关于高等数学等价无穷小替换极限的计算

关于高等数学等价无穷小替换极限的计算
关于高等数学等价无穷小替换极限的计算

关于高等数学等价无穷小替换极限的计算

Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

讲义

无穷小 极限的简单计算

【教学目的】

1、理解无穷小与无穷大的概念;

2、掌握无穷小的性质与比较 会用等价无穷小求极限;

3、不同类型的未定式的不同解法。 【教学内容】

1、无穷小与无穷大;

2、无穷小的比较;

3、几个常用的等价无穷小 等价无穷小替换;

4、求极限的方法。 【重点难点】

重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。

【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】

一、无穷小与无穷大

1.定义

前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极

限、0x x →(+→0x x 、-

→0x x )函数()f x 的极限这七种趋近方式。下面我们用

→x *表示上述七种的某一种趋近方式,即

*{

}

-

+

→→→-∞→+∞→∞→∞→∈00

x x x x x x x x x n

定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x *

例如, ,0sin lim 0

=→x x .0sin 时的无穷小是当函数→∴x x

【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。

定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即

()∞=→x f x *

lim 。显然,∞→n 时, 、

、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞

→x x e , +∞=+∞

→x x e lim ,

所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。

2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则

()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则()

x f 1

为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。

3.无穷小与函数极限的关系: 定理1 0

lim ()

()

(),x x x

f x A f x A x α其中)(x α是自变量在同一变化过程0

x x →(或∞→x )中的无穷小.

证:(必要性)设0

lim ()

,x

x f x A 令()(),x f x A α则有0

lim ()

0,x

x x α

(充分性)设()

(),f x A x α其中()x α是当0x

x 时的无穷小,则

【意义】

(1)将一般极限问题转化为特殊极限问题(无穷小);

(2)0()(),().f x x f x A x α给出了函数在附近的近似表达式误差为

3.无穷小的运算性质

定理2 在同一过程中,有限个无穷小的代数和仍是无穷小. 【注意】无穷多个无穷小的代数和未必是无穷小.

定理3 有界函数与无穷小的乘积是无穷小. 如:01)1(lim =-∞

→n n

n ,01sin lim 0=→x

x x ,0sin 1

lim =∞→x x x 推论1 在同一过程中,有极限的变量与无穷小的乘积是无穷小. 推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.

二、无穷小的比较

例如,221

0,,,sin ,sin

x

x x x x x

当时都是无穷小,

观察各极限: 2

20

1

sin lim

x x x x →x x 1sin lim 0→=.不存在不可比.

极限不同, 反映了趋向于零的“快慢”程度不同.

1.定义: 设,αβ是自变量在同一变化过程中的两个无穷小,且0.α

例1 .tan 4,0:3的四阶无穷小为时当证明x x x x →

证:430tan 4lim x x x x →3

0)tan (lim 4x

x x →=,4=.tan 4,03的四阶无穷小为时故当x x x x → 例2 .sin tan ,0的阶数关于求时当x x x x -→ 解30sin tan lim

x x x x -→ )cos 1tan (lim 20x

x x x x -?=→,21

=.sin tan 的三阶无穷小为x x x -∴ 2.常用等价无穷小:,0时当→x

(1)x sin ~x ; (2)x arcsin ~x ; (3)x tan ~x ; (4)x arctan ~x ; (5))1ln(x +~x ; (6)1-x e ~x

(7)x cos 1-~2

2

x (8)1)1(-+μx ~x μ (9)1x

a ~ln a x

用等价无穷小可给出函数的近似表达式: 例如),(sin x o x x +=).(2

11cos 22

x o x x +-

= 3.等价无穷小替换 定理:.lim lim ,lim ~,~αβαβαβββαα'

'=''''则存在且设 证:α

βlim

)lim(αααβββ'?''?'=αααβββ'?''?'=lim lim lim .lim αβ''

=

例3 (1).cos 12tan lim 20x

x x -→求; (2)1cos 1

lim 2

0--→x e x x 解: (1).2~2tan ,2

1

~cos 1,02x x x x x -→时当 故原极限

202

(2)lim 12

x x x = 8 (2)原极限=2

lim

2

2

0x x x -→=2

1-

例4 .2sin sin tan lim

30x

x

x x -→求 错解: .~sin ,~tan ,0x x x x x 时当→3

0)2(lim

x x

x x -=→原式=0

正解: ,0时当→x ,2~2sin x x )cos 1(tan sin tan x x x x -=-,2

1~

3x 故原极限

33012lim (2)x x

x .16

1=

【注意】和、差形式一般不能进行等价无穷小替换,只有因子乘积形式才可以进行等价无穷小替换。 例5 .3sin 1

cos 5tan lim

0x

x x x +-→求

解: ),(5tan x o x x += ),(33sin x o x x +=).(2

1cos 122

x o x x +=

-

原式22

15()()

2lim

3()x

x

o x x o x x o x x

x o x x o x x x o x )(3)(21)(5lim

20+

+++=→.35= 三、极限的简单计算

1. 代入法:直接将0x x →的0x 代入所求极限的函数中去,若()0x f 存在,即为其

极限,例如92

4231232lim 3451=++++-→x x x x x x ;若()0x f 不存在,我们也能知道属于哪种未定式,便于我们选择不同的方法。例如,3

9

lim 23--→x x x 就代不进去了,但我们看出了这是一

型未定式,我们可以用以下的方法来求解。 2. 分解因式,消去零因子法

例如,()63lim 39

lim

3

23=+=--→→x x x x x 。 3. 分子(分母)有理化法 例如,()()()(

)()()

355125125123

53

5lim

5

1235lim

2

2

2

2

22++++-+++++-+=-+-+→→x x x x x

x

x x x x

又如,(

)

011lim

1lim

2

2=++=-++∞

→+∞

→x

x x x x x

4. 化无穷大为无穷小法

例如,2

22

2

173

373

lim

lim

1424

2

2

x

x

x x x x x x x x ,实际上就是分子分母同时除以2x 这个无穷大量。由此不难得出

又如,12111lim

2

1lim

=+

+

=+++∞

→+∞

→x

x

x x x x ,(分子分母同除x )。

再如,11531

52lim 5352lim -=+??

? ??-??? ??=+-∞

→∞→n n

n n n n n n ,(分子分母同除n 5)。 5. 利用无穷小量性质、等价无穷小量替换求极限 例如,()01

31arctan lim

2=+++∞→x x x x x ,(无穷小量乘以有界量)。 又如,.3

21

4lim 21-+-→x x x x 求

解:)32(lim 21

-+→x x x ,0=商的法则不能用

由无穷小与无穷大的关系,得.3

21

4lim

2

1

∞=-+-→x x x x 再如,等价无穷小量替换求极限的例子见本节例3—例5。 6. 利用两个重要极限求极限(例题参见§例3—例5) 7. 分段函数、复合函数求极限

例如,).(lim ,0

,10

,1)(0

2x f x x x x x f x →???≥+<-=求设

解: 两个单侧极限为是函数的分段点,0=x 左右极限存在且相等, .1)(lim 0

=→x f x 故

【启发与讨论】 思考题1:11

0,sin x

y

x x 当时是无界变量吗?是无穷大吗?

解:),3,2,1,0(2

21

)1(0 =+

=k k x ππ取

,2

2)(0π

π+

=k x y .)(,0M x y k >充分大时当无界,

,,δ

结论:无穷大是一种特殊的无界变量,但是无界变量未必是无穷大.

思考题2:若0)(>x f ,且A x f x =+∞

→)(lim ,问:能否保证有0>A 的结论试举例说明.

解:不能保证. 例x x f 1)(=

,0>?x 01)(>=x

x f =+∞→)(lim x f x .01

lim ==+∞→A x x

思考题3:任何两个无穷小量都可以比较吗

解:不能.例如当+∞→x 时,1)(x x f =x

x

x g sin )(=

都是无穷小量 但=+∞

→)()

(lim

x f x g x x x sin lim +∞

→不存在且不为无穷大,故当+∞→x 时)(x f 和)(x g 不能比较. 【课堂练习】求下列函数的极限

(1)x

x

e x x cos lim 0-→;

解:原极限=1cos 1lim 1lim cos lim

000=-+-=-→→→x

x

x e x x e x x x x x (2)求)

1ln()cos 1(1

cos

sin 3lim

20x x x x x x +++→ 【分析】 “0

”型,拆项。

解:原极限=??????

??+→x x x x x 21cos sin 3lim 20=?????? ??+→x x x x x x 21cos 2sin 3lim 2

0=23

(3)1

42345lim 52

45+-++∞→x x x x x x ; 【分析】“抓大头法”,用于

型 解:原极限=543

142345lim

x

x x x x +-++∞

→=2

5,或原极限555522

lim x

x x (4))(lim 2x x x x -+∞

+;

【分析】分子有理化 解:原极限=x

x x x x +++∞

→2lim

=1111

lim

+++∞

→x x =2

1

(5))2

1

4(lim 2

22---→x x x x

【分析】∞-∞型,是不定型,四则运算法则无法应用,需先通分,后计算。

解:)214(lim 222---→x x x x =42lim 222---→x x x x =21lim 2++→x x x =4

3

(6)3

9lim

2

20

-+→x x x

【分析】“0

”型,是不定型,四则运算法则失效,使用分母有理化消零因子。

解:原极限=(

)

2

22

3

9lim x

x x x ++→=6 (7)).21(

lim 222n

n n n n +++∞

→ 求 解: 是无穷小之和.时,∞→n 先变形再求极限. 【内容小结】

一、无穷小(大)的概念

无穷小与无穷大是相对于过程而言的. 1、主要内容: 两个定义;四个定理;三个推论. 2、几点注意:

(1) 无穷小( 大)是变量,不能与很小(大)的数混淆,零是唯一的无穷小的数; (2) 无穷多个无穷小的代数和(乘积)未必是无穷小. (3) 无界变量未必是无穷大. 二、无穷小的比较:

1.反映了同一过程中, 两无穷小趋于零的速度快慢, 但并不是所有的无穷小都可进行比较。高(低)阶无穷小; 等价无穷小; 无穷小的阶。

2.等价无穷小的替换:

求极限的又一种方法, 注意适用条件. 三、极限求法(不同类型的未定式的不同解法);

a.多项式与分式函数代入法求极限;

b.消去零因子法求极限;

c.无穷小因子分出法求极限;

d.利用无穷小运算性质求极限;

e.利用左右极限求分段函数极限.

等价无穷小替换_极限的计算

无穷小 极限的简单计算 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+ →0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞ →+∞→∞→∞ →∈00 0x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即 ()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({ 时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都 不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即 ()∞=→x f x * lim 。显然,∞→n 时, 、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0l i m =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0 lim ()()(),x x x f x A f x A x α? =? +其中)(x α是自变量在同一变化过程 0x x →(或∞→x )中的无穷小.

高等数学等价替换公式泰勒公式资料讲解

应用高等数学等价替换公式 1、无穷小量: 设0)x (g lim )x (f lim 0 x x x x ==→→ *1)若0) x (g ) x (f lim x x =→,f (x )是g (x )的 高阶 无穷小 *2)若∞=→) x (g ) x (f lim x x ,f (x )是g (x )的 低阶 无穷小 *3)若c ) x (g ) x (f lim x x =→,f (x )是g (x )的 同阶 无穷小 *4)若1) x (g ) x (f lim x x =→,f (x )是g (x )的 等价 无穷小 *5)若0) x (g ) x (f lim k x x 0 =→,f (x )是g (x )的 k 阶 无穷小 2、等价替换: 若x →x 0,f (x )~ f 1(x ),g (x )~ g 1(x ) 则=→)x (g ) x (f lim x x ) x (g )x (f lim 11x x 0→ 6、常用等价形式: 当f (x )→0时 *1)sinf (x )~ f (x ) *2)arc sinf (x )~ f (x ) *3)tanf (x )~ f (x )

*4)arc tanf (x )~ f (x ) *5)In (1+f (x ))~ f (x ) *6)e f (x )-1~ f (x ) *7)1-cosf (x )~ 2 ) x (f 2 *8)(1+f (x ))α -1~ αf (x ) 二、函数的连续: 1、间断点: *1)第一类间断点:f -(x 0)、f +(x 0)均 存在的 间断点 ⑴跳跃间断点: f -(x 0)≠f +(x 0) ⑵可去间断点: f -(x 0)=f +(x 0) *2)第二类间断点:f -(x 0)、f +(x 0)至少有一个 不存在的 间断点 ⑴无穷间断点: f -(x 0)、f +(x 0)中至少有一个为 ∞ ⑵振荡间断点: f -(x 0)、f +(x 0)中至少有一个 振荡不存在 三、导数: 1、定义:)x (f '= x △) x (f -)x △x (f lim 000 x △+→ 2、导数的常见形式: *1) 0 0x x 0x -x ) x (f -)x (f lim )x (f 0 →=' *2) h ) x (f -)h x (f lim )x (f 000 h +='→

(完整word)高等数学等价替换公式

无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x Θ .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x Θ .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n Θ .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。

考研数学1.1利用等价无穷小代换求极限时应注意的问题

2、利用等价无穷小代换求极限时应注意的问题. 考研数学每年必考有关求极限的问题,利用等价无穷小代换求极限一般可以简化计算,但我们一定要明确,在求极限时,什么时候能用等价无穷小代换,什么时候不能用等价无穷小代换,这也是部分学员,尤其基础比较薄弱的学员开始复习的时候比较容易犯错的地方。 下面通过给出几个例子来进行讲述,注意错误的解法,谨防自己犯同样的错误。 例1:求极限30tan sin lim x x x x →- 解:3300tan sin lim lim 0x x x x x x x x →→--== 利用等价无穷小代换.这样计算对吗?计算的错误在于在运算过程中利用了未加证明的命题. 若~',~'ααββ,则~''αβαβ--.考察这个命题, lim lim lim 11αβααβαβββαββαααβββ ''''-?-''-==---,当lim 1αβ≠时,这个命题是真命题;当lim 1αβ =时,命题是假命题. 对于例1,因为, sin ,tan ,''x x x αβαβ====,00sin lim lim 1tan x x x x αβ→→== 所以,证明的结论是错误的. 正确解答: 2 333000tan sin tan (1cos )12lim lim lim 2 x x x x x x x x x x x x →→→--==. 例2:求201sin(sin )lim x x x x → 错误解答: 2200011sin(sin )sin 1lim lim lim sin 0x x x x x x x x x x x →→→=== 错误的原因在于在运算中错误的运用了等价无穷小代换: ()2211sin sin sin ,0x x x x x ?? → ?? ?:

高等数学中的导数公式和等价无穷小公式

声明:第一次弄这些,花了本人好些时间,o(∩_∩)o ,版权所有,严禁将本人的劳动成果用于商业用途。 导数公式 (1) (C)'=0 (2) (x μ )'=μ1 x μ- (3) (sinX)'=cosX (4) (cosX)'=-sinX (5) (tanA)'=2 sec A (6) (cotA)'=-2 csc A (7) (secA)'=secAtanA (8) (cscA)'=-cscAcotA (9) (x a )'=x a ln a (10) (x e )'=x e (11) (㏒a x)'= 1 ln x a (12)(lnx)'= 1x (13) (arcsinX)' (14) (arccosX)'= - (15) (arctanX)'= 2 1 1X + (16) (arccotX)'=- 2 11X +10 2 2 33331lim(1)1~ (1) 123 (4) n x x x n n n n →+-+++++=

等价公式 10 1lim(1)1~ n x x x n →+- 当0x →时,ln(1+x)~x 201cos 1 lim 2 x x x →-= 当0x →时,1~x e x - 0sin lim 1x x x →= 当0x →时,1~ln x a x a - 1 lim(1)x x e x →∞+= 22221 123...(1)(21)6 n n n n ++++=++ 0tan lim 1x x x →= 22 3 3 3 3 (1)123 (4) n n n +++++= 0arcsin lim 1x x x →= 220 sin cos n n xdx xdx π π =?? 0ln(1) lim 1x x x →+= 01lim 1ln x x a x a →-=

高等数学等价无穷小替换_极限的计算

讲义 无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用

→x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({ 时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无 穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷 小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0 lim () ()(),x x x f x A f x A x α其中)(x α是自变量在同一变化过 程0x x →(或∞→x )中的无穷小. 证:(必要性)设0 lim () ,x x f x A 令()(),x f x A α则有0 lim () 0,x x x α ).()(x A x f α+=∴

三角函数极限等价无穷小公式

三角函数公式整合: 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB- cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB- cot(A-B) = (cotAcotB+1)/(cotB-cotA) 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差 sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] 诱导公式 sin(-α) = -sinα cos(-α) = cosα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα

大学高等数学等价无穷小教学总结

这个问题很多人都搞不明白,很多自认为明白的人也不负责任地说一句“乘除可以,加减不行”,包括不少高校教师。其实这种讲法是不对的!关键是要知道其中的道理,而不是记住结论。 1.做乘除法的时候一定可以替换,这个大家都知道。 如果f(x)~u(x),g(x)~v(x),那么lim f(x)/g(x) = lim u(x)/v(x)。关键要记住道理 lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x) 其中两项的极限是1,所以就顺利替换掉了。 2.加减法的时候也可以替换!但是注意保留余项。 f(x)~u(x)不能推出f(x)+g(x)~u(x)+g(x),这个是很多人说不能替换的原因,但是如果你这样看: f(x)~u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意这里是等号,所以一定是成立的! 问题就出在u(x)+g(x)可能因为相消变成高阶的无穷小量,此时余项o(f(x))成为主导,所以不能忽略掉。当u(x)+g(x)的阶没有提高时,o(f(x))仍然是可以忽略的。 比如你的例子,ln(1+x)+x是可以替换的,因为 ln(1+x)+x=[x+o(x)]+x=2x+o(x), 所以ln(1+x)+x和2x是等价无穷小量。 但是如果碰到ln(1+x)-x,那么 ln(1+x)+x=[x+o(x)]-x=o(x), 此时发生了相消,余项o(x)成为了主导项。此时这个式子仍然是成立的!只不过用它来作为分子或分母的极限问题可能得到不定型而无法直接求出来而已。 碰到这种情况也不是说就不能替换,如果你换一个高阶近似: ln(1+x)=x-x^2/2+o(x^2) 那么 ln(1+x)-x=-x^2/2+o(x^2) 这个和前面ln(1+x)-x=o(x)是相容的,但是是更有意义的结果,此时余项o(x^2)可以忽略。也就是说用x-x^2/2作为ln(1+x)的等价无穷小量得到的结果更好。

关于高等数学等价无穷小替换极限的计算

讲义 无穷小极限的简单计算【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较用等价无穷小求极限。 难点是未定式的极限的求法。

【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用 →x *表示上述七种的某一种趋近方式,即 *{} -+→→→-∞→+∞→∞→∞→∈000x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x Θ .0sin 时的无穷小是当函数→∴x x 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即 ()∞=→x f x * lim 。显然,∞→n 时,Λ、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷

等价无穷小公式大全

1,x\sim \tan x\sim \sin x\sim \arcsin x\sim (e^x-1)\sim\arctan x\sim ln(1+x)\sim ln(x+\sqrt{1+x^2})x~tanx~sinx~arcsinx~(ex?1)~arctanx~ln(1+x)~ln(x+1+x2) 2,(1-\cos x)\sim\frac{1}{2}x^2(1?cosx)~21x2 3,log_a(1+x)\sim\frac{x}{lna}loga(1+x)~lnax 4,(x - \sin x)\sim\frac{1}{6}x^3\sim(\arcsin x-x)(x?sinx)~61x3~(arcsinx?x) 5,(\tan x -x)\sim\frac{1}{3}x^3\sim(x-\arctan x)(tanx?x)~31x3~(x?arctanx) 6,(1+bx)^a-1\sim abx(1+bx)a?1~abx 7,(\tan x-\sin x)\sim \frac{1}{2}x^3(tanx?sinx)~21x3 8,a^x-1\sim xlnaax?1~xlna 9,(\sqrt[n]{1+x}-1)\sim \frac{x}{n}(n1+x?1)~nx 等价无穷小替换公式如下: 以上各式可通过泰勒展开式推导出来。

等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。 扩展资料: 求极限时,使用等价无穷小的条件: 1. 被代换的量,在取极限的时候极限值为0; 2. 被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以,加减时可以整体代换,不一定能随意单独代换或分别代换。

关于高等数学等价无穷小替换极限的计算

关于高等数学等价无穷小替换极限的计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

讲义 无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极 限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用

→x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即 ()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1 为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理1 0 lim () () (),x x x f x A f x A x α其中)(x α是自变量在同一变化过程0 x x →(或∞→x )中的无穷小. 证:(必要性)设0 lim () ,x x f x A 令()(),x f x A α则有0 lim () 0,x x x α (充分性)设() (),f x A x α其中()x α是当0x x 时的无穷小,则 【意义】 (1)将一般极限问题转化为特殊极限问题(无穷小);

高等数学等价无穷小替换_极限的计算

讲义 无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+ →0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用

→x *表示上述七种的某一种趋近方式,即 *{ } -+→→→-∞→+∞→∞→∞→∈000 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小 是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0lim ()() (),x x x f x A f x A x α? =?+其中)(x α是自变量在同一变化过 程0x x →(或∞→x )中的无穷小. 证:(必要性)设0 lim (),x x f x A ?=令()(),x f x A α=-则有0 lim ()0,x x x α?= ).()(x A x f α+=∴

高等数学等价无穷小替换

无穷小极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近方式。下面我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如,,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。

等价无穷小在求函数极限中的应用

等价无穷小在求函数极限中的应用 XX (XX 学院XX 学院 山西XX ) 摘要:等价无穷小替换是求函数极限的常用方法之一,本文讨论了等价无穷小在四则运算、变上限积分、幂指运算中的应用,并通过实例分析了等价无穷小求极限的优势及常见错误. 关键词:等价无穷小;替换;极限 1 引言 在微积分中极限处于十分重要的地位,极限求法众多,而等价无穷小替换是一类重要的方法.在求极限时,灵活运用等价无穷小,往往会使一些复杂的问题简单化.但现在的高等数学和数学分析教材中,只给出积、商运算中等价无穷小因子的替换规则,对四则运算、变上限积分及幂指运算等广泛使用的情况未能提及.本文作了一个比较系统和全面的总结及适当的拓展,并对等价无穷小求极限的优势和常见错误举例分析,以加深对等价无穷小性质的认识和理解. 2 等价无穷小的定义及性质 定义1 如果函数)(x f 当0x x →(或∞→x )时的极限为零,那么称函数)(x f 为当0x x →(或∞→x )时的无穷小. 定义2 设)(x f 与)(x g 都是在同一个自变量的变化过程中的无穷小,且 0)(≠x g ,如果1) () (lim =x g x f ,就说)(x f 与)(x g 是等价无穷小,记作)(~)(x g x f . 常用的等价无穷小:

当0→x 时,x x ~sin ,x x ~arcsin ,x x ~tan ,x x ~arctan ,x x ~)1ln(+, x e x ~1-,22 1 ~cos 1x x -,x n x n 1~1)1(1 -+. 关于等价无穷小,有三个重要性质: 性质1 β与α是等价无穷小的充分必要条件为 )(ααβo +=. 性质2 设αα'~,ββ'~,且αβ'' lim 存在,则 αβαβ' '=lim lim . 性质3 βα~,)(~)(~a x a x →?→γαγβ. 3 等价无穷小在求函数极限中的应用 3.1 含四则运算的等价无穷小替换 定理2表明求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替.因此,如果用来代替的无穷小选得适当的话,可以使计算简化. 例1 求极限2 0sin )1() cos 1(lim x e x x x x --→. 解 当0→x 时,2 2 1~ cos 1x x -,x e x --~1,22~sin x x ,因此 20sin )1()cos 1(lim x e x x x x --→=22 021lim x x x x x ?-?→=2 1-. 例2 求极限) cos 1cos(11lim 4 x x e x x ---→. 解 )cos 1cos(11 lim 4 x x e x x ---→=42 121lim )cos 1(21lim 224 024 0=?=-→→x x x x x x x x . 注意0→x 时,424 1 ~)cos 1(21~ )cos 1cos(1x x x x x ---.用到了性质3. 利用等价无穷小因子替换求极限,可以大大减少计算量,但利用等价无穷小

高等数学等价替换公式

根据arcsinx的泰勒公式,可以轻松得到为同阶不等价无穷小。x→0,时x→sinx ; x→arcsinx ; x→tanx ;x→arctanx; x→ln(1+x); x→(e^x-1); [(1+x)^n-1]→nx;(1-cosx)→x*x/2;a^x-1→xlna, ln(1+x)→x;麦克劳林公式也是,那个符号不好写,你课本上或者习题里有.例1 limx →0tanx-sinxx3 给你举几个利用无穷小的例子例1 limx→0tanx-sinxx3 解:原式=limx →0sinx(1-cosx)x3cosx=limx→0x·12x2x3(∵sinx~x,1-cosx~x22)=12 此题也可用罗比塔法则做,但不能用性质④做。∵tanx-sinxx3=x-xx3=0,不满足性质④的条件,否则得出错误结论0。例 2 limx→0e2x-31+xx+sinx2 解:原式=limx→0e2x-1-(31+x-1)x+x2=limx→02x-13xx(1+x)=53 例3 limx→0(1x2-cot2x) 解法1:原式=limx→0sin2x-x2cos2xx2sin2x =limx→0(sinx+xcosx)(sinx-xcosx)x4 =limx→0x2(1+cosx)(1-cosx)x4 (∵sinx~x) =limx→0(1+cosx)(1-cosx)x2 =limx→012x2·(1+cosx)x2=1 解法2:原式=limx→0tan2x-x2x2tan2x =limx→0(tanx+x)(tanx-x)x4 =limx→02x(tanx-x)x44 (∵tanx~x) =limx→02(tanx-x)x3 =limx→02(sec2x-1)3x2 =23limx→0tan2xx2=23 (∵tanx~x) 例4[3]limx→0+tan(sinx)sin(tanx) 解:原式=limx→0+sec2(sinx)cosx2tan(sinx)cos(tanx)sec2x2sin(tanx) (用罗比塔法则)=limx→0+sec2(sinx)cosxcos(tanx)sec2x·limx→0+sin(tanx)tan(sinx) (分离非零极限乘积因子)=limx→0+sin(tanx)tan(sinx) (算出非零极限)=limx→0+cos(sinx)sec2x2sin(tanx)sec2(sinx)cosx2tan(sinx) (用罗比塔法则)=limx→0+cos(sinx)sec2xsec2(sinx)cosx·limx→0+tan(sinx)sin(tanx) =limx→0+tan(sinx)sin(tanx) 出现循环,此时用罗比塔法则求不出结果。怎么办?用等价无穷小代换。∵x~sinx~tanx(x →0) ∴原式=limx→0+xx=1而得解。

利用等价无穷小求极限(修订版)

利用等价无穷小求极限 常见等价无穷小: ①u u ~sin ,②u u ~tan ,③)2 11~(cos 21~cos 122u u u u --,④u u ~arcsin , ⑤u u ~arctan ,⑥u u ~)1ln(+,⑦)1~(~1+-u e u e u u ,⑧1~)1(++u u αα ,⑨121~ 1++u u . ⑩f g e f f g g ln ~11ln -=-(利用了对数的定义和⑦)1~(~1+-u e u e u u ). 解题方法:1.利用等价无穷小代换定理将复杂函数转换成易求极限值的函数。 2.某些地方无法求下去时可以考虑洛必达法则。 3.使用一些化简技巧使得函数变成可以利用的等价无穷小模型。 例1.x x e x x cos 1sin )1(lim 20--→求. 解:由x e x 2~12-⑦,x x ~sin ①,221~cos 1x x -③,42 12lim 20=?=→x x x x 原式. 例2..)1(sin lim 20--→x x e x x x 求 解:由2~12x e x -⑦,221~ cos 1x x -③, 6 1321lim 3cos 1lim sin lim 2202020==-?-=→→→x x x x x x x x x x x 洛必达原式. 例3.求11 sin 1lim 20--+→x x e x x . 解:由1sin 2 1~sin 1++x x x x ⑨,2~12x e x -⑦, 原式=.2 1sin lim 21sin 21lim 11sin 21lim 0020===-+→→→x x x x x x x x x x 例4.求.)(lim 20x a x a x x x -+→

三角函数、极限、等价无穷小公式

三角函数、极限、等价 无穷小公式 -CAL-FENGHAI.-(YICAI)-Company One1

三角函数公式整合: 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差 sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] 诱导公式 sin(-α) = -sinα cos(-α) = cosα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα

最新高等数学等价替换公式

高等数学等价替换公式 当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0) 值得注意的是,等价无穷小一般只能在乘除中替换, 在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)XXX工 程项目部 质量月活动总结 根据公司《关于开展2011年质量月活动的通知》,积极响应以“建设质量强国共创美好生活”为主题的质量月活动,公用工程项目部组织开展了一系列“抓质量,促和谐”活动,在项目部领导的高度重视、精心组织、严格要求下,质量管理水平取得了显著的提高,现将活动有关情况总结如下: 项目部领导十分重视本次质量月活动,9月2日,在公用工程项目部现场会议室召集项目部管理人员和施工队伍主要负责人召开了质量月活动动员大会,制定了本次质量月活动的目标、计划以及任务部署,并提出了四点要求:一是进一步提高员工的质量意识,时刻牢记施工人员和管理人员的质量责任;二是深化我们的质量安全文化,

确立良好的工作方法,减少质量问题,尤其是低级错误、重复质量问题,防止重大质量事故的发生;三是通过“质量月”活动的有效开展,促进项目部“大干70天”生产目标的完成;四是借“质量月”活动开展的契机,有效地把活动主题贯穿于我们的施工生产之中,技术不断创新、管理不断完善、工程质量不断提高。 1、活动主题:恪守质量诚信,践行社会责任。 2、活动目标:大力实施质量兴企战略,全力打造“中化二建集团”品牌,为社会奉献“质量一流,用户满意”的优质产品。

高数(一)(全套)公式

初等数学基础知识 一、三角函数 1.公式 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α) ·商的关系: tanα=sinα/cosαcotα=cosα/sinα ·倒数关系: tanα·cotα=1; sinα·cscα=1; cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式: sin α·cos β=(1/2)[sin(α+β)+sin(α-β)] cos α·sin β=(1/2)[sin(α+β)-sin(α-β)] cos α·cos β=(1/2)[cos(α+β)+cos(α-β)] sin α·sin β=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sin α+sin β=2sin[(α+β)/2]cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]sin[(α-β)/2] 2.特殊角的三角函数值 θ )(θf 0 )0( 6π )30( 4π )45( 3π )60( 2π )90( θcos 1 2/3 2/2 2/1 0 θsin 0 2/1 2/2 2/3 1 θtan 0 3/1 1 3 不存在 θcot 不存在 3 1 3/1 只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。 3诱导公式: 函数 角A sin cos tg ctg -α -sin α cos α -tg α -ctg α 90°-α cos α sin α ctg α tg α 90°+α cos α -sin α -ctg α -tg α 180°-α sin α -cos α -tg α -ctg α 180°+α -sin α -cos α tg α ctg α 270°-α -cos α -sin α ctg α tg α 1 45 2 1 45 1 2 30 60 3

相关文档
最新文档