2000m3高炉炉型设计及物料平衡计算1

2000m3高炉炉型设计及物料平衡计算1
2000m3高炉炉型设计及物料平衡计算1

2000m3高炉炉型设计及物料平衡计算

摘要:本设计要求建2000m3炼铁高炉。设计主要内容包括高炉炉型设计计算及高炉本体立剖图,同时对所设计高炉的特点进行简述。设计高炉有效容积为2000m3,高径比取 2.3,高炉利用系数取值为 2.0,据此设计高炉炉型。设计本着优质、高产、低耗和对环境污染小的宗旨,为日产生铁4000t的高炉提供高炉内型设计。并对2000m3炼铁高炉进行物料平衡计算,物料平衡计算是炼铁工艺计算中重要组成部分,它是在配料计算的基础上进行的。整个物料平衡计算有配料计算和物料衡算两部分构成。在配料计算过程中,进行了原料和燃料的全分析,渣铁成分及含量分析;在物料衡算过程中计算了包括鼓风量、煤气量以及物料收支总量等项内容的计算,并制作物料平衡表。

关键词:高炉发展;高炉炉型;炉型计算;物料平衡配料计算物料衡算物料平衡表

绪论

最近二十年来,日本和欧盟区的在役高炉座数由1990年的65座和92座下降到28座和58座,下降幅度分别为56.9%和37%,但是高炉的平均容积却分别由1558m3和1690m3上升到4157m3和2063m3,上升幅度为166.8%和22%,这基本代表了国外高炉大型化的发展状况。

高冶炼强度、高富氧喷煤比和长寿命化作为大型高炉操作的主要优势受到大家越来越高的关注和青睐,但是高炉大型化作为一项系统工程,它在立足自身条件的基础上仍须匹配的炼钢、烧结和炼焦能力。我国近年推出的《钢铁产业发展政策》中规定高炉炉容在300m3以下归并为淘汰落后产能项目,且仍存在扩大小高炉容积的淘汰范围的趋势。同时国内钢铁产业的快速发展均加速了世界和我国高炉大型化的发展进程。由于大型化高炉具备的单位投资省、效能高和成本低等特点,从而有效地增强了其竞争力。

20世纪高炉容积增长非常快。20世纪初,高炉炉缸直径4-5m,年产铁水约100000吨左右,原料主要是块矿和焦炭。20世纪末,最大高炉的炉缸直径达到14-15m,年产铁水300-400万吨。目前,特大型高炉的日产量能够达到甚至超过12000吨。例如,大分厂2号高炉(日本新日铁)炉缸直径15.6m,生产能力为13500吨铁/天。蒂森-克虏伯公司施韦尔格恩2号高炉炉缸直径14.9m,生产能力为12000吨铁/天。70年代末全世界2000立方以上高炉已超过120座,其中日本占1/3,中国有四座。全世界4000立方以上高炉已超过20座,其中日本15座,中国有1座在建设中。

我国高炉大型化的发展模式与国外基本相近,主要是采取新建大型高炉、以多座旧小高炉合并成大型高炉和高炉大修扩容等形式来推动着高炉的大型化发展。据不完全统计,我国自2004年以来相继建成投产的3200m3级15座,4000m3

级8座,5000m3级3座,且有越来越大的趋势。目前,河北迁钢和山东济钢等企业也正在建设4000m3级高炉,近来宝钢湛江和武钢防城港项目也在规划筹建5500m3级超大型高炉。

我国高炉大型化的标准主要是依据高炉容积的大小来划分的,且衡量标准也由过去的1000m3提高到2000m3,甚至更大。虽然大型化高炉相对于小高炉存在着生产率高、生产稳定、指标先进和成本低等显著的优点,但是对于我国高炉大型化的发展状况,我们仍然需要科学客观地看待。

本课程设计嗨针对改路物料计算做了计算,分析。高炉物料平衡的计算是通过高炉配料计算确定单位生铁所需要的矿石、焦炭、石灰石和喷吹物等数量,这是制定高炉操作制度和生产经营所不可缺少的参数。而在此基础上进行的高炉物料平衡计算,则要确定单位生铁的全部物质收入与支出,即计算单位生铁鼓风数量与全部产品的数量,使物质收入与支出平衡。这种计算为工厂的总体设计、设备容量与运输力的确定及制定生产管理与经营制度提供科学依据,是高炉与各种附属设备的设计及高炉正常运转的各种工作所不可缺少的参数。

第一章高炉炉型

高炉是竖炉,高炉内部工作空间剖面的形状称为高炉炉型或高炉内型。高炉冶炼的实质是上升的煤气流和下降的炉料之间进行传热传质的过程,因此必须提供燃料燃烧的空间,提供高温煤气流与炉料进行传热传质的空问。高炉炉型要适应原燃料条件的要求,保证冶炼过程的顺利。

1.1炉型的发展过程

炉型的发展过程主要受当时的技术条件和原燃料条件的限制。随着原燃料条件的改善以及鼓风能力的提高,高炉炉型也在不断地演变和发展,炉型演变过程大体可分为3个阶段。

(1)无型阶段-又称生吹法。在土坡挖洞,四周砌行块,以木炭冶炼,这是原始的方法。

(2)大腰阶段-炉腰尺寸过大的炉型。出于当工业不发达,高炉冶炼以人力、蓄力、风力、水力鼓风,鼓风能力很弱,为了保证整个炉缸截面获得高温,炉缸直径很小,冶炼以木炭或无烟煤为燃料,机械强度很低,为了避免高炉下部燃料被压碎,从而影响料柱透气性,故有效高度很低;为了人工装料方便并能够将炉料装到炉喉中心.炉喉直径也很小,而大的炉腰直径减小了烟气流速度,延长了烟气在炉内停留时间,起到焖住炉内热量的作用。因此,炉缸和炉喉直径小,有效高度低,而炉腰直径很大。这类高炉生产率很低,一座28m3高炉日产量只有1.5 t左右。

(3)近代高炉-由于鼓风机能力进一步提高.原燃料处理更加精细,高炉炉型向着“大型横向”发展。高炉内型合理与否对高炉冶炼过程有很大影响。炉型设计合理是获得良好技术经济指标,保证高炉操作顺行的基础。

1.2五段式高炉

①高炉有效客积和有效高度高炉大钟下降位置的下沿到铁口中心线间的距离称为高炉有效高度,对于无钟炉顶为旋转溜槽最低位置的下缘到铁口中心线之间的趴离。在有效高度范围内,炉型所包括的容积称为高炉有效容积。高炉的有效高度,对高炉内煤气与炉料之间传热传质过程行很大影响。在相同炉窖和冶炼强度条件下,增大有效高度,炉料与煤气流接触机会增多,有利于改善传热传质过程、降低燃料消耗;仅过分增加有效高度,料校对煤气的阻力增大.容易形成料供,对炉科下降不利。高炉有效高度应适应原燃料条件,如原燃料强度、粒度及均匀性等。生产实践证明,高炉有效高度与有效容积有一定关系,但不是直线关系,当有效容积增加到—定值后,有效高度的增加则不显著。

②炉缸高炉炉型下部的圆筒部分为炉缸,炉缸的上、中、下部位分别没有风口、渣口与铁口,现代大型高炉多不设渣口。炉缸下部容积盛装液态渣铁,上部空间为风口的燃烧带。

(1)炉缸直径炉缸直径过大和过小都直接影响高炉生产。直径过大将导致炉腹角过大,边缘气流过分发展,中心气流不活跃而引起炉缸堆积,同时加速对炉衬的侵蚀;炉缸直径过小限制焦炭的燃烧.影响产员的提高。炉缸截面积应保证一定数量的焦炭和喷吹燃料的燃烧,炉缸截面燃烧强度是高炉冶炼的一个重要指标,它是指每1h每1m3炉缸截面积所烧侥的焦炭的数量,一般为 1.00~1.25t/(m 2·h)。炉缸截面燃烧强度的选择,应与风机能力和原燃料条件相适应,风机能力大、原料透气性好、燃料可燃性好的燃烧强度可选大些,否则选低值。

(2)炉缸高度炉缸高度的确定,包括渣口高度、风口高度以及风口安装尺寸的确定。铁口位于炉缸下水平面,铁口数目根据高炉炉容或高炉产量而定,一般1000m3以下高炉设一个铁口,1500~3000m3高炉设2~3个铁口,3000m3以上高炉设3~4个铁口,或以每个铁口日出铁量1500—3000t设铁口数目。原则上出铁口数目取上限,有利于强化高炉冶炼。渣口中心线与铁口中心线间距离称为渣口高度,它取决于原料条件,即渣量的大小。渣口过高,下渣量增加,对铁口的维护不利;渣口过低,易出现渣中带铁事故,从而损坏渣口,大、中型高炉渣口高度多为1.5~1.7m。

(3)炉腹炉腹在炉缸上部,呈倒截圆锥形。炉腹的形状适应了炉料熔化滴落后体积的收缩,稳定下料速度。同时,可使高温煤气流离开炉墙,既不烧坏炉墙又有利于渣皮的稳定,对上部料柱而言,使燃烧带处于炉喉边缘的下方,有利于松动炉料,促进冶炼顺行。燃烧带产生的煤气量为鼓风量的1.4倍左右,理论燃烧温度1800~2000℃,气体体积剧烈膨胀,炉腹的存在适应这一变化。炉

和炉腹角α。炉腹过高,有可能炉料尚未熔融就进腹的结构尺寸是炉腹高度h

2

人收缩段,易造成难行和悬料;炉腹过低则减弱炉腹的作用。

(4)炉身炉身呈正截圆锥形,其形状炉料受热后体积的膨胀和煤气流冷却后的收缩,有利于减少炉料下降的摩擦阻力,避免形成料拱。炉身角对高炉煤气流的合理分布和炉料顺行影响较大。炉身角小,有利于炉料下降,但易于发展边缘煤气流,过小时但只边缘煤气流过分发展。炉身角大,有利于抑制边缘煤

高炉本体设计

高炉炼铁综合计算及高炉本体设计

目录 前言3 摘要错误!未定义书签。 第一章高炉炼铁综合计算4 原始条件4 工艺计算6 配料计算6 物料平衡10 热平衡计算15 热平衡表18 m的高炉本体设计 19第二章有效容积12753 技术经济指标确定19 高炉内型尺寸计算19 炉衬材质及厚度22 炉底衬砖的设计22 炉腹、炉腰及炉身下部的砌筑22 炉身上部和炉喉砌筑23 高炉冷却 23 冷却的目的和意义24 高炉冷却介质 24 冷却设备 24 炉体钢结构25 炉体钢结构25 炉壳25 高炉基础25 结论错误!未定义书签。 谢辞26 参考文献 27

前言 高炉炼铁是以铁矿石(天然富矿、烧结矿、球团矿)为原料,以焦炭、煤粉、重油、天然气等为燃料和还原剂,以石灰石等为熔剂,在高炉内通过燃料燃烧、氧化物中铁元素的还原以及非铁氧化物造渣等一系列复杂的物理化学过程获得生铁。其主要副产品有高炉炉渣和高炉煤气。 为实现优质、低耗、高产和延长炉龄,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。现代化高炉已成为高度机械化、自动化和大型化的一种综合生产装置。高炉车间的设计也必须满足高炉生产的经济技术指标,以期达到最佳的生产效果。 摘要: 高炉炼铁的历史悠久,炼铁技术日臻成熟,是当今主要的炼铁方式。高炉作为炼铁工艺的主体设备,其结构的合理性对炼铁的工艺操作、生产技术指标以及自身的寿命都有十分重要的影响。根据攀枝花钒钛磁铁矿的高炉冶炼特点,通过进行配料计算和物料平衡计算,设计了1700m3高炉本体。设计过程除考虑通常的高炉设计方案外,还考虑了攀枝花钒钛磁铁矿多年高炉冶炼的一些生产实践经验。采用碳砖加高铝砖综合炉底、全碳砖炉缸;冷却设备的设计为水冷炉底、炉缸和炉底采用三段光面冷却壁、炉身采用镶砖冷却壁;高炉钢结构采用炉体框架式结构,最后采用CAD绘制出高炉本体图。 关键词: 高炉炼铁;综合计算,高炉本体设计

物料平衡计算公式

物料平衡计算公式 This model paper was revised by the Standardization Office on December 10, 2020

物料平衡计算公式: 每片主药含量 理论片重= 测得颗粒主药百分含量 1.原辅料粉碎、过筛的物料平衡 物料平衡范围: %~100 % 物料平衡= %100?+a c b a-粉筛前重量(kg) b-粉筛后重量(kg) c-不可利用物料量(kg) 2.制粒工序的物料平衡 物料平衡范围: %~ % 制粒工序的物料平衡= a d c b ++×100% 制粒工序的收率=a b ×100% a-制粒前所有原辅料总重(kg) b-干颗粒总重(kg) c-尾料总重(kg) d-取样量(kg) 3.压片工序的物料平衡范围: %~ % 压片工序的物料平衡=a d c b ++×100% 压片工序的收率=a b ×100%

a-接收颗粒重量(kg) b-片子重量(kg) c-取样重量(kg) d-尾料重量(kg) 4.包衣工序的物料平衡 包衣工序的物料平衡范围: %~ % 包衣工序的物料平衡 = b a e d c +++ 包衣工序的收率 = b a c + a-素片重量(kg) b-包衣剂重量(kg) c- 糖衣片重量(kg) d-尾料重量(kg) e-取样量(kg) 5.内包装工序物料平衡 内包装工序物料平衡范围: %~ % 包材物料平衡=%100?++++A a d c b B a- PTP 领用量(kg) b- PTP 剩余量(kg) A- PVC 领用量(kg) B- PVC 剩余量(kg) c-使用量(kg) d- 废料量(kg) 片剂物料平衡=%100?++a d c b a :领用量(Kg) b :产出量(Kg) c :取样量(Kg) d :废料量(Kg) 6.外包装工序的物料平衡

1000立方米高炉炼铁物料平衡计算课程设计论文

攀枝花学院课程设计(论文) 1000 m3高炉炼铁物料平衡计算

摘要 通过高炉物料计算确定单位生铁所需要的矿石、焦炭、石灰石和喷吹物等数量,这是制定高炉操作制度和生产经营所不可缺少的参数。而在此基础上进行的高炉物料平衡计算,则要确定单位生铁的全部物质收入与支出,即计算单位生铁鼓风数量与全部产品数量,试物料收入与支出平衡。这种计算为工厂的总体设计、设备容量与运输力的确定及制定生产管理与经营制度提供科学依据,是高炉余各种附属设备的设计及高炉正常运转的各种工作所不可缺少的参数。 高炉物料平衡的计算有两种方法:一般物料平衡计算法与现场物料平衡计算法。两种物料平衡均为热平衡的基础,以物质不灭定律为依据。物料平衡计算是炼铁工艺计算中的重要组成部分,它是在配料计算的基础上进行的。物料平衡计算包括鼓风量、煤气量以及物料收支总量等项内容的计算。物料平衡有助于检验设计的合理性,深入了解冶炼过程的物理化学反应,检查配料计算的正确性。校验高炉冷风流量,核定煤气成分和煤气数量,并能检查现场炉料称量的准确性,为热平衡及燃料消耗计算的下基础。 关键词现场物料平衡,鼓风量,煤气量,物料收支总量,

1 前言(引言) 1.1物料平衡计算的准备 进行物料衡算应具备以下资料:各种物料的全分析成分,各种物料的实际用量;生铁成分、炉渣成分和数量;鼓风含氧量及鼓风湿度等。 1.2高炉物料平衡计算的内容 1.2.1高炉物料平衡的计算有两种方法与依据 一般由一般物料平衡计算法与现场物料平衡计算法组成。两种物料平衡均为热平衡的基础,以物质不灭定律为依据。 1.2.2物料平衡计算组成部分 物料平衡计算是炼铁工艺计算中的重要组成部分,它是在配料计算的基础上进行的。物料平衡计算包括鼓风量、煤气量以及物料收支总量等项内容的计算。 1.2.3一般物料平衡计算 该法用于高炉配料什算和设计阶段的工艺什算,是在假定铁的直接还原度和氢利用率等前提下,用来检查煤气成分及风量和煤气量的计算是否正确。计算步骤主要是由碳氧平衡算出入炉风量,然后计算出煤气各纽成,总量和成分含量,最终列出物料平衡表。渣量计算方法参照本文配料联合计算中炉渣成分和渣量的计算。这里直接给定了渣量。另外,原料常规分析中有SiO2、CaO、MgO、和Al2O3,物料平衡没有用到的化学成分均没有列出[3]。 1.2.4 现场物料平衡计算 现场用实际的生产数据作物料平衡,用来检查和校核入炉物料和产品称量的准确性,计算生产中无法计量的渣量和炉顶煤气量,实际的入炉风量,算出各种还原度和利用卒,如铁的直接还原度、Co利用率、氢利用率和风口燃烧碳率等,便于技术经济分析[3]。

高炉冶炼物料平衡计算

高炉冶炼综合计算 1.1概述 组建炼铁车间(厂)或新建高炉,都必须依据产量以及原料和燃料条件作为高炉冶炼综合计算包括配料计算、物料平衡计算和热平衡计算。从计算中得到原料、燃料消耗量及鼓风消耗量等,得到冶炼主要产品(除生铁以外)煤气及炉渣产生量等基本参数。以这些参数为基础作炼铁车间(厂)或高炉设计。 计算之前,首先必须确定主要工艺技术参数。对于一种新的工业生产装置,应通过实验室研究、半工业性试验、以致于工业性试验等一系列研究来确定基本工艺技术参数。高炉炼铁工艺已有200余年的历史,技术基本成熟,计算用基本工艺技术参数的确定,除特殊矿源应作冶炼基础研究外,一般情况下都是结合地区条件、地区高炉冶炼情况予以分析确定。例如冶炼强度、焦比、有效容积利用系数等。 计算用的各种原料、燃料以及辅助材料等必须作工业全分析,而且将各种成分之总和换算成100%,元素含量和化合物含量要相吻合。 将依据确定的工艺技术参数、原燃料成分计算出单位产品的原料、燃料以及辅助材料的消耗量,以及主、副产品成分和产量等,供车间设计使用。配料计算也是物料平衡和热平衡计算的基础。 依据质量守恒定律,投入高炉物料的质量总和应等于高炉排出物料的质量总和。物料平衡计算可以验证配料计算是否准确无误,也是热平衡计算的基础。物料平衡计算结果的相对误差不应大于0.25%。 常用的热平衡计算方法有两种。第一种是根据热化学的盖斯定律,即按入炉物料的初态和出炉物料的终态计算,而不考虑炉内实际反应过程。此法又称总热平衡法。它的不足是没有反应出高炉冶炼过程中放热反应和吸热反应所发生的具体空间位置,这种方法比较简便,计算结果可以判断高炉冶炼热工效果,检查配料计算各工艺技术参数选取是否合理,它是经常采用的一种计算方法。 第二种是区域热平衡法。这种方法以高炉局部区域为研究对象,常将高炉下部直接还原区域进行热平衡计算,计算其中热量的产生和消耗项目,这比较准确地反应高炉下部实际情况,可判断炉内下部热量利用情况,以便采取相应的技术措施。该计算比较复杂。要从冶炼现场测取大量工艺数据方可进行。 1.2配料计算 一.设定原料条件 1、矿石成分: 表 1-1原料成分,%

高炉炼铁工艺流程(经典)61411

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、 直接还原法、熔融还原法等,其 原理是矿石在特定的气氛中(还 原物质CO、H2、C;适宜温度 等)通过物化反应获取还原后的 生铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主 要方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧

化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

邯钢2000m3高炉设计特点

第19卷第6期2c100年12月 炼铁 IRt)NMAKING V01.19.NL】6 Decembef200.邯钢2000m3高炉设计特点 王学伶焦英占 邯郸钢铁有限责任公司 摘要邯钢2000m’高炉是引进德国二手设备建造的.设计时进行了国内配套,采用丁槽下原 燃料过筛、焦丁与烧结矿混装入炉、井罐无料钟炉顶、“陶瓷杯”炉底炉缸结构、底滤法水冲渣、煤 粉浓相辅送、外燃式热风炉硬出铁场电除尘等多项先进技术。 关键词高炉二手设备设计改进 Designcharacteristicof2000m3BFatHandanIron&SteelCo..Ltd. (HandanIron8SteejCo..Ltd.) WangXuelingJiaoYingzhan AbstractThe2000m’BFatHandanlron&SteelCo..LtdwasconstrucledusingthesecondhandequipmentimportedfromGermany.Duringdesigning,afewofadvancedtechniqueswereadopted,suchasscreeningofrawmaterialunderbins?mixedchargingof15--25mmsizecokenut,K.bell—lesslopwithparallelhoppers,ceramiccup。".OCP”slaggranulation.densephasecoaltransportation.externalc(jrlfmstionhotstoveandcastbouseelectricdustcoltecfor,etc. Keywords bLastfurnacesecond-bandequipmentdesignhnprovement I概况 邯钢2000m3高炉系引进德国多特蒙德克虏伯公司3号高炉的设备和技术建造的。多特蒙德克虏伯公司3号高炉的基本情况如下:高炉f艺布置紧凑,占地面积小;高炉矿槽为钢结构,料坑深度为一】8.5m.槽下设备全部布置在地坑内;料车有效容积为12n13.主卷扬由2台250kW的直流电机驱动,料坑内斜桥角度为44。24’24”.出料坑后斜桥角度为46。28’40”;并罐无料钟炉顶,料罐容积为2×24m3.气密箱采用加压煤气冷却和密封;高炉炉体为框架自立式结构.有效高度为25.55m.高径比为2.27.28个风口. 修同日期r2000—09—05联系人:焦英占高级工程师 :0560151河北省邯郸市邯郸钢铁奇限责任公司设计院?10-2个铁口,炉底、炉缸采用炭砖陶瓷杯结构,炉身为薄壁内衬;炉缸以下采用1二业水喷淋冷却,炉缸以上为“I”’型带勾头冷却壁与不带勾头冷却壁相结合结构,冷却壁采用软水密闭循环,并配有20m3膨胀罐;热风炉为4座马琴式外燃热风炉.高炉熔渣采用火车运输;两出铁场呈90。布置.炉前设备为液压泥炮,液压气动开口机和液压摆动流嘴;煤气清洗采用比肖夫湿法除尘系统.即在洗涤塔内i殳置两级串联喉口,既能除尘又能调节炉顶压力;高炉风机为烧混合煤气的燃气轮机.炉前采用电除尘;各系统均采用计算机控制。 邯钢2000m’高炉设计围绕“高产、优质、低耗、长寿”的方针.结合邯钢的原燃料条件,遵循充分利用国外先进技术和设备的原

高炉设计的基础概念

高炉炉型概述 高炉炉型的发展 高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。 高炉生产实践表明:合理的炉体结构,对高炉一代炉龄的高产、优质、低耗和长寿起到保证作用,由此可以看出高炉的炉型应该有炉型和炉龄两个方面阐述。 近代高炉,由于鼓风机能力进一步提高,原料燃料处理更加精细,高炉炉型向着“大型横向”发展。对于炉型而言,从20世纪60年代开始,高炉逐步大型化,大型高炉的容积由当时的1000~1500m3逐步发展到现在的4000~5500m3。 /D即高径比缩小,大型随着炉容的扩大,炉型的变化出现以下特征:高炉的H U 高炉的比值已降到,1000m3级高炉降到,300m3级高炉也降到左右。和大小同步的还有高炉矮胖炉型发展,矮胖高炉的特征是炉子下部容积扩大,在适当的配合条件下利于增加产量,提高利用系数.但如矮胖得过分,易导致上部煤气利用差,使燃料比升高.此外,从全国节能要求出发,在高炉建设和炼铁生产经营管理中,应既抓产量,又抓消耗、质量和寿命的优秀实例进行总结推广,提倡全面贯彻“高产、优质、低耗、长寿,”八字方针。与盛高炉型相比,矮胖炉型的主要优点是:与炉料性能相适应,料柱阻力减小;风口增多,利于接受风量;高护更易顺行稳定。这些优点,给高炉带来了多产生铁,改进生铁质量,降低燃料消耗和延长寿命的综合效果。通过研究发现,当今用于炼铁的高炉炉喉直径均偏小,其炉喉直径与炉缸直径的比值均小于。通过研究发现,炉喉直径偏小影响炉身的间接还原效率,致使高炉能耗较高,影响高炉经济效益,因此,为了提高高炉炉身的间接还原效率,改善高炉产生技术指标和进行节能减排,特别推出一种扩大炉喉直径的新炉型高炉。采用的技术方案是:它包含炉缸、炉腹、炉腰、炉身、炉喉五部分,其中炉缸在炉腹的下面,炉缸上面连接炉腹,炉腹上面连接炉腰,炉腰上面连接炉身,炉身上面连接炉喉;由上述5部分组成的高炉内型,5个部分的横截面均呈圆形,其中炉缸直径用d表示,炉腰直径用D表示,炉喉直径用d表示,

干燥过程的物料平衡与热平衡计算

干燥过程的物料与热平衡计算 1、湿物料的含水率 湿物料的含水率通常用两种方法表示。 (1)湿基含水率:水分质量占湿物料质量的百分数,用ω表示。 100%?= 湿物料的总质量 水分质量 ω (2)干基含水率:由于干燥过程中,绝干物料的质量不变,故常取绝干物料为基准定义水分含量。把水分质量与绝干物料的质量之比定义为干基含水率,用χ表示。 100%?= 量 湿物料中绝干物料的质水分质量 χ (3)两种含水率的换算关系: χ χ ω+= 1 ω ω χ-= 1 2、湿物料的比热与焓 (1)湿物料的比热m C 湿物料的比热可用加与法写成如下形式: w s m C C C χ+= 式中:m C —湿物料的比热,()C kg J ?绝干物料/k ; s C —绝干物料的比热,()C kg J ?绝干物料/k ; w C —物料中所含水分的比热,取值4、186()C kg J ?水/k (2)湿物料的焓I ' 湿物料的焓I '包括单位质量绝干物料的焓与物料中所含水分的焓。(都就是以0C 为基准)。 ()θθχθχθm s w s C C C C I =+=+='186.4 式中:θ为湿物料的温度,C 。

3、空气的焓I 空气中的焓值就是指空气中含有的总热量。通常以干空气中的单位质量为基准称作比焓,工程中简称为焓。它就是指1kg 干空气的焓与它相对应的水蒸汽的焓的总与。 空气的焓值计算公式为: ()χ1.88t 24901.01t I ++= 或()χχ2490t 1.881.01I ++= 式中;I —空气(含湿)的焓,绝干空气kg/kg ; χ—空气的干基含湿量,绝干空气kg/kg ; 1、01—干空气的平均定压比热,K ?kJ/kg ; 1、88—水蒸汽的定压比热,K ?kJ/kg ; 2490—0C 水的汽化潜热,kJ/kg 。 由上式可以瞧出,()t 1.881.01χ+就是随温度变化的热量即显热。而χ2490则就是0C 时kg χ水的汽化潜热。它就是随含湿量而变化的,与温度无关,即“潜热”。 4、干燥系统的物料衡算 干燥系统的示意图如下: (1)水分蒸汽量W 按上述示意图作干燥过程中的0水量与物料平衡,假设干燥系统中无物料损失,则: 2211χχG LH G LH +=+ 水量平衡 G 1

烧结物料平衡计算4

烧结物料平衡计算 关键词:烧结物料平衡 1.1燃烧反应 烧结过程中进行着一系列复杂的物理化学变化,这些变化的依据是一定的温度和热量 需求条件,而创造这种条件的是混合料中碳的燃烧。混合料中的碳在温度达到700℃以上即 着火燃烧,发生以下凹种反应: C+O2=C02△H=-33500kj/mol△Go=-395350-0.54T(1-1)2C+O2=2CO△H=-9800kg/mol△Go=一228800-171.547T(1-2) 2CO+O2=2CO2△H=-23700kJ/mol△Go=-561900十170.46T(1-3) CO2+C=2CO△H=13800N/k8△Go=l66550-171.02T(1-4) 在烧结过程户,反应(2j1)易发生,在高温区有利于(2—2)和(2—4)进行,但由于燃烧层薄,废气经过预热层温度很快下降,所以它们受到限制,但是在混合料中燃料粒度过细,配碳过多而且偏析较大时,此类反应仍有一定程度的发展。反应(2—3)在烧结过程的低温区易于进行。总的来说,烧结废气个以CO:为主,有少量的CO,还有一些自出氧和氮。图1—1显示了烧结过程中废气成分变化 的一般规律。 图(1-1)

1.2分解反应 烧结过程中有三种分解反应发生:结晶水分解,碳酸盐分解,高价氧化物(Fe zo:,Mno2.Mn203)分解。 (1)结晶水分解。一般固溶体内的水容易在120一200℃就分解出来,以OH —根存在的针铁矿(Fe z03·H:O系y—FeO.OH),针铁矿(Fe2O3·H2O系Y —FeO.OH),水锰矿[MnO2·Mn(OH)2系MnO.OH]由于分解过程伴随有品格转变,其开始分解温度要高些约300℃左右。而脉石中的高岭土(A12O3·2SiO2·2H2O),拜来石[(Fe·AL)2O2·3SiO2·3H2O]的早格中进入了OH-,它们均需到500℃才开始分解。分解反应为吸热反应,因而用褐铁矿或强磁选和浮选的褐铁矿精矿粉烧结时,需要更多的燃料,配量一股高达9%一11%。 (2)碳酸盐分解。如果混合料中有菱铁矿,在烧结过程中比较容易分解,在300一350℃就分解了。配入混合料的熔剂白云石和石灰石的分解与废气小的cO 2分压有关。根据烧结废气户CO2含量变化(图1-2)和总压88.3kPa(0.9趾)的条件,可以得出白云石和石灰石开始分解的温度相应为720℃和809℃。沸腾分解温度为910℃。溶剂的分解过程示与图(1-2)。

毕业设计—高炉炉型设计

目录 中文摘要 (Ⅰ) 英文摘要 (Ⅱ) 1 绪论 (4) 1.1砖壁合一薄壁高炉炉型的发展和现状 (4) 1.2砖壁合一薄壁高炉炉型的应用 (4) 2 高炉能量利用计算 (6) 2.1高炉能量利用指标与分析方法 (6) 2.2直接还原度选择 (7) 2.3配料计算 (8) 2.4物料平衡 (13) 2.5 热平衡 (17) 3 高炉炉型设计 (23) 3.1 炉型设计要求 (23) 3.2 炉型设计方法 (24) 3.3炉型设计与计算 (24) 4 高炉炉体结构 (28) 4.1 高炉炉衬结构 (28) 4.2高炉内型结构 (29) 4.3 炉体冷却 (30) 4.4 炉体钢结构 (31) 4.5风口、渣口及铁口设计 (31) 5砖壁合一的薄壁炉衬设计 (33) 5.1砖壁合一的薄壁炉衬结构的布置形式 (33) 5.2砖壁合一的薄壁炉衬高炉的内型 (33) 5.3砖壁合一的薄壁炉衬高炉的内衬 (34) 5.4薄壁高炉的炉衬结构和冷却形式 (34) 6结束语 (36) 参考文献 (37)

摘要 近年来, 炼铁技术迅猛发展, 总的发展趋势是建立精料基础, 扩大高炉容积, 减少高炉数目, 延长高炉寿命, 提高生产效率,控制环境污染, 持续稳定地生产廉价优质生铁, 增加钢铁工业的竞争力。现代高炉的冶炼特征是, 低渣量, 大喷煤, 低焦比, 高利用系数;高炉结构的特征是,采用软水冷却、全冷却壁、薄壁炉衬、操作炉型的薄壁高炉。高炉采用大喷煤、高利用系数冶炼, 要求改善高炉的料柱透气性和延长高炉寿命高炉精料、布料、耐火材料、冷却等技术的进步,不断促进长寿的薄壁高炉发展。 高炉的炉型随着高炉精料性能、冶炼工艺、高炉容积、炉衬结构、冷却形式的发展而演变, 高炉设计的理念也随着科学技术的进步和生产实践的进展而更新。 薄壁高炉的设计炉型就是高炉的操作炉型, 在生产中几乎始终保持稳定, 消除了畸形炉型。长期稳定而平滑的炉型, 有利于高炉生产的稳定和高效长寿。高炉操作炉型的显著特征是, 炉腰直径扩大, 高径比减小, 炉腹有、炉身角缩小。这种炉型发展趋势是炼铁技术进步的反, 它有利于改善高炉料柱透气性, 稳定炉料和煤气流的合理分布, 延长高炉寿命, 对大型高炉采用大喷煤、低焦比、高利用系数冶炼更有意义。 关键词:高炉炉型砖壁合一设计 ABSTRACT In recent years, the rapid development of iron technology, the overall trend is expected to establish a fine basis for the expansion of blast furnace capacity, reduce the number of blast furnace, blast furnace to extend life, increase productivity, control of environmental pollution, continuous and stable production of low-cost high-quality pig iron, iron and steel industry increased competitiveness. Characteristics of a modern blast furnace smelting, the low amount of slag, the pulverized coal injection and low coke rate, high utilization factor; blast furnace structure is characterized by the use of soft water cooling, cooling the whole wall, thin lining, the thin-walled blast furnace operation. Large blast furnace pulverized coal injection, high utilization factor smelting, blast furnace to improve permeability of the material column and extend the

高炉设计的基础概念

文献综述 高炉炉型概述 高炉炉型的发展 高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。 高炉生产实践表明:合理的炉体结构,对高炉一代炉龄的高产、优质、低耗和长寿起到保证作用,由此可以看出高炉的炉型应该有炉型和炉龄两个方面阐述。 近代高炉,由于鼓风机能力进一步提高,原料燃料处理更加精细,高炉炉型向着“大型横向”发展。对于炉型而言,从20世纪60年代开始,高炉逐步大型化,大型高炉的容积由当时的1000~1500m3逐步发展到现在的4000~5500m3。随着炉容的扩大,炉型的变化出现以下特征:高炉的H U/D即高径比缩小,大型高炉的比值已降到,1000m3级高炉降到,300m3级高炉也降到左右。和大小同步的还有高炉矮胖炉型发展,矮胖高炉的特征是炉子下部容积扩大,在适当的配合条件下利于增加产量,提高利用系数.但如矮胖得过分,易导致上部煤气利用差,使燃料比升高.此外,从全国节能要求出发,在高炉建设和炼铁生产经营管理中,应既抓产量,又抓消耗、质量和寿命的优秀实例进行总结推广,提倡全面贯彻“高产、优质、低耗、长寿,”八字方针。与盛高炉型相比,矮胖炉型的主要优点是:与炉料性能相适应,料柱阻力减小;风口增多,利于接受风量;高护更易顺行稳定。这些优点,给高炉带来了多产生铁,改进生铁质量,降低燃料消耗和延长寿命的综合效果。通过研究发现,当今用于炼铁的高炉炉喉直径均偏小,其炉喉直径与炉缸直径的比值均小于。通过研究发现,炉喉直径偏小影响炉身的间接还原效率,致使高炉能耗较高,影响高炉经济效益,因此,为了提高高炉炉身的间接还原效率,改善高炉产生技术指标和进行节能减排,特别推出一种扩大炉喉直径的新炉型高炉。采用的技术方案是:它包含炉缸、炉腹、炉腰、炉身、炉喉五部分,其中炉缸在炉腹的下面,炉缸上面连接炉腹,炉腹上面连接炉腰,炉腰上面连接炉身,炉身上面连接炉喉;由上述5部分组成的高炉内型,5个部分的横截面均呈圆形,其中炉缸直径用d表示,炉腰直径用D表示,炉喉直径用d表示,炉喉直径d1与炉缸直径d之比在~之间。从而炉型能够充分发挥炉身的间接还原作用,使高炉节约焦炭,降低消耗,减少二氧化碳排放,能够使钢铁企业降低生产成本。 高炉炉龄及其影响因素

片剂中物料平衡计算

片剂物料平衡的计算 (1)整粒终混平衡的计算 A=总投料量(kg) B=合格颗粒量(kg) C=不合格颗粒量(kg) D=取样量(kg) B + C + D 平衡= --------------------×100% 应为95%~102% A (2)整粒终混得率的计算 得率=B/A×100% (3)压片平衡的计算 A=合格颗粒重量(kg) B=不合格品重量(kg) C=合格片重量(kg) D=取样量(kg) B + C + D 平衡=------------------×100% 应为95%~100% A (4)压片得率的计算 得率=C/A×100% (5)包装平衡的计算 A:领取素片重量(kg) B:包装数量(片) C:平均片重(kg) D:内包装不合格品量(kg) E:外包装不合格品量(kg)

平衡=(B×C÷1000+D+E)/A×100% 应为95%~102%(6)包装得率的计算 得率=(B×C÷1000)/A×100% (7)批平衡的计算 A:总投料量(kg) B:包装数量(片) C:制粒不合格品量(kg) D:制粒取样量(kg) E:压片不合格品量(kg) F:压片取样量(kg) G:内包装不合格品量(kg) H:外包装不合格品量(kg) B×平均片重÷1000+C+D+E+F+G+H 平衡=-------------------------------- ×100% (应为95%~102%) A (8)批得率的计算 得率=B×平均片重÷1000/A×100% (9)内包材平衡的计算 A:使用量(kg) B:合格药板数量(板) C:不合格药板数量(板) D:未冲裁报废铝箔(米) E:铝塑板的宽(米)

高炉常用计算公式

炼铁用计算公式 1、根据焦炭负荷求焦比 焦比=1000/(负荷×综合品位)=矿批/(负荷×理论焦比) 2有效容积利用系数=每昼夜生铁产量/高炉有有效容积 3焦比=每昼夜消耗的湿焦量×(1-水分)/每昼夜的生铁产量 4理论出铁量=(矿批×综合焦比)/0.945=矿批×综合品位×1.06不考虑进去渣中的铁量因为焦炭也带入部分铁 5富氧率=(0.99-0.21)×富氧量/60×风量=0.013×富氧量/风量 6煤比=每昼夜消耗的煤量/每昼夜的生铁含量 7 综合焦比=焦比+煤比×0.8 8 综合燃料比=焦比+煤比+小块焦比 9 冶炼强度=每昼夜消耗的干焦量/高炉有效容积 10 矿比=每昼夜加入的矿的总量/每昼夜的出铁量 11 风速=风量(1-漏风率)/风口总面积漏风率20% 12 冶炼周期=(V有-V炉缸内风口以下的体积)/(V球+V烧+V矿)×88% =719.78/(V球+V烧+V矿)×88% 13 综合品位=(m烧×烧结品位+m球×球品位+m矿×矿品位)/每昼夜加入的矿的总量 14 安全容铁量=0.6×ρ铁×1/4πd2h h取风口中心线到铁口中线间高度的一半 15 圆台表面积=π/2(D+d) 体积=π/12×h×(D2+d2+Dd) 16 正方角锥台表面积S=a2 +b2 +4( a+b/2)h V=h/3(a2+b2+ab) =h/3(S1+S2+√S1S) 17、圆锥

侧面积M=πrl=πr√r2+h2 体积V=1/3πr2h 18、球 S=4πr2=πd2 V=4/3πr3=π/6d3 19、风口前燃烧1kg碳素所需风量(不富氧时) V风=22.4/24×1/(0.21+0.29f) f为鼓风湿度 20、吨焦耗风量 V风=0.933/(0.21+0.29f)×1000×85% f为鼓风湿度85%为焦炭含碳量 21、鼓风动能 (1)E=(764I2-3010I+3350)d E-鼓风动能I-冶炼强度 (2)E=1/2mv2=1/2×Q×r风/(60gn)v风实2 Q-风量r风-风的密度g=9.8 n-风口数目 22、石灰的有效容剂性 CaO有效=CaO熔-SiO2×R 23、洗炉墙时,渣中CaF2含量控制在2%-3%,洗炉缸时可掌控在5%左右,一般控制在4.5% 每批料萤石加入量X=P矿×TFe×Q×(CaF2)/([Fe]×N) P矿-矿批重TFe-综合品位[Fe]-生铁中含铁量 Q-吨铁渣量(CaF2)-渣中CaF2含量N-萤石中CaF2含量 24、风口前燃烧1kg碳素的炉缸煤气量 V煤气=(1.21+0.79f)/(0.21+0.29f)×0.933×C风 C风-风口前燃烧的碳素量,kg 25、理论出渣量 渣量批=QCaO批/CaO渣 渣量批-每批炉料的理论渣量,t QCaO批-每批料带入的CaO量,t CaO渣-炉渣中CaO的含量,% 25、喷吹煤粉热滞后时间 t=V总/(V批×n) V总-H2参加反应区起点处平面(炉身温度1100℃~1200℃处)至风口平面间的容积,m3 V批-每批料的体积,m3

高炉炉体设计

课程设计说明书 题 目:年产炼钢生铁220万吨的高 炉车间的高炉炉体设计 学生姓名:王志刚 学 院:材料科学与工程 班 级:冶金08—2 指导教师:代书华、李艳芬 2011年 12 月 25日

内蒙古工业大学课程设计(论文)任务书 课程名称:冶金工艺课程设计学院:材料科学与工程班级:冶金08- 2 班学生姓名:王志刚学号:200820411043 指导教师:代书华李艳芬

本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁场的设计。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁场进行合理的设计。

第一章文献综述 (1) 1.1国内外高炉发展现状 (1) 1.2我国高炉发展现状 (1) 第二章高炉炉衬耐火材料 (3) 2.1高炉耐火材料性能评价方法的进步 (3) 2.2高炉炉衬用耐火材料质量水平分析 (3) 2.3陶瓷杯用砖 (5) 2.4炉腹、炉身和炉腰用砖 (5) 第三章高炉炉衬 (6) 3.1炉衬破坏机理 (6) 3.2高炉炉底和各段炉衬的耐火材料选择和设计 (7) 第四章高炉各部位冷却设备的选择 (9) 4.1冷却设备的作用 (9) 4.2炉缸和炉底部位冷却设备选择 (9) 4.3炉腹、炉腰和炉身冷却设备选择 (9) 第五章高炉炉型设计 (11) 5.1主要技术经济指标 (11) 5.2设计与计算 (11) 5.3校核炉容 (13) 参考文献 (14)

高炉钢结构设计

高炉钢结构设计 (steel structure design of blast furnace) 炼铁高炉专用钢结构的设计。高炉钢结构设计主要内容包括高炉本体和炉顶、上料系统、热风炉系统、粗煤气除尘系统、出铁场和辅助设施钢结构的设计,做好系统间整体配合联系、进行结构的材料选择和采取安全防护措施。高炉系统钢结构见图1。 设计时要进行结构形式的选择,构件强度稳定性、变形的计算和合理的构造处理,以保证结构安全使用与经济合理。设计应按《钢结构设计规范》及其它有关规范规定进行。对于地震区的高炉钢结构,其抗震设计要求还要符合抗震设计规范规定。 高炉钢结构的大部分是高炉生产设备的主要组成部分,其特点是:(1)种类繁多,形式特殊。有多层空间框架的炉体框架、多折点壳体的炉壳、异形壳体组成的热风炉壳、圆或椭圆形筒壳的通廊等。(2)结构尺寸及构件断面较大。如:5000m3 左右高炉全高可达120m,炉壳直径为20m,炉壳厚度可达90~120mm,炉体框架箱形柱的断面尺寸达2.0m×4.0m。(3)钢材用量多,如5000m3 高炉,包括运输、动力、管线在内钢结构用量近9万t。(4)工作条件较苛刻。如:炉体及周围结构受高温影响及水气锈蚀作用,热风炉外壳上部有时受晶间应力腐蚀开裂作用,上料料车卷扬机的作业率高达80%,壳体构件还要承受煤气爆炸等事故性内压力和砖衬被侵蚀后高炉外壳局部温度过热的作用。(5)各系统间结构穿插交错,荷载辗转传递。要控制其变形,使其相互协调。 高炉本体和炉顶钢结构高炉本体结构形式主要有自立式和非自立式两种(图2),也有介于两者之间的过渡形式。自立式高炉包括高炉外壳、炉体框架和炉顶刚架。炉壳独自承受炉内有关全部竖向荷载,而在炉周设炉体框架支承上部设备及平台。大中型高炉多用此种形式。非自立式高炉在炉壳下部设托圈和炉缸支柱,以支持炉内荷载,且多不设炉体框架,而将炉身平台及炉顶刚架支承在炉壳上,小型高炉多用此种形式。

物料平衡计算公式:

物料平衡计算公式: 每片主药含量 理论片重= 测得颗粒主药百分含量 1.原辅料粉碎、过筛的物料平衡 物料平衡范围:97.0 %~100 % 物料平衡= %100?+a c b a-粉筛前重量(kg) b-粉筛后重量(kg) c-不可利用物料量(kg) 2.制粒工序的物料平衡 物料平衡范围:98.0 %~104.0 % 制粒工序的物料平衡= a d c b ++×100% 制粒工序的收率=a b ×100% a-制粒前所有原辅料总重(kg) b-干颗粒总重(kg) c-尾料总重(kg) d-取样量(kg) 3.压片工序的物料平衡范围:97.0 %~100.0 % 压片工序的物料平衡= a d c b ++×100% 压片工序的收率=a b ×100% a-接收颗粒重量(kg) b-片子重量(kg) c-取样重量(kg) d-尾料重量(kg) 4.包衣工序的物料平衡 包衣工序的物料平衡范围:98.0 %~100.0 % 包衣工序的物料平衡 = b a e d c +++ 包衣工序的收率 = b a c +

a-素片重量(kg) b-包衣剂重量(kg) c-糖衣片重量(kg) d-尾料重量(kg) e-取样量(kg) 5.内包装工序物料平衡 内包装工序物料平衡范围:99.5 %~100.0 % 包材物料平衡=%100?++++A a d c b B a- PTP 领用量(kg) b- PTP 剩余量(kg) A- PVC 领用量(kg) B- PVC 剩余量(kg) c-使用量(kg) d-废料量(kg) 片剂物料平衡=%100?++a d c b a :领用量(Kg) b :产出量(Kg) c :取样量(Kg) d :废料量(Kg) 6.外包装工序的物料平衡 包装材料的物料平衡范围:100% 包装材料物料平衡=%100?+++e a d c b e-上批结存 a-领用量 b-使用量 c-剩余量 d-残损量 7.生产成品率 成品率范围:90%~102% 片剂收率= %100?++a d c b a-计划产量 b-入库量 c-留样量 d-取样量

2000m3高炉炉型设计及物料平衡计算

2000m3高炉炉型设计及物料平衡计算 摘要:本设计要求建2000m3炼铁高炉。设计主要内容包括高炉炉型设计计算及高炉本体立剖图,同时对所设计高炉的特点进行简述。设计高炉有效容积为2000m3,高径比取,高炉利用系数取值为,据此设计高炉炉型。设计本着优质、高产、低耗和对环境污染小的宗旨,为日产生铁4000t的高炉提供高炉内型设计。并对2000m3炼铁高炉进行物料平衡计算,物料平衡计算是炼铁工艺计算中重要组成部分,它是在配料计算的基础上进行的。整个物料平衡计算有配料计算和物料衡算两部分构成。在配料计算过程中,进行了原料和燃料的全分析,渣铁成分及含量分析;在物料衡算过程中计算了包括鼓风量、煤气量以及物料收支总量等项内容的计算,并制作物料平衡表。 关键词:高炉发展;高炉炉型;炉型计算;物料平衡配料计算物料衡算物料平衡表 绪论 最近二十年来,日本和欧盟区的在役高炉座数由1990年的65座和92座下降到28座和58座,下降幅度分别为%和37%,但是高炉的平均容积却分别由1558m3和1690m3上升到4157m3和2063m3,上升幅度为%和22%,这基本代表了国外高炉大型化的发展状况。 高冶炼强度、高富氧喷煤比和长寿命化作为大型高炉操作的主要优势受到大家越来越高的关注和青睐,但是高炉大型化作为一项系统工程,它在立足自身条件的基础上仍须匹配的炼钢、烧结和炼焦能力。我国近年推出的《钢铁产业发展政策》中规定高炉炉容在300m3以下归并为淘汰落后产能项目,且仍存在扩大小高炉容积的淘汰范围的趋势。同时国内钢铁产业的快速发展均加速了世界和我国高炉大型化的发展进程。由于大型化高炉具备的单位投资省、效能高和成本低等特点,从而有效地增强了其竞争力。 20世纪高炉容积增长非常快。20世纪初,高炉炉缸直径4-5m,年产铁水约100000吨左右,原料主要是块矿和焦炭。20世纪末,最大高炉的炉缸直径达到14-15m,年产铁水300-400万吨。目前,特大型高炉的日产量能够达到甚至超过12000吨。例如,大分厂2号高炉(日本新日铁)炉缸直径,生产能力为13500吨铁/天。蒂森-克虏伯公司施韦尔格恩2号高炉炉缸直径,生产能力为12000吨铁/天。70年代末全世界2000立方以上高炉已超过120座,其中日本占1/3,中国有四座。全世界4000立方以上高炉已超过20座,其中日本15座,中国有1座在建设中。 我国高炉大型化的发展模式与国外基本相近,主要是采取新建大型高炉、以

GCr9物料平衡计算

一、物料平衡计算 (1) 1、计算所需原始数据 (1) 2、物料平衡基本项目 (2) 3、计算步骤 (2) 二、热平衡计算 (9) 1、计算热收入Q s (9) 2、计算热支出Q z (11) 三、电弧炉炉型及主要参数 (12) 参考文献 (15)

一、物料平衡计算 1、计算所需原始数据 基本原始数据:冶炼钢种及成分(见表1);原材料成分(见2);炉料中元素烧损率(见表3);其他数据(见表4) 表1 冶炼钢种及其成分 钢种 成分(%) 备注C Si Mn P S Cr Fe GCr9 1.00~ 1.10/1.05 0.15~ 0.35/0.25 0.20~0.40 ≤0.027 ≤0.020 0.90~ 1.20 余量氧化法 注:分母系计算时的设定值,取其成分中限。 表2 原材料成分(%) 名称C Si Mn P S Cr Al Fe H2O灰分挥发分碳素废钢0.18 0.25 0.55 0.030 0.030 余量 炼钢生铁 4.20 0.80 0.60 0.200 0.035 余量 焦炭81.50 0.58 12.40 5.52 电极99.00 1.00 名称CaO SiO2MgO Al2O3CaF2Fe2O3CO2H2O P2O5S 石灰88.00 2.50 2.60 1.50 0.50 4.64 0.10 0.10 0.06 铁矿石 1.30 5.75 0.30 1.45 89.77 1.20 0.15 0.08 火砖块0.55 60.80 0.60 36.80 1.25 高铝砖 1.25 6.40 0.12 91.35 0.88 镁砂 4.10 3.65 89.50 0.85 1.90 焦炭灰分 4.40 49.70 0.95 26.25 18.55 0.15 电极灰分8.90 57.80 0.10 33.10 表3 炉料中元素烧损率 成分C Si Mn P S 烧损率(%)熔化期25~40,取30 70~95,取 85 60~70,取 65 40~50,取 45 可以忽略 氧化期0.06①全部烧损20 0.015②25~30,取27 ①按末期含量比规格下限低0.03%~0.10%(取0.06%)确定(一般不低于0.03%的脱碳量); ②按末期含量0.015%来确定

相关文档
最新文档