光面爆破参数与爆破效果分析

光面爆破参数与爆破效果分析
光面爆破参数与爆破效果分析

万方数据

万方数据

光面爆破参数

光面爆破设计 1.光爆标准:眼痕率不少于70%;超挖尺寸不得大于150mm,欠挖尺寸不得超过质量标准要求;岩面上不应有明显的炮震裂隙。 2.光面爆破的起爆顺序。起爆顺序:掏槽炮→辅助炮→周边炮→底板炮→底角炮。 3.光面爆破参数的确定 (1)周边孔间距E。周边眼通常布置在距开挖断面边缘0.1m至0.2m处,光爆孔的孔底的孔底朝隧道开挖轮廓线方向倾斜3~5°。当爆孔孔径D为42mm时,周边孔间距E =(10~14)D,即0.42mm~0.59mm;Ⅱ、Ⅲ级围岩周边眼的间距为0.55m,Ⅳ级围岩约为0.50m比较合适。 (2)光爆层厚度W。光爆层厚度就是周边眼最小抵抗线,它与开挖的隧道断面大小有关。断面大,光爆眼所受到的夹制作用小,岩石比较容易崩落,可以大些;断面小,光爆眼受到的夹制力大,光爆层厚度相对要小些。同时,光爆层厚度与岩石的性质和地质构造有关,坚硬岩石光爆层可小些,松软破碎的岩石光爆层可大些。 (3)密集系数K。周边眼密度系数是周边眼间距E与光爆层厚度W的比值,是影响爆破效果的重要因素。 K=E/W(K取值0.8) (4)孔深L。围岩循环进尺:L=0.5×B×90%=0.5×6.0×90%=2.70m(隧道宽度B=6.0m)。除掏槽眼和底角眼取值3.2m外,其余各眼炮孔深度取3.0m。在实际操作中应视掌子面的凹凸情况,调整各炮眼钻孔长度,使所有炮眼眼底处于同一垂直面上。 (5)装药量Q。一是确定炸药单耗量q,炸药单耗量对装药效率、炮孔利用率、开挖壁面的平整程度和围岩的稳定性都有较大的影响。它取决于岩性、断面积、炮孔直径和炮孔深度等多种因素。q取值1.2kg/m3。二是装药集中度Q。光面爆破装药量的计算,主要是确定周边眼光爆层炮眼装药集中度,即Q=qEW Q确定为0.11~0.30kg/m。 (6)炮孔数量N。炮孔数量取决于掘进断面积、岩石性能和炸药性能。孔数过少将造成大块增多,周壁不平整,甚至会出现炸不开的情况;相反,孔数过多将使凿岩工作量增大。 N=0.0012qS/ad2 式中N—炮孔数量,个;q—单位炸药消耗量, 取1.2kg/m3;S—开挖断面面积,(Ⅳ级围岩S=52m2 ,Ⅱ、Ⅲ级围岩S=42m2)a—炮眼装填系数,取0.62;d—炸药直径,硝铵炸药为32mm。Ⅱ、Ⅲ级围岩炮孔数量N=95个,Ⅳ级围岩炮孔数量N=118个。 4.装药结构。周边眼装药采用径向不偶合间隔装药结构,不偶合系数为1.5~2.0。所有爆眼统一装φ32标准药卷,周边眼间隔装药,岩石炸药与乳化炸药混装,周边眼药卷不需绑在竹片上,直接装入,孔口用炮泥堵塞。光面爆破装药过程中,如果只注意控制周边眼用药量而忽视内圈辅助眼的药量控制,很难达到理

隧道光面爆破总结

光面爆破总结 通过最近二衬混凝土浇筑方量的超方情况,前期的隧道爆破效果不是很理想; 为了提高工程质量,保证施工安全,控制隧道超欠挖,节约工程成本,经项目部领导和工程部技术人员共同研究,决定制定以下光爆质量控制及奖罚措施: 一、成立隧道光面爆破质量控制领导小组 组长: 副组长: 组员: 二、技术控制 1、钻爆设计应根据工程地质条件、开挖断面、开挖方法、掘进循环进尺、钻眼机具、爆破材料和出碴能力等因素综合考虑。 2、爆破开挖一次进尺根据围岩条件确定,开挖软弱围岩时应控制在1~2m 之内,开挖坚硬完整的围岩时根据周边眼的外插角及允许超挖量确定。硬岩隧道全断面开挖,眼深为3~3.5 m的深眼爆破时,单位体积岩石的耗药量可取0.9~2.0kg/m3;采用半断面或台阶法开挖,眼深为1.0~3.0m的浅眼爆破时,单位耗药量可取0.4~0.8kg/m3. 3、周边眼参数的选用应遵守下列原则: 1)当断面较小或围岩软弱、破碎或在曲线、折线处开挖成形要求高时,周边眼间距E应取较小值; 2)抵抗线W应大于周边眼间距.软岩在取较小的周边眼间距的同时,抵抗线应适当增大; 3)根据围岩特点合理选择周边眼间距及周边眼最小抵抗线。围岩软弱、破碎,周边眼间距取小值,E/W取小值。 4、严格控制周边眼装药量,并使药量沿炮孔长度合理分布。周边眼宜用小直径药卷和低爆速炸药,可借助传爆线实现空气间隔装药。开挖断面一次起爆时,如毫秒雷管的间隔时间小,周边眼雷管应与内圈眼雷管跳段使用,二段炮眼之间起爆时差可取50~100ms。 5、炮眼的深度、角度间距应按设计要求确定,并应符合下列精度要求: 1)掏眼槽眼口间距误差和眼底间距误差不得大于5㎝.

谈光面爆破施工中的技术问题及相应措施

350谈光面爆破施工中的技术问题及相应措施 隋东 广东宏大爆破股份有限公司 摘 要:光面爆破是沿开挖边界布置密集炮孔,采取不耦合装药或装填低威力炸药,在主爆区爆破后起爆,以形成平整轮廓面的爆破施工技术。目前,光面爆破已经被广泛应用到各类掘进施工及边坡防护中,对光面爆破施工中的技术性问题及相关解决措施展进行分析与探究,对提高施工安全性、经济性、可靠性具有重要意义。 关键词:光面爆破;施工技术;控制爆破;措施 1 光面爆破施工中的关键技术问题 光面爆破施工所谓的关键技术与其爆破施工参数的选择有关联。一般地,光面爆破在实际作业中施工参数的确定与现场施工地质环境、炸药的品种、性能以及隧道断面开挖设计轮廓的形状、大小有着十分密切的关系。光面爆破最大的好处在于开挖轮廓内表面呈光滑平顺,基本上以肉眼是观察不到爆破裂纹的,在技术措施上避免了超、欠挖过大的情况发生,且最大化地降低了爆破施工对围岩结构的扰动,确保开挖施工的安全性和作业顺利。 1.1 工作机理 光面爆破施工是沿着设计开挖轮廓线布置一系列间距较小的平行钻孔,完成钻孔和清孔的作业之后即可在这些钻孔中进行不耦合装药,在主爆区爆破后起爆。炸药起爆时,对岩体产生两种效应:一是药包爆破瞬时高温高气压形成的冲击效应;二是爆炸气体膨胀做功所起的作用。光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀合裂缝进一步扩展,从而形成平整的爆裂面。 1.2 参数选择 光面爆破施工也是一项极为困难的工艺,鉴于此工艺要针对详细爆破参数的选择和确定,就必须要面对无法达到理想爆破效果的情况产生。笔者认为,光面爆破施工参数的关键在确保光面爆破在隧道开挖断面轮廓线形成平整的爆裂面。 (1)钻眼的直径(db)。对于隧道开挖断面一般钻进的炮眼直径宜在35 ~45 mm范围以内; (2)平行钻眼的平均间距。平行钻眼的平均间距和最小抵抗线是两个极为重要的爆破参数。隧道跨度较小时,平行钻眼之间的平均间距应适当调整。隧道开挖断面光面爆破可确定平行钻眼平均间距间距a: a = (12 ~ 20) db 隧道开挖断面的光面爆破可取的平行钻眼平均间距约为600 ~ 700mm,如果实际开挖的表面曲率非常大,那么岩石爆破就会产生一种强劲的作用力,平行钻眼的平均间距宜调整减少至450 ~ 500mm,而导向空眼与装药钻眼之间的间距则不得少于400mm为宜; (3)最小抵抗线(W’)。最小抵抗线和光滑层厚度将直接影响光面爆破的质量效果,除了受影响于平行钻眼的平均间距和周边的装药眼及结构参数,最为主要的影响还是最小抵抗线因素和光滑层厚度。因此,设计合理的光滑层厚度参数将对光面爆破施工具有十分积极的作用。光滑层厚度W’可以用于确定以下公式: W’ = =Q/(Cq ·a·L) 上式中Q 为光面炮眼的装药量; a为炮眼间距; L 为炮眼深度; Cq为爆破系数,相当于单位耗药量,对于f = 4~10的岩层,Cq 值变化范围为0. 2~0. 5 kg/m3。 经验表明,对于大跨度隧道一般采取W’=700– 800mm,拱顶的厚度应该增加部分应与增加的跨度相对应。其他最小抵抗线和岩石性质和地质结构、硬摇滚可取的从500~600mm,软岩在800 ~ 900mm,对于小跨度隧道可以减少到600 ~700毫米; (4)炮眼密集系数m。炮眼密集系数也称炮眼邻近系数,即炮眼间距a与最小抵抗线W’之间的比值(m = a / W’),是光面爆破参数确定中的一个关键值。目前,在工程施工中,光面层厚度的确定,一般情况下,周边眼间距a与光面层厚度W’的比值为 m =a/ W’ = 0. 8 ~ 1. 0 通常,光面爆破应当符合下列技术要求:根据岩石的特点,合理选择炮孔间距和最小抵抗线;严格控制线装药密度;钻孔倾斜误差小于1°;光爆网络宜采用导爆索连接,组成同时起爆或多组接力分段起爆网络于主爆区起爆后起爆。 2 光面爆破施工技术问题的对策 可用于光面爆破开挖的施工方法有两种,一个是全断面法。对于IV级和V级围岩完整性好的可用全断面法,控制延期时间及光爆孔间距,主爆区使用普通爆破设计,光爆孔和辅助孔按照光面爆破技术要求设计。使用毫秒延期电雷管或者非电毫秒延期起爆系统,光爆孔延迟主爆孔(150~200ms)起爆。光爆孔注意减少炸药用量,根据爆破设计控制线装药密度。另一种是保留平滑层方法。这种方法在其保留平滑区域内具有显著的特征,在光爆孔周围可以根据情况调整的爆破参数或修改,优化设计爆破方案即可达到更好的光面爆破效果。(1)影响开挖断面形成裂缝的原因。影响开挖断面产生裂缝的因素比较多,笔者认为在光面爆破施工当中主要存在的问题有:装药量过大、装药结构设计不科学、最小抵抗 (下转第352页)

边坡光面爆破存在的问题及解决措施

目前光面爆破广泛应用到边坡工程以及防护中,本文首先简要的介绍边坡的概念,对边坡采用光面爆破存在的问题进行分析总结,分别提出解决措施,最后对边坡光面爆破进行总结。这对提高施工安全可靠、经济以及边坡稳定都有重要的意义。 关键字:边坡工程 光面爆破 解决措施 SMOOTH BLASTING OF SLOPE PROBLEMS AND SOLUTIONS Zhang Tingfeng (Southwest University Of Science And Technology) Abstract: The smooth blasting

widely applied to slope engineering and protection, this paper first briefly introduces the concept of the slope, the smooth blasting to slope analysis of existing problems, solving measures

put forward respectively, and finally to summarize slope smooth blasting. This to improve the construction of safe and reliable, economic, and slope stability has important meaning. The smooth

is widely applied to slope engineering and protection, this paper first briefly introduces the concept of the slope, the smooth blasting to slope analysis of existing problems, solving

(推荐)爆破分类

爆破分类及特性 控制爆破是为达到一定预期目的的爆破。如:定向爆破、预裂爆破、光面爆破、岩塞爆破、微差控制爆破、拆除爆破、静态爆破、燃烧剂爆破等。 一、定向爆破 定向爆破是一种加强抛掷爆破技术,它利用炸药爆炸能量的作用,在一定的条件下,可将一定数量的土岩经破碎后,按预定的方向,抛掷到预定地点,形成具有一定质量和形状的建筑物或开挖成一定断面的渠道的目的。 在水利水电建设中,可以用定向爆破技术修筑土石坝、围堰、截流戗堤以及开挖渠道、溢洪道等。在一定条件下,采用定向爆破方法修建上述建筑物,较之用常规方法可缩短施工工期、节约劳力和资金。 定向爆破主要是使抛掷爆破最小抵抗线方向符合预定的抛掷方向,并且在最小抵抗线方向事先造成定向坑,利用空穴聚能效应,集中抛掷,这是保证定向的主要手段。造成定向坑的方法,在大多数情况下,都是利用辅助药包,让它在主药包起爆前先爆,形成一个起走向坑作用的爆破漏斗。如果地形有天然的凹面可以利用,也可不用辅助药包。 二、预裂爆破 进行石方开挖时,在主爆区爆破之前沿设计轮廓线先爆出一条具有一定宽度的贯穿裂缝,以缓冲、反射开挖爆破的振动波,控制其对保留岩体的破坏影响,使之获得较平整的开挖轮廓,此种爆破技术为预裂爆破。预裂爆破不仅在垂直、倾斜开挖壁面上得到广泛应用;在规则的曲面、扭曲面、以及水平建基面等也采用预裂爆破。 预裂爆破要求: (1)预裂缝要贯通且在地表有一定开裂宽度。对于中等坚硬岩石,缝宽不宜小于1.0cm;坚硬岩石缝宽应达到0.5cm左右;但在松软岩石上缝宽达到1.0cm 以上时,减振作用并未显著提高,应多做些现场试验,以利总结经验。 (2)预裂面开挖后的不平整度不宜大于15cm。预裂面不平整度通常是指预裂孔所形成之预裂面的凹凸程度,它是衡量钻孔和爆破参数合理性的重要指标,可依此验证、调整设计数据。 (3)预裂面上的炮孔痕迹保留率应不低于80%,且炮孔附近岩石不出现严重的爆破裂隙。 预裂爆破主要技术措施如下: (1) 炮孔直径一般为50~200mm,对深孔宜采围较大的孔径。 (2)炮孔间距宜为孔径的8~12倍,坚硬岩石取小值。 (3)不耦合系数(炮孔直径d与药卷直径d 的比值)建议取2~4,坚硬岩 石取小值。 (4)线装药密度一般取250~400g/m。 (5)药包结构形式,目前较多的是将药卷分散绑扎在传爆线上(图1-21)。分散药卷的相邻间距不宜大于50cm和不大于药卷的殉爆距离。考虑到孔底的夹制作用较大,底部药包应加强,约为线装药密度的2~5倍。 (6)装药时距孔口1m左右的深度内不要装药,可用粗砂填塞,不必捣实。填塞段过短,容易形成漏斗,过长则不能出现裂缝。 三、光面爆破

光面爆破施工方案

石方光面爆破爆破方案 设计人: 审核人: 批准人: 设计单位: 设计时间:2014年11月14日

目录 一、工程概况 (3) 二、施工要求 (4) 三、爆破设计施工方案的编制依据 (4) 四、爆破设计方案 (4) ⑼装药不偶合系数δ (9) 五、炮孔布置 (11) 六、装药填塞 (12) 七、起爆网路 (13) 八、爆破安全距离计算 (15) 九、试验炮 (16) 第二章施工组织设计 (18) 一、施工准备 (18) 二、人员职责 (18) 三、边坡光面爆破施工工艺 (20) 20 20 3.2孔位测量放样 (21) 根据原地面标高数据及设计图纸,测量放样边坡台阶的坡脚前沿线,并用竹桩拉线标记,孔位沿台阶的坡脚前沿线布置,根据已确定光面爆破参数,确定的孔距进行孔位测设,每一个孔位打竹桩标记,并标明炮孔编号及孔深。 (21) 在进行具体的孔位放样过程中,除了要满足孔距等参数要求外,炮位设计还应充分考虑岩石的产状、类别、节理发育程度、溶蚀情况等,避免在两种岩石硬度相差很大的交界面处设置炮孔,边坡大于2级台阶时,应自上而下进行爆破。 (21) 3.3钻孔 (21)

钻孔采用KQJ—100B型潜孔钻机钻孔,根据边坡爆破钻孔孔位测设成果选取孔位,钻机架设角度与边坡角度一致,采用钢管搭设与设计坡比相同的架子,调整潜孔钻机的倾斜角度,确保钻孔倾斜角度与设计要求一致,同时采用水平尺进行调整。 (21) 填土层采用粘土护壁,使钻机可以顺利钻进成孔,钻机钻杆每节1m,钻进快到底标高时,应严格控制钻孔深度,以免造成抵抗线过小或过大,影响爆破质量。 (21) 3.4爆破装药 (21) (1)装药结构 (21) 堵塞段:堵塞段的作用是延长爆破产生气体的作用时间,且保证孔口段只产生裂缝而不出现爆破漏斗,根据上述已确定的参数,本工程选堵塞段长度为1.5m。 (21) 均匀装药段:该段一般为轴向间隔不偶合装药,并要求沿孔轴线方向均匀分布。轴向间隔装药须用导爆索串联各药卷起爆。根据上述选定的参数及乳化炸药规格,均匀装药段每米绑扎3个药卷。 (22) 孔底加强段:加强段长度大体等于堵塞段,取1m。由于孔底受岩石夹持作用,故需用较大的线装药密度。根据上述选定的参数及乳化炸药规格,孔底加强段共绑扎5个药卷。 (22) (2)装药及堵塞 (22) 装药前应清除炮眼内的石粉和泥浆等物,对于积水,用空压机吹孔清理,为防止炸药受潮,还应垫上油纸。 (22) 第一、二、三级台阶炸药装药采用轴向间隔装药,必须采用导爆索起爆,用导爆索串联各药卷起爆,要求导爆索爆速不小于6000m/s,导爆索之间的相互连接采用线绳或胶带紧紧捆扎在一起,捆扎长度不应小于150mm。 (22) 为保证孔壁不被粉碎,药卷应尽量置于孔的中心。本工程装药定位采用将药卷及导爆索绑于竹片进行药卷定位。 (22) 起爆导爆索所用雷管采用线绳或胶带牢固的与导爆索捆扎在一起,起爆点放在中间,为防止盲炮,一般设置两个起爆点。在装药过程中随时用卷尺测量孔深。 (22) 炮眼的堵塞材料,一般为干细砂土、砂、粘土等,最好以一份粘土、三份砂(粗砂)在最佳含水量下混合而成的堵塞料。堵塞时对紧贴起爆药卷的堵塞物不要捣压,以防振动雷管引起爆炸,其余的堵塞物要轻轻捣实,但要注意防止捣坏导火线或雷管脚线。 . 22 四、主要机具材料表 (23) 五、安全技术与防护措施 (23) 六、爆破警戒范围和任务 (26) 七、施工安全保证措施 (27) 八、安全警戒 (31) 九、应急预案 (31) 第一章爆破技术设计 一、工程概况 根据工程建设需要,山体需要光面爆破,需要爆破的最大深度超过16m,爆破区域长度130左右m,按照设计要求,靠近山体一侧需要进行光面爆破。整个爆破工程量约计4.6万m3。

光面爆破施工工法

隧道全断面开挖光面爆破工法光面爆破是通过正确选择爆破参数和合理的施工方法,达到爆后壁面平整规则、办公设备线符合设计要求的一种控制爆破技术。隧道全断面开挖光面爆破工法,是应用光面爆破技术,对隧道实施全断面一次开挖的一种施工方法。它与传统的爆破法相比,最显著的优点是能有效地控制周边眼炸药的爆破作用,从而减少对围岩的扰动,保持围岩的稳定,确保施工安全,同时,又能减少超、欠挖,提高工程质量和进度。 一、光面爆破作用原理 光面爆破的破岩机理是一个十分复杂的问题,目前仍在探索之中。尽管在理论上还不甚成熟,但在定性分析方面已有共识。一般认为,炸药起爆时,对岩体产生两种效应:一是药包爆炸气体膨胀做功所起的作用。光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心边线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心边线上形成裂缝,随后,爆炸气的膨胀使裂缝进一步扩展,形成平整的爆裂面。 二、光面爆破的技术要点 要使光面爆破取得良好效果,一般需掌握以下技术要点: 1、根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。 2、严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。 3、周边眼宜使用小直径药卷和低猛度、低爆速的炸药。为满足装结构要求,可借助导爆索(传爆线)来实现空气间隔装药。 4、采用毫秒微差有序起爆。要安排好开挖程序,使光面爆破具

有良好的临空面。 (一)周边眼常用参数的选择 1、周边眼间距E 它是直接控制开挖轮廓面平整度的主要因素。一般情况下E=(12~15)d,其中炮眼直径d=35~45mm。对于节理较发育、层理明显以及开挖轮廓要求较高的地下工程,周边眼间距可适当减小,也可在两炮眼之间增加一个不装药的导向空眼。 2、最小抵抗线W(光面层厚度) W直接影响光面爆破效果和爆碴块度。其取值在(13~22)d围,且W≥E。 3、周边眼密集系数K 一般情况,以K=E/W=0.7~1.0为宜。 4、装药集中度q 采用2号岩石炸药进行光面爆破时,若预留光爆层,q=0.15~0.2kg/m;若全断面一次爆破,则q=0.2~0.3kg/m。如果采用其它炸药,则需进行换算,其换算系数C按下式求得: C=1/2(2#岩石炸药猛度/换算炸药猛度+2#岩石炸药爆力/换算炸药爆力) 选取光面爆破参数可用类比法或查表(见表1),必要时要在与所做工程地质条件相类似的岩层中试验,以求得更准确的爆破参数。

光面爆破施工中爆破参数的选择原则与优化

光面爆破施工中爆破参数的选择原则与优化 摘要:在隧道施工以及巷道掘进中常常需要进行爆破,有的还需要保证爆破后的壁面具有一定的平整度,所以就用到了光面爆破技术。由于光面爆破技术可以保证新壁面平整且不会受到破坏,所以得到了广泛的应用,成为了巷道掘进以及隧道施工中关键的施工环节。进行光面爆破中最重要的是对爆破参数的选择,只有选择合理的参数,才能确保爆破起到预期效果,并保证爆破的安全。文章分析了光面爆破中参数选择的原则,并探讨对于爆破参数的优化工作。 关键词:光面爆破施工;爆破参数;选择与优化 光面爆破技术可以在隧道或巷道掘进施工中使用,并且在爆破后保证新避免的完整与平整,所以得到了广泛的应用。根据这种爆破技术的特点,又将其称为轮廓爆破或周边爆破。在隧道施工以及巷道掘进过程中,通过优化爆破参数以及施工组织等,以达到提高施工效率的目的,对于爆破参数的优化称为快速掘进中重要的组成部分。光面爆破效果的优劣直接关系着工程的成本以及质量。 1 光面爆破施工中爆破参数的选择原则与优化 进行光面爆破的过程中,爆破参数的选择直接关系着爆破的效果,对工程施工质量与进度也有很大的影响。选择合适的爆破参数,可以提升爆破壁面的平整度,这样就能节约工程施工喷浆的用量,达到降低施工成本的目的;同时平整的壁面有利于隧道或巷道的通风;另外,选着适当的爆破参数可以保证实施爆破不会产生爆破裂隙,很大程度上确保了施工的安全。 光面爆破的爆破参数有很多,主要包括炮孔深度、不耦合系数、临近系数、炮眼间距、装药密集系数、最小抵抗线以及装药的结构的参数。在上述参数中,炮孔的深度以及炮孔的直径需要根据工程的实际情况取值,剩下的爆破参数在选择过程中需要按照一定的原则进行。具体的原则为: 对于不耦合系数的选择,要坚持作用到炮孔孔壁的压力大于岩石的抗拉强度,但是必须低于其抗压强度。根据实践证明,不耦合系数的选择需要根据岩性差别以及所用炸药的种类不同进行确定,一般来说不耦合系数取值在 1.5~2.5之间;邻近系数就是爆破炮孔的密集程度,对于这一系数的选择需要根据工程的实际情况进行选择,这一系数对爆破效果有很大的影响,其取值的过大或过小,会造成爆破后形成的壁面留下岩梗或巨坑,通过实践证明,邻近系数的取值一般在0.8~1.0之间,并且根据岩性的不同区别选择,岩石如果较硬,则选择较大的邻近系数,反之则选择较小的邻近系数;对于炮孔的装药结构方面,常用的装药结构有两种,一种是单段空气柱式,另一种是分段空气间隔结构。对于两种装药结构的选择,需要根据炮孔的深度进行选择。如果炮孔深度在1.5~2.0 m之间,一般使用单段空气柱装药结构,这种结构在操作上比较简单,很容易掌握装药流程,对于炮孔深度在2.0 m以上的,需要用空气间隔分段装药结构,就是用两包炸药放置于炮孔中,但是两者之间的间隔要控制在殉爆距离以外,可以在两包炸药间放一些间隔物,防止药包发生串动现象。最小抵抗线是进行光面爆破的光面

光面爆破施工方案

新建铁路太原至中卫(银川)线ZQ-II标 关键工序、特殊过程施工方案 【光面爆破】 编制: 复核: 审核: 中交太中银铁路工程第八项目经理部 二OO六年十二月 光面爆破施工方案

一、工程说明 太中银铁路ZQ-II标八项目管段内共有7座隧道,2座为黄土隧道,其余均为石质 隧道,通过地层主要为砂岩夹泥岩地层,岩层产状水平,节理裂隙发育。地下水主要为基岩裂隙水及第四系孔隙潜水,部分地段地下水为承压水。由于本段围岩所具有的特点决定了隧道开挖成拱性差,开挖支护难度大,进而影响施工进度、施工质量及施工安全,因此对隧道的光面爆破提出了更高的要求。 本段内围岩级别有Ⅱ、Ⅲ、Ⅳ、Ⅴ级,针对不同的围岩级别采用不同的开挖方法,主要有全断面法、台阶法、中隔壁法,本施工方案针对不同的开挖方法、不同的地质情况确定合理的钻爆方案,选择合理的爆破参数和施工工艺,提高光爆效果和效率。 二、隧道光面爆破施工工艺 1、光面爆破施工工艺流程 见图1“光面爆破施工工艺流程图”。 2、光面爆破工艺要求 ⑴钻爆设计 ①设计原则: 根据围岩特点合理选择周边眼间距及周边眼的最小抵抗线,辅助炮眼交错均匀布置,周边炮眼与辅助炮眼眼底在同一垂直面上,掏槽眼加深10~20cm。 严格控制周边眼装药量,间隔装药,使药量沿炮眼全长均匀分布。 选用低密度低爆速、低猛度的炸药;本工程采用岩石销铵炸药和乳化炸药,非电毫秒雷管起爆。采用微差爆破,周边眼采用导爆索起爆,以减小起爆时差。 ②钻爆设计要求 爆破作业由爆破工程师根据地质条件、开挖断面、开挖方法、掘进循环进尺、钻眼机具、爆破器材等进行爆破设计。 合理选择爆破参数,根据围岩情况合理选择中空直眼或斜眼掏槽。爆破后要求炮眼痕迹保存率:硬岩≥80%,中硬岩≥60%,并在开挖轮廓面上均匀分布,两次爆破衔接台阶不大于15cm。 每次爆破后通过爆破效果检查,分析原因,及时修正爆破参数,提高爆破效果,改善技术经济指标。 洞口附近爆破施工严格控制单段装药量,降低震速,确保周边民房及其他构筑物的安全。

光面爆破参数Word版

三、光面爆破设计 1.光面爆破的起爆顺序。起爆顺序:掏槽炮→扩槽炮→内圈炮→周边炮→底板炮→底角炮。 2.光面爆破参数的确定 (1)周边孔间距E。周边眼通常布置在距开挖断面边缘0.1m至0.2m处,光爆孔的孔底的孔底朝隧道开挖轮廓线方向倾斜3~5°。当爆孔孔径D为40mm时,周边孔间距E =(10~16)D,Ⅱ、Ⅲ级围岩周边眼的间距为0.55m,Ⅳ级围岩约为0.50m比较合适。 (2)光爆层厚度W。光爆层厚度就是周边眼最小抵抗线,它与开挖的隧道断面大小有关。断面大,光爆眼所受到的夹制作用小,岩石比较容易崩落,可以大些;断面小,光爆眼受到的夹制力大,光爆层厚度相对要小些。同时,光爆层厚度与岩石的性质和地质构造有关,坚硬岩石光爆层可小些,松软破碎的岩石光爆层可大些。凤凰山隧道光爆层厚度W=0.5m~0.8m,Ⅱ、Ⅲ级围岩W取55cm,Ⅳ级围岩W取60cm。 (3)密集系数K。周边眼密度系数是周边眼间距E与光爆层厚度W的比值,是影响爆破效果的重要因素。 K=E/W(K取值0.8) (4)孔深L。围岩循环进尺:L=0.5×B×90%=0.5×6.0×90%=2.70m(隧道宽度B=6.0m)。除掏槽眼和底角眼取值3.2m外,其余各眼炮孔深度取3.0m。在实际操作中应视掌子面的凹凸情况,调整各炮眼钻孔长度,使所有炮眼眼底处于同一垂直面上。 (5)装药量Q。一是确定炸药单耗量q,炸药单耗量对装药效率、炮孔利用率、开挖壁面的平整程度和围岩的稳定性都有较大的影响。它取决于岩性、断面积、炮孔直径和炮孔深度等多种因素。q取值1.2kg/m3。二是装药集中度Q。光面爆破装药量的计算,主要是确定周边眼光爆层炮眼装药集中度,即 Q=qEW Q确定为0.11~0.30kg/m。 (6)炮孔数量N。炮孔数量取决于掘进断面积、岩石性能和炸药性能。孔数过少将造成大块增多,周壁不平整,甚至会出现炸不开的情况;相反,孔数过多将使凿岩工作量增大。 N=0.0012qS/ad2 式中N—炮孔数量,个;q—单位炸药消耗量, 取1.2kg/m3;S—开挖断面面积,(Ⅳ级围岩S=52m2 ,Ⅱ、Ⅲ级围岩S=42m2)a—炮眼装填系数,取0.62;d—炸药直径,硝铵炸药为32mm。Ⅱ、Ⅲ级围岩炮孔数量N=95个,Ⅳ级围岩炮孔数量N=118个。 3.装药结构。周边眼装药采用径向不偶合间隔装药结构,不偶合系数为1.5~2.0。所有爆眼统一装φ32标准药卷,周边眼间隔装药,岩石炸药与乳化炸药混装,周边眼药卷不需绑在竹片上,直接装入,孔口用炮泥堵塞。光面爆破装药过程中,如果只注意控制周边眼用药量而忽视内圈辅助眼的药量控制,很难达到理想的爆破效果。因此,为保证光爆效果,司钻手定岗定位,掏槽眼、底板眼、辅助眼、周边眼(又分拱部、拱墙、边墙)都实行专人负责。 4.起爆方法。隧道爆破从掏槽眼到辅助眼至周边眼,采用多段微差毫杪雷管起爆由里向外起爆,其中周边眼比辅助眼要跳2段,间隔时间为25~100毫秒,且用同一段雷管同时起爆 四、光面爆破参数的调整 光面爆破是一项能有效控制岩体开挖轮廓减少超欠挖的爆破技术,通过对隧道周边进行正确的钻孔和爆破,可以保留完整的周边轮廓及减少对围岩的扰动。确定合理的光爆参数,

深孔爆破孔网参数在六苴矿床的优化与应用

深孔爆破孔网参数在六苴矿床的优化与应用 摘要:随着新工艺的引进,设备的改变,降低矿石粉矿率、大块率都是一个探 索和实践的历程。本文概述了六苴矿床深孔孔网参数的应用与改进,从而提高深 孔爆破质量。 关键词:孔底距抵抗线孔网密集系数爆破措施 六苴矿床是以铜为主银伴生的地下开采矿床,矿体顶板岩性多为砂质泥岩、 粉砂岩碳质泥岩及少量砂岩,矿岩较稳固,岩石坚固系数f=8-10。采矿主要选用 了具有回采强度大、采矿成本低、回采作业相对安全等优点的分段空场嗣后充填 矿房法,分段高度8-10m,炮孔布置为垂直上向扇形深孔,中深孔爆破采用粒状 胺油炸药, 使用风压式装药器进行装药, 非电毫秒导爆管与导爆索复式起爆网路爆 破落矿。 随着矿山进入深部开采后,深孔爆破大块率一直居高不下, 二次破碎工作量大、火工消耗高,严重影响出矿效率。因此,公司对深部中深孔孔网参数进行了 优化,以提高中深孔爆破效率, 降低大块率与生产成本, 在近年来深孔爆破作业中 进行了,不断探索和改进, 取得了一定的成绩。 1、采场结构参数 六苴矿床矿体总体倾角在25°-45°,属缓倾斜矿体,采用分段空场嗣后充填采矿法,矿体总体平均厚度15m,中段高度25-30m,沿矿体走向方向45-50m划分 盘区,盘区之间留设4m的间柱。当矿体倾角>30°时,设计为沿矿体走向方向布 置采场,沿矿体倾向布置切割槽;当矿体倾角<30°时,设计为沿矿体走向方向布置切割槽,沿矿体倾向布置采场;根据矿体高度、采幅长、宽确定采场和切割天 井数目,凿岩巷道规格2.5m×2.5m,切割槽规格2.5m×2.5m,切割天井 2.5m×2.0m,采用一次拉槽,多次爆破落矿方式; 2、孔网参数设计与优化 2.1.中深孔孔网参数设计 影响爆破效果的参数主要有:最小抵抗线(排距)w、孔底距a。通常根据 钻孔直径、矿岩特性、炸药威力以及对矿岩的破碎程度要求等而定。目前采用的 小抵抗线落矿技术实质是保持孔网面积S=a·w(孔间距最小抵抗线)和单位炸药 消耗量q基本不变的情况下,减小最小抵抗线W,增大孔底距a。六苴深部矿床 采用切割槽中孔、矿房深孔爆破落矿方案后,最初设计矿房孔网参数:最小抵抗线w=2.0m; 孔底距a=(3.0-3.2)m; 孔底密集系数=(1.5-1.6); 切割槽孔网参数: 最小抵抗线w=0.8m; 孔底距a=(0.8-1.0)m; 孔网密集系数=(1.0-1.25); 根据爆破效果来看,大块产出率增大,二次爆破单耗增多,导致生产成本上升。 2.2.矿房深孔参数优化 针对大块率上升这一生产实际问题,对部分采场的孔网参数进行试验并优化。深孔爆破中的影响因素有许多,在采矿方法、采场结构参数等条件不变,装药结构、网络联结、起爆顺序等爆破参数亦已确定的情况下,合理地确定最小抵抗线、

铁路路堑边坡光面爆破实例

铁路路堑边坡光面爆破实例 1 工程概况 渝怀铁路DK374+00 ~ DK375+600区段有多处顺层岩质路堑需进行爆破施工。其中,甘溪站场DK374+300和DK375+500两工点将开挖形成高达10 ~ 12 m的双壁路堑,路堑边坡坡度为1:0.5。 该区段岩体为青灰色、灰色白云质灰岩,隐晶质结构,钙质胶结。石质坚硬,脆性较强,岩石普氏系数f= 12 ~ 16。岩体层理发育,岩层走向与线路间的夹角2°~5°,倾向线路,倾角30°,层面间距0.5 ~ 3.0 m,层理多在路堑边坡面出露。线路行进于坡脚变坡地带,地形左低右高,自然坡度15°~30°。地表植被较差,基岩大面积裸露。地表下5 m 以内岩石风化较为严重,层间多有张开裂隙;5 m以下岩石弱风化或微风化,层面闭合。 在路堑开挖爆破过程中,必须保证边坡岩体的稳定,尽可能使爆破作用不致引起岩体发生大范围的层裂破坏。同时,要求顺倾一侧的边坡不平整度小于20 cm,以便于坡面上的锚固施工。因此,在临近路堑边坡开挖时,应用了预留保护层光面爆破技术,并针对线路两侧不同岩层倾向的特点,采取了不同的光面爆破方案。 2 光面爆破方案 爆破震动效应和爆轰产物的气楔作用是顺层路堑施工中有可能引起边坡岩体产生层裂破坏的两个主要原因。通过现场爆破震动层裂试验及其与爆破前后的岩体声波无损检测结果的耦合分析发现:浅孔爆破的单孔装药量取0.5~0.8 kg时,爆破作用将造成与爆源相距1.3~2.0 m范围内的岩体层裂;中深孔爆破的单段装药量不大于5 kg时,岩体的层裂范围约为4.5 m。 由于岩体发生层裂破坏将对顺倾一侧路堑边坡的稳定性形成极为不利的影响,为尽可能减小爆破作用引起的岩体层裂范围,在路堑开挖过程中顺倾边坡一侧预留2.4~2.6 m的保护层,采用高度为2.5~3.0 m的浅孔爆破和光面爆破相结合的分层开挖方案清理保护层。考虑到反倾一侧路堑边坡不会因岩体的局部层裂而产生倾覆破坏,为加快施工进度,在这一侧路堑开挖时,只预留1.5~1.7 m的保护层,并采用与路堑开挖高度相同的深孔光面爆破清理保护层。 3 爆破参数设计 3.1 浅孔光面爆破参数 采用40 mm孔径的浅孔光面爆破清除顺倾一侧路堑边坡保护层岩体。 (1)炮孔间距光爆孔间距一般为孔径的10~18倍。当岩体的强度

光面爆破作用原理

光面爆破作用原理 光面爆破的破岩机理是一个十分复杂的问题,目前仍在探索之中。尽管在理论上还不甚成熟,但在定性分析方面已有共识。一般认为,炸药起爆时,对岩体产生两种效应;二是爆炸气体膨胀做功所起的作用。光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀合裂缝进一步扩展,形成平整的爆裂面。 1.2光面爆破的技术要点 要使光面爆破取得良好效果,一般需掌握以下技术要点: 1、根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。 2、严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。 3、周边眼宜使用小直径药卷和低猛度、低爆速的炸药。为满足装药结构要求,可借助导爆索(传爆线)来实现空气间隔装药。 4、采用毫秒微差有序起爆。要安排好开挖程序,使光面爆破具有良好的临空面。 5、边孔直径小于等于50mm。 2主要应用 预裂爆破和光面爆破在坝基、边坡开挖中较多的运用。光面爆破在隧道开挖中的运用尤其广泛。 2.1(一)成缝机理 预裂爆破和光面爆破都要求沿设计轮廓产生规整的爆生裂缝面,两者成缝机理基本一致。现以预裂缝为例论述它们的成缝机理。 预裂爆破采用不耦合装药结构,其特征是药包和孔壁间有环状空气间隔层,该空气间隔层的存在削减了作用在孔壁上的爆炸压力峰值。因为岩石动抗压强度远大于抗拉强度,因此

可以控制削减后的爆压不致使孔壁产生明显的压缩破坏,但切向拉应力能使炮孔四周产生径向裂纹。加之孔与孔间彼此的聚能作用,使孔间连线产生应力集中,孔壁连线上的初始裂纹进一步发展,而滞后的高压气体的准静态作用,使沿缝产生气刃劈裂作用,使周边孔间连线上的裂纹全部贯通成缝。 2.2(二)质量控制标准 1)开挖壁面岩石的完整性用岩壁上炮孔痕迹率来衡量,炮孔痕迹率也称半孔率,为开挖壁面上的炮孔痕迹总长与炮孔总长的百分比率。在水电部门,对节理裂隙极发育的岩体,一般应使炮孔痕迹率达到10%~50%;节理裂隙中等发育者应达50%~80%;节理裂隙不发育者应达80%以上。围岩壁面不应有明显的爆生裂隙。 2)围岩壁面不平整度(又称起伏差)的允许值为±15cm。 3)在临空面上,预裂缝宽度一般不宜小于1cm。实践表明,对软岩(如葛洲坝工程的粉砂岩),预裂缝宽度可达2cm以上,而且只有达到2cm以上时,才能起到有效的隔震作用;但对坚硬岩石,预裂缝宽度难以达到1cm。东江工程的花岗岩预裂缝宽仅6 m m,仍可起到有效隔震作用。地下工程预裂缝宽度比露天工程小得多,一般仅达0.3~0.5cm。因此,预裂缝的宽度标准与岩性及工程部位有关,应通过现场试验最终确定。 影响轮廓爆破质量的因素,除爆破参数外,主要依赖于地质条件和钻孔精度。这是因为爆生裂缝极易沿岩体原生裂隙、节理发展,而钻孔精度则是保证周边控爆质量的先决条件。 2.3(三)参数设计 预裂爆破和光面爆破的参数设计一般采用工程类比法,并通过现场试验最终确定。 (1)预裂爆破参数 1)孔径明挖工程为7 0~165mm;隧洞开挖为40~90mm;大型地下厂房为50~110mm。 2)孔距与岩石特性、炸药性质、装药情况、开挖壁面平整度要求和孔径大小有关。孔距一般为孔径的7~12倍。爆破质量要求高、岩质软弱、裂隙发育者取小值。 3)装药不偶合系数不偶合系数指炮孔半径与药卷半径的比值,为防止炮孔壁的破坏,该值一般取2~5。 4)线装药密度线装药密度是单位长度炮孔的平均装药量。影响预裂爆破参数的因素复杂,很难从理论上推导出严格的计算公式,以经验公式为主,目前国内较常用公式的基本形式 为 式中,QX—预裂爆破的线装药密度,kg/m; σC—岩石的极限抗压强度,MPa; a—炮孔间距,m;

复杂环境下中深孔控制爆破

复杂环境下中深孔控制爆破 摘要:宁德市火车站南侧山体土石方工程中深孔控制爆破工程中,针对其复杂的爆破环境,采用逐孔爆破技术、孔内分层微差、孔间微差、光面爆破等爆破技术,确保边坡稳定及周围环境的安全,取得了预想的爆破效果。 1 工程概况 宁德市火车站南侧山体土石方工程位于宁德市火车站南侧,占地面积约25600平方米,总方量为91.58万m3,其中土方9.2万m3,石方82.38万m3,工期为240日历天。该区域为一丘陵,丘陵最高处约45m,现丘陵山体坡度多在40°~ 60°之间,坡度较陡。爆区周边环境复杂,爆区东面距离温福铁路挡土墙预留21米保护层,挡土墙距离最近铁轨34米,即爆区距离最近铁轨或架线55米,动车架线电压为25kv;北面距离火车站售票大厅玻璃幕墙46米,旁边有一条混凝土公路;西面距离土尾村约200米、进站公路(金马路)130米;南面距离蒋澳村67米,邻近爆区有28栋土坯房,抗振能力较差。 本项目是宁德市重点项目,也是南昌铁路局境内的高铁运营线旁的首例爆破,福建境内首例长工期露天夜间爆破。 图1 爆区周边环境卫星平面图 2 爆破技术要求 根据爆区周边要求,该区域石方爆破必须满足如下技术要求: (1)爆破不应对列车运营照成影响,爆破振动不得影响任何设施,不能有任何飞石侵入铁路; (2)由于涉及到夜间爆破施工,应布置完善的夜间施工的照明系统,符合爆破安全规程的要求; (3)完善夜间民用爆炸物品运输、保管、出入库的安全; (4)由于福建境内不得使用电雷管,本项目必须采用非电起爆网路,考虑非电起爆网路的不可检测性,应采用冗余设计,确保网路安全可靠; (5)要求严格爆破现场记录和监理现场确认; (6)制定政府相关部门和铁路部门在爆破警戒方面的配合要求。

1 光面爆破的原理及工程应用 已经打印

四川建筑 第29卷6期 2009.12 光面爆破的原理及工程应用 张 辉 (黄河勘测规划设计有限公司地质勘探院,河南洛阳 471000) 摘 要 通过对光面爆破原理和技术要求分析,结合工程实例,对如何解决光面爆破过程中出现的问题进行探讨。 关键词 光面爆破; 技术要求; 调整 中图分类号 TU 751 9 文献标识码 B [收稿日期]2009-11-26 [作者简介]张辉(1979~),男,陕西三原人,本科,助理工程师,从事岩土工程勘察及施工工作。 1 光面爆破原理和技术要求 1 1 光面爆破的原理 一般情况下,炸药爆炸时,药包表面的冲击波压力峰值可达数百万千帕(kPa),这个数值远远超过了岩石的抗压强度。因此,药包周围的岩体被压碎成粉状,形成一个粉碎区。光面爆破的原理就是降低炮孔壁上的压力峰值,使炸药爆炸后,孔壁上产生的冲击压力低于处于体积应力状态下的岩石抗压强度,而由此产生的切向拉应力要超过岩体的抗拉强度。这样,当周边眼同起爆时,由于应力波的叠加和爆生气体准静压力的作用,炮眼连线上切向拉应力超过岩石抗拉强度而首先产生裂缝并贯通,同时也抑制了孔壁上其它方向裂缝的产生从而达到不破坏围岩的目的。 1 2 技术要求 (1)光面爆破的启爆顺序为:掏槽眼 辅助眼 周边眼 底板眼。辅助眼应由里向外逐层启爆。 (2)严格掌握钻眼作业,使各种炮眼的位置及方向准确无误。否则光面爆破的效果将明显降低,达不到光面爆破的目的。 (3)根据围岩特点,合理选择周边眼间距和最小抵抗线。光面爆破的要点是,周边眼的间距比一般爆破的间距要小,周边眼的最小抵抗线也相应减小,即适当加密周边眼,调整间距与抵抗线的比值E /V 。周边眼的间距具体偏小多少,要依岩石的抗爆性、炸药性能、炮眼直径和装药量而定。一般可取E 为9~18,D 为40~70c m 。为了保证周边眼之间贯通缝优先形成,须使周边眼的最小抵抗线大于炮眼间距,通常取E /V =0 8为宜。 (4)严格控制周边眼的装药量。为使药量沿炮眼全长合理分布,合理选择炸药品种和装药结构十分重要。周边眼的装药量应具有破岩所需的应力能量,也不能造成对围岩的严重破坏,施工中应根据炮眼孔距、光面层厚度、围岩石质及炸药种类等因素综合考虑选择和调整。 (5)采用周边眼同时启爆,要求采用毫秒雷管微差顺序启爆。为使周边爆破时产生临空面,同段的周边眼雷管启爆时差应尽可能小,一般使用导爆索或高精度系列迟发电雷管启爆效果最好。 2 工程概况 山西省张峰水库输水总干工程施工 标为无压过水隧洞,洞宽2 8m,高3 18m ,城门洞型设计。隧洞围岩主要由 ~ 类围岩组成。隧洞进口94m,出口70m 地段为 类围岩,大部分洞段由 类的泥岩和粉砂岩组成,泥岩和粉砂岩岩体破碎,裂隙发育。隧洞开挖过程中采用新奥法全断面爆破施工。 3 爆破质量分析与调整 3 1 光面爆破参数选择 光面爆破的参数选择可参照经验参数,见表1。具体取值可根据实际情况而定 。 3 2 前期爆破效果 本工程在 类围岩中按设计爆破参数组织全断面开挖施工,爆破后对爆破效果进行观察记录,发现开挖效果较差,主要表现为:(1)排间错台较大,最大达到31c m,开挖平整度较差;(2)炮眼半孔残留率较低仅为52%;(3)周边和底板部位未留半边眼存在超欠挖现象。 对爆破质量缺陷进行分析,采用措施见表2。 (下转第216页) 213 施工技术与测量技术

高边坡光面爆破及控制爆破方案

温福线枢纽段路堑高边坡光面爆破及控制爆破方案 1、工程概况 温福线枢纽段位于福建省福州市,属于穿越山区方的高标准铁路。其中中铁十八局一公司 施工标段含路堑高边坡爆破开挖石方量大,要求边坡采用弱扰动光爆(或预裂)爆破法施工, 路堑石方边坡坡内岩体以坚硬花岗岩为主,呈弱风化。爆破开挖区环境较差、居民多,根据现 场环境条件和地质条件分析,认为高边坡开挖工作工点非常适宜作深孔加预裂爆破,这种爆破 技术既可加快施工进度,又可保证边坡质量,爆破开挖后边坡一次成形,最终形成的边坡整齐、美观,而且由于爆破对边坡内部的岩体扰动减弱。 我项目部承担的鼓山一号、二号和三号隧道进口段爆破工点有爆破开挖面大、周边居民密 集、民用建筑多和鼓山三号隧道进口岩石较破碎等特点,环境条件极其复杂,需要采取控制爆 破技术开挖,爆破过程中应配合拉网防护、震动检测,确保施工安全。 2、边坡光面爆破设计 爆破设计应根据地形和现场勘察资料,进行爆破方案选择和优化,按照拟定的方案,结合 本工地地形条件、施工进度、爆破安全、施工质量和经济效益等多方面因素进行综合考虑,其 设计原则如下: 选择孔深加预裂一次成型综合爆破技术方案具有较成熟的经验。边坡坡面采用预裂(光面)爆破施工,主体石方采用孔深爆破施工。对于2~3层的较高边坡,应台阶施工,边坡坡度陡于1:0.5时,钻孔方便,当坡度陡于1:0.75时,钻孔较困难。 3.1 深孔、光面、预裂参数设计 3.1.1 各种爆破参数设计见附表1~3 3.1.2 爆破参数分析 (1)深孔爆破参数分析 ①孔径D 露天爆破深孔的孔径主要取决于钻机的类型。本工地采用D100三脚架潜孔钻机,通常孔径 D=100~200mm,本次深孔爆破采用的孔径D=100mm和D=115mm。 ②台阶高度H 台阶高度是深孔爆破的重要参数,当主体石方以孔深爆破开挖时,要作好台阶的选择工作。 台阶高度是否合理直接影响钻孔、爆破、挖装、运填全系统的工作。应根据实际地形地质条件、 开挖技术要求、钻孔机械的钻孔能力和挖装能力综合考虑,一般以5~10m最为经济合理,考虑 设计台阶平台宽均为 2.5m,顶部台阶高低不同,本设计最大台阶高度为H=12m,具体根据不同地形在施工中进行调整。 ③底板抵抗线W1 底板抵抗线是影响孔深爆破效果的重要参数,底板抵抗线过大造成根坎、大块率高、后冲 作用大;底板抵抗线过小则易造成飞石且增大钻孔工作量。根据以往的爆破经验,采用以下经 验公式: a、根据台阶高度确定 W1=(0.6~0.8) H b、根据孔径大小确定

相关文档
最新文档