p2+ρ2gh3 P4=p3-ρ3gh4 P B=p4-ρ1g(h5-h4) 联立求解得: p B=p A+ρ1gh1+ρ3gh2+ρ2gh3+ρ3gh4-ρ1g(h5-h4) A、B两点的压强差为: p A-p B=ρ1g(h5-h4)+ ρ3gh4-ρ2gh3+ρ3gh2-ρ1gh1 3、汽车上装有内充液体的U形管,图见38页2-24所示,U形管水平方向的长度L=0.5m,汽车在水平路面上沿直线等加速行驶,加速度为a=0.5m/,试求U形管两支管中液面的高度差。解如图2-24所示,当汽车在水平路面上作等加速直线运动时,U形管两支管的液面在同一斜面上,设该斜面和水平方向的夹角为,由题意知 =a/g=(h1-h2)/L=/L 由上式可解出两支管液面差的高度 L=0.5=25.5mm 4、如图2-1所示,一倒置的U形管,其工作液体为油,下部为水,已知h=10cm,a=10cm,求两容器中的压强 ()gh h a g p p B A油 水 ρ ρ- + = - () B A p gb gh h b a g p= + + + + - 水 油 水 ρ ρ ρ O mmH h h a g p p B A 2 3. 108 100 1000 917 100 100 = ? - + = - + = - 水 油 水 ρ ρ ρ 5、两互相隔开的密封容器,压强表A的读数为 4 =2.710 A p Pa ?,真空表B的读数为4 = 2.910 B p Pa -?,求连接两容器的U形管测压计中两水银柱的液面差h为多少?解:

流体力学例题

第一章 流体及其主要物理性质 例1: 已知油品的相对密度为0.85,求其重度。 解: 例2: 当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。 解: 例3: 已知:A =1200cm 2,V =0.5m/s μ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F 绘制:平板间流体的流速分布图 及应力分布图 解:(前提条件:牛顿流体、层流运 动) 因为 τ1=τ2 所以 3 /980085.085.0m N ?=?=γδ0=+=?=dV Vd dM V M ρρρρρ d dV V -=Pa dp d dp V dV E p 84105.2105% 02.01111?=??==-==ρρβdy du μ τ=??????? -=-=?2221110 h u h u V μτμτs m h h V h u h u h u V /23.02 112212 2 11 =+= ?=-μμμμμN h u V A F 6.41 1=-==μ τ

第二章 流体静力学 例1: 如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。 解: 分析:水箱处于顶盖封闭状态,当加速时,液面不变化,但由于惯性力而引起的液体内部压力分布规律不变,等压面仍为一倾斜平面,符合 等压面与x 轴方向之间的夹角 例2: (1)装满液体容器在顶盖中心处开口的相对平衡 分析:容器内液体虽然借离心惯性力向外甩,但由于受容器顶限制,液面并不能形成旋转抛物面,但内部压强分布规律不变: 利用边界条件:r =0,z =0时,p =0 作用于顶盖上的压强: (表压) (2)装满液体容器在顶盖边缘处开口的相对平衡 压强分布规律: =+s gz ax g a tg = θPa L tg H h p A A 177552=??? ?? ?+==θγγPa L tg H h p B B 57602=??? ?? ?-==θγγC z g r p +-?=)2( 2 2ωγg r p 22 2ωγ =C z g r p +-?=)2( 2 2ω γ

流体力学中的四大研究方法

流体力学中的四大研究方法 多年前,我看过一篇杨振宁老先生谈学习和研究方法的文章,记忆深刻。很多人可能都知道,杨老先生大学毕业于西南联大,他总结我们中国学习自然科学的研究方法,主要是“演绎法”,往往直接从牛顿三大定律,热力学定律等基础出发,然后推演出一些结果。然而,对于这些定律如何产生的研究和了解不多,也就不容易产生有重大意义的原创性成果。他到美国学习后发现,世界著名物理学大学费米、泰勒等是从实际试验的结果中,运用归纳的原理,采用的是“归纳法”。这两种方法对杨老先生的研究工作,产生了很大的影响。 除了这两种基本研究方法外,还有很多方法,如量纲分析法、图解法、单一变量研究法、数值模拟法等。每个学科可能都有一些各自独特的研究方法。我是流体力学专业出身,就以流体力学为例。通常,开展流体力学的工作主要有4种研究方法:现场观测法、实验模拟法、理论分析法和数值计算法四个方面。 现场观测法 从流体力学的学科历史来看,流体力学始于人们对各种流动现象的观测。面对奔腾的河流,孔子发出了:“逝者如斯夫,不舍昼夜”的感叹,古希腊哲学家赫拉克利特说“人不能两次踏进同一条河流”。阿基米德在澡盆中,看到溢出的水,提出了流体静力学的一个重要原理——阿基米德原理。丹尼尔·伯努利通过观察发现流速与静压关系的伯努利原理。在流体力学史上还有很多这样的例子,发现自然界的各种流动现象,通过各种仪器进行观察,从而总结出流体运动的规律,再反过来预测流动现象的演变。但此方法有明显的局限性,最主要的体现在两个方面,一是一些流动现象受特定条件的影响,有时不能完成重复发生;二是成本比较大,需要花费大量的人财物。 实验模拟法 为了克服现场观测的缺点,人们制造了多种实验装置和设备,建立了多个专项和综合实验室。实验基本上能可控、重复流动现象,可以让人们仔细、反复地观测物理现象,直接测量相关物理量,从而揭示流动机理、发现流动规律,建立物理模型和理论,同时还能检验理论的正确性。 流体力学史上很多重要的发现都是通过实验发现或证实的,比如意大利物理学家伽俐略利用实验演示了在空气中物体运动所受到的阻力;托里拆利通过大气

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

《流体力学》典型例题

《例题力学》典型例题 例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。已知平板与斜面之间的油层厚度 δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。求油的动力粘性系数。 解:由牛顿摩擦定律,平板所受的剪切应力du U dy τμ μδ == 又因等速运动,惯性力为零。根据牛顿第二定律:0m ==∑F a ,即: gsin 0m S θτ-?= ()3 24 gsin 59.8sin 301100.1021N s m 1406010 m U S θδμ--?????==≈????? 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=?的油,若轴的转速200rpm n =。求克服油的粘性阻力所消耗的功率。 解:由牛顿摩擦定律,轴与轴承之间的剪切应力 ()60d d n d u y πτμ μδ == 粘性阻力(摩擦力):F S dl ττπ=?= 克服油的粘性阻力所消耗的功率: ()()3 223 22 3 230230603.140.360.732001600.231050938.83(W) d d n d n n l P M F dl πππμωτπδ -==??=??= ???= ? ?= 例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下

盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。 解:根据牛顿黏性定律 d d 2d r r F A r r ω ωμ μ πδ δ== 2d d 2d r T F r r r ω μπδ =?= 4 2 420 d d 232d d d T T r r πμωπμωδδ===? 4 32d T πμωδ= 例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。 水 解:根据等压面的性质,采用相对压强可得: ()()()123243g g g h h h h h h ρρρ---=-水水 1234 32 h h h h h h ρρ-+-= -水

最新2-5有限元法在流体力学中的应用汇总

2-5有限元法在流体力学中的应用

第五章有限元法在流体力学中的应用 本章介绍有限元法在求解理想流体在粘性流体运动中的应用。讨论了绕圆柱体、翼型和轴对称物体的势流,分析了求解粘性流动的流函数—涡度法流函数法和速度—压力法,同时导出粘性不可压流体的虚功原理。 §1 不可压无粘流动 真实流体是有粘性和可压缩的,理想不可压流体模型使数学问题简化,又能较好地反映许多流动现象。 1. 圆柱绕流 本节详细讨论有限无法的解题步骤。考虑两平板间的圆柱绕流.如图5—1所示。为了减小计算工作量,根据流动的对称性可取左上方的l/4流动区域作为计算区域。 选用流函数方法,则流函数 应满足以下Laplace方程和边界条件

22220(,)0(,)2(,)(,)0(,)x y x y x y aec x y bd y x y ab x y cd n ψψ ψψ ???+=-∈Ω?????-----∈???=-----∈????-----∈????=-----∈???流线流线流线 流线 (5-1) 将计算区域划分成10个三角形单元。单元序号、总体结点号和局部结点号都按规律编排.如图5—2所示。 从剖分图上所表示的总体结点号与单元结点号的关系,可以建立联缀表于下 元素序号 1 2 3 4 5 6 7 8 9 10 总体 结点 号 n1 1 4 4 4 2 2 6 6 5 5 n2 4 5 9 8 6 5 7 10 10 9 n3 2 2 5 9 3 6 3 7 8 10 表5-1

各结点的坐标值可在图5—2上读出。如果要输入计算机运算必须列表。本质边界结点号与该点的流函数值列于下表 表5-2 选用平面线性三角形元素,插值函数为(3—15)式。对二维Laplace 方程进行元素分析,得到了单元系数矩阵计算公式(3—19)和输入向量计算公式(3—20)。现在对全部元素逐个计算系数矩阵。 例如元素1,其结点坐标为1x =0, 1y =2; 2x =0, 2y =1; 3x =2.5, 3y =2. 由(3—15)式可得 132 2.5a x x =-=; 213 2.5a x x =-=- 3210a x x =-=, 1231b y y =-=-; 2310b y y =-=; 3121b y y =-=; 0 1.25A = 从(3—19)式可计算出1K 1 1.45 1.250.21.2500.2K ?? ? ? = ? ? ? ? --对称 依次可计算出全部子矩阵 20.20.201.45 1.251.25K ?? ? ? = ? ? ? ? --

流体力学基础知识

流体力学基础知识 第一节 流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母ρ表示,单位为kg/m 3。流体单位体积内所具有的重量称为重度,重度用γ表示,单位为N/m 3,两者之间的关系为g ργ=,g 为重力加速度,通常g =9.806m/s 2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用μ来表示。 所谓运动粘度是指动力粘度μ与相应的流体密度ρ之比,用ν来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升高而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60℃时,由于粘滞性下降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60℃下。 第二节 液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa 。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△F ,当△F 逐渐趋近于零时作用在△F 面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示

流体力学例题

如图,横截面为椭圆形的长圆柱体置于风洞中,来流稳定、风速风压均匀并垂直绕过柱体流动。住体对流体的总阻力可通过测力天平测试柱体受力获得,也可通过测试流场速度分布获得。现通过后一种方法,确定单位长度的柱体对流体的总阻力F x 。 解:由于柱体很长且来流均匀,可认为流动参数沿z 方向(柱体长度方向)无变化,将绕柱体的流动视为x-y 平面的二维问题。 ⒈ 控制体:取表面A 1、A 2、 A 3、 A 4并对应柱体单位长度的流场空间。 ⒉ 控制面A 1:柱体上游未受干扰,故有: 0p p =,0u v x =,0=y v ,于是控制面上x 方向受力、质量流量和动量流量分别为: 01bp F x =,()b u dA A 01 ρρ-=???n v ,()b u dA v A x 2 01 ρρ-=???n v 控制面A 2:设在柱体下游一定距离处,与面A 1相距l ,此处压力基本恢复均匀分布,故有 0p p ≈。()y v v x x =是需要测量的物理量;()y v v y y =通常比x v 小得多,其精确测量较困 难,在计算x 方向受力时用不到,控制面上x 方向受力、质量流量和动量流量分别为: 02bp F x -=,()? ? ??==?-2 /0 2 /2 /22 b x b b x A dy v dy v dA ρρρn v ,()? ??=?2 /0 2 21 b x A x dy v dA v ρρn v 控制面A 3:b 应取得足够大,以使得面A 3上的流动受柱体影响较小,故有0p p ≈,0u v x ≈。控制面上的质量流量由y v 确定,该量精确测定较为困难,计算结果最终不会用到该量,暂设()x v v y y =为已知量。 03≈x F ,()???≈?l y A dx v dA 0 223 ρρn v ,()???=?l y A x dx v u dA v 0 0223 ρρn v 控制面A 4:为柱体横截面包络面,该面上流体所受表面力有正压力和摩擦力。由于流场相 对于x 轴对称,所以表面力在y 轴方向的合力为零,在x 轴方向的合力F x 即为流体受到的总阻力(形体阻力与摩擦阻力),控制面上无流体输入和输出。 p p ≈0 p p ≈0 p p ≈0u v x ≈0 u v x ≈

相关文档
最新文档