第一性原理方法介绍

第一性原理方法介绍
第一性原理方法介绍

摘要

碳纳米管是近年来材料界以及凝聚态物理研究的前沿和热点。由于其具有介观尺度及奇异的物理化学性能而被认为极具理论研究价值;从实际应用的角度来看,碳纳米管直接与纳米技术相关联,也倍受人们关注。通过如STM、Raman,吸收谱等实验,人们已经初步了解了碳纳米管的众多奇特结构和性能。为了能更进一步弄清碳纳米管的结构和物理特性,理论模拟就显得非常必要。基于密度泛函的第一性原理,本文研究了钙掺杂对碳纳米管吸附二氧化碳性能的影响。

关键词:密度泛函理论,第一性原理,碳纳米管, 电子结构

引言

一、计算物理学简介

计算物理学是利用电子计算机进行数据采集、数值计算和数字仿真来发现和研究物理现象与物理规律的一门现代交叉学科。

计算物理学中的一个重要的研究领域是凝聚态体系的电子结构。由于物质所表现出的许多宏观物理特性,比如超导电性、半导体发光特性、过渡金属的磁性等都和体系的微观电子结构密切相关,并主要由电子的行为所决定,因此研究物质的电子结构是求解相互作用的多电子体系问题。其实质是一个多体问题的研究。对于这样一个复杂多体问题的研究,密度泛函理论(DFT)为人们提供了一个较为有效的解决办法。

以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的物理现象和物理规律。密度泛函计算的一些结果能够与实验直接进行比较,一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第一原理计算方法的广泛应用。

通过计算,人们可以分析某种结构模型对应的物理现象,可以预言有关材料的结构和稳定性等,可以人为设计具有人们希望的物理性能的结构材料。

二、论文工作的内容和意义

目前碳纳米管及其管束的物理性能和应用研究已成为人们关心的热点问题,特别是随着微电子器件的高度集成化和微尺度化的发展趋势,开发以碳纳米管为基础的纳米电子器件将成为本世纪的焦点内容。

在理论上,X. Blase等人指出由于在费米面附近σ*-π*轨道间的杂化效应,使得在小管径的电子带结构有别于传统的从石墨片折叠模型得到的电子带结构。这种杂化效应将改变最低导带的能量和特征从而对电子结构产生影响,甚至在半导体的管中出现金属的能带特征。第一原理计算表明,对应0.4 nm 直径碳纳米管的(5,0)、(3, 3)、(4, 2)三种碳纳米管中,(5,0)和(3, 3)的能带显示它们表现为金属性,而(4, 2)是具有0.2eV 带隙的间接半导体。从传统的石墨片折叠理论来讲,锯齿型管(5,0)应该是半导体的,但由于小管径的碳纳米管中σ*-π*轨道间的杂化,使得(5,0)的电子结构发生了变化,而呈现金属性。

另外,硼和氮掺杂的碳纳米管被成功制备。用紧束缚方法和第一原理计算表明,这种硼和氮掺杂的碳纳米管是p 型和n型碳纳米管。碳纳米管已被证明在常温下是一种新型的化学传感器,能够以较高的灵敏度检测到含量甚微的气体分子。但是碳纳米管对许多类型气体不是很敏感,如氢气和一氧化碳,通过硼和氮掺

杂对碳纳米管进行合理的化学或物理改性,可提高其对这些气体分子的敏感性,使之成为性能卓越的传感器。最近,Nevidomskyy等人用密度泛函理论研究了掺氮杂质的碳纳米管。当把两个掺氮杂质的碳纳米管面对面的放在一起,并且使管间距离为2.5 的时候,他们发现了管间键的形成。这有可能使得掺氮的碳纳米管在管间遂穿作为可控遂穿结方面有着潜在的应用。实验和理论的不断发展让我们看到碳纳米管结构的丰富性,同时也向人们展现了制备出更细碳纳米管的可能性。那么碳纳米管的最小可能直径是多少,碳纳米管的热稳定性与其结构之间有什么关联,稳定存在的小直径碳纳米管的电子结构究竟如何?这些是我们关心的问题。因为掺杂对碳纳米管的性能起着重要的修饰作用,研究碳纳米管的掺杂有着明显的现实意义。

基于以上这些理由和认识,本文以密度泛函理论为基础,利用第一性原理的计算软件CASTEP,从理论上来探讨碳纳米管的最小可能直径,研究碳纳米管结构和热稳定性之间的关联,并且从能带、态密度等考察了 3 碳纳米管的电子结构。另外,我们还研究了硼氮掺杂对碳纳米管结构和性能的影响。

第一章碳纳米管简介

第一节各种碳纳米管的发现

第二节单壁碳纳米管的几何结构特征

第三节碳纳米管的主要性能

碳纳米管的纳米尺度、结构和拓扑缺陷等因素赋予了其极为独特而有广阔应用前景的性能。在本文中,我们主要介绍以下三个方面:

一、纳米尺度形成的细微结构

由于碳纳米管在圆周方向的有限尺寸,碳纳米管碳原子在径向被限制在纳米尺度上,其π电子将形成离散的量子化能级和束缚态波函数,因此产生量子尺寸效应,对系统的物理和化学性质产生一系列的影响。此外,碳纳米管,特别是单壁碳纳米管,构成它的碳原子基本上位于表面位置,是同时具有表面和里面的物质,故应有较大的比表面积,并能够吸附其他的原子和分子。

二、碳纳米管的特殊的电学性质

5、气体吸附和掺杂对能带结构的影响

单壁碳纳米管的电学性能与其所处的气体环境有关,因其他物质的进入可改变其电子带结构,从而使得其电学性能产生较大变化(图1-5)。如当少量NO2与单壁碳纳米管接触时,电阻减小;与微量NH3接触时,电阻增加。因此,可以通过检测单壁碳纳米管的电导率的变化来探测NO2与NH3气体的浓度,从而用单壁纳米碳管有可能制得最小的分子级气敏元件,其响应时将更快且尺度更小。

在碳纳米管中掺入杂质同样会使碳纳米管的电子结构发生改变。例如,在有Li 原子掺杂的碳纳米管中(如图1-6 所示),反映在能带中的变化,会使得费米面上移,锯齿型(10,0)碳纳米管呈现金属的特征,并且Li 原子和 C 原子之间存在电荷的转移。这就说明了,碱金属的掺入改变了碳纳米管的电子结构,使得掺碱金属的碳纳米管在工业上有潜在的应用。

三、超高的力学性能

第四节碳纳米管的应用前景

诺贝尔奖获得者R.E.Smalley 称:“碳纳米管将是价格便宜,环境友好并为人类创造奇迹的新材料”。这说明碳纳米管的应用前景,特别是在微电子方面应用的巨大潜力难以估量。

五、贮能、贮气材料

碳纳米管可以作为产能、贮能材料。碳纳米管的较大比表面积和在电子传输中的特性使之适合用作微电极。例如,在生物电化学反应中,反应速率及可逆性方面比其他炭电极要好。碳纳米管,特别是单壁碳纳米管的中空部分是极好的微容器,可吸附大小适合其内径的各种分子,可存储包括氢在内的各种气体。

第二章CASTEP 软件

第一节CASTEP 软件的主要理论

一、密度泛函理论(DFT)

CASTEP 的理论基础是电荷密度泛函理论在局域电荷密度近似(LDA)或是广义梯度近似(GGA)的版本。DFT 所描述的电子气体交互作用被认为是对大部分的状况都是够精确的,并且他是唯一能实际有效分析周期性系统的理论方法。

1、Hohenberg Kohn 理论

2、局域密度近似(LDA)

3、广义梯度近似(GGA)

在CASTEP 里预设的是GGA,在很多状况下它被认为是比较好的方法。LDA 会低估分子的键长(或键能)以及晶体的晶格参数,而GGA 通常会补救这缺点。梯度修正的方法在研究表面的过程、小分子的性质、氢键晶体以及有内部空间的晶体(费时)是比较精确的。有许多证据显示GGA 会在离子晶体过度修正LDA 结果;当LDA 与实验符合得非常好的时候,GGA 会高估晶格长度。

二、赝势

电子-离子间的交互作用可以用赝势的观念来描述。CASTEP 中有两种赝势,一种是规范-守恒赝势(Norm-conservingpseudopetential),另一种是超软赝势(ultrasoft pseudopotential)。

1、规范-守恒赝势(Norm-conserving pseudopetential)

2、超软赝势(ultrasoft pseudopotential)

三、分子轨道的自洽求解

1、分子轨道的自洽场方程

2、自洽求解流程图

四、CASTEP 软件的几项关键技术

第二节CASTEP 软件的结构和使用方法

第四节CASTEP 软件的主要功能

第三章最小碳纳米管(2, 2)

第四章碳纳米管的硼氮掺杂

第一节前言

研究发现,富勒烯经过掺杂后,其电学性质可发生很大改变。例如,C60加入碱金属后,原本不是超导体的C60,在30K 下,出现了超导现象。由于碳纳米管和C60有相似的全碳结构,也可通过掺杂进行处理。C. Jo 等采用第一原理计算掺杂K 的单壁碳纳米管管束的电子结构。结果表明,当掺杂浓度小于K0.1C 以前,单壁碳纳米管和碱金属之间的相互吸引作用占主导,管束点阵结构扩展8%,但碳管结构不变,也没有发生变形;在掺杂浓度超过K0.1C 而小于K0.25C时,单壁碳纳米管和碱金属之间的排斥作用占主导,同时碱金属和碳管之间的电荷转移随掺杂浓度提高而变大,费米能级和电荷转移随掺杂浓度提高而变大,在最大掺杂时达到饱和(图5-1)。

在实验上,硼和氮掺杂的碳纳米管被成功制备。通过部分替代反应,W. Q. Han

等人在氩气环境中得到了硼掺杂的碳纳米管,硼原子替代的比率小于10%。通过改进替代反应方法,E. Borowiak-Palen等获得了高纯的 B 掺杂的碳纳米管。他们在透射电镜下观测到大约15%的碳原子被 B 原子代替,部分替代的比率达到20%。R. Czerw 等用高温分解方案使N 原子渗入到碳纳米管碳的网格中从而制备出了氮替代性掺杂的碳纳米管,并且发现氮替代性掺杂使得碳纳米管呈现中空的“竹子”结构(图5-2)。他们用紧束缚方法和第一原理计算表明,这种氮掺杂的碳纳米管是n 型碳纳米管。另外,M. Terrones 等也用自己设计的高温分解方法制备了氮掺杂的碳纳米管。他们用局域密度近似密度泛函计算发现掺氮含量为5.5%的碳纳米管其费米面增加了1.21eV。

最近,Nevidomskyy等人用密度泛函理论研究了掺氮杂质的碳纳米管。在氮掺杂浓度小于1%的碳纳米管中,氮掺杂的缺陷态在锯齿型碳纳米管中展现为局域特征,而在扶手椅型碳纳米管中氮掺杂的缺陷态扩展到很大的范围。当把两个掺氮杂质的碳纳米管面对面的放在一起,并且使管间距离为 2.5 埃的时候,可以看到管间键的形成(图5-3)。这有可能使得掺氮的碳纳米管在管间遂穿作为可控遂穿结方面有重要作用,可以把管束联合起来进行应用。为了进一步研究B/N 掺杂碳纳米管,在这一章,我们来研究B/N 掺杂对碳纳米管结构和性能的影响。

第二节计算模型与优化结构

我们选择了(8, 0)碳纳米管管束,利用CASTEP 软件来研究B 原子和N 原子直接替代碳纳米管中的碳原子后,讨论他们对碳纳米管几何结构和电子结构有哪些影响。单胞作为超原胞,每个单胞中原子个数为32 个,(b)和(c)的一端对称的两个C 原子被B原子或N 原子替代。管与管的间距为 3.3 埃,是实验中发现的管的间距。计算模型分别如图5-4 中(a)和(b)所示。结构优化时选择的截断能为350eV,选择的精度值为”fine”。在计算时,单胞的晶系构造成六方晶系,这也与实验中发现的碳纳米管所处的晶系一致。图5-4 计算模型(a)B 掺杂(b)N 掺杂

首先,我们对没有掺杂的(8, 0)碳纳米管以及掺了硼原子和氮原子的(8, 0)碳纳米管分别进行了结构优化。为了比较掺杂前后碳纳米管结构的变化,考察掺杂原子对原来碳纳米管中碳网络结构的影响,在图5-5(a)、(b)和(c)中,我们给出了图形界面Visualizer显示的没有掺杂的(8, 0)碳纳米管以及掺了硼原子和氮原子的(8,0)碳纳米管结构优化以后的俯视图。

看70页起

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质就是旧键的断裂与新建的形成,参与成键原子的电子壳层重新组合就是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似与关于分子波函数的方程形成计算量子化学的数学基础。 2、1 SCF-MO 方法的基本原理 分子轨道的自洽场计算方法 (SCF-MO)就是各种计算方法的理论基础与核心部分,因此在介绍本文计算工作所用方法之前,有必要对其关键的部分作一简要阐述。 2、1、1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献与教材中对这些方程已有系统的推导与阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构与性质,在非相对论近似下,须求解 R AB =R 图2-1分子体系的坐标

定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ (2、1) 其中分子波函数依赖于电子与原子核的坐标,Hamilton 算符包含了电子p 的动能与电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2、2) 以及原子核的动能 ∑?-=A A A N M H 2121? (2、3) 与电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2、4) 式中Z A 与M A 就是原子核A 的电荷与质量,r pq =|r p -r q |,r pA =|r p -R A |与R AB =|R A -R B |分别就是电子p 与q 、核A 与电子p 及核A 与B 间的距离(均以原子单位表示之)。上述分子坐标系如图2、1所示。可以用V(R,r)代表(2、2)-(2、4)式中所有位能项之与 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2、5) 原子单位 上述的Schrodinger 方程与Hamilton 算符就是以原子单位表示的,这样表示的优点在于简化书写型式与避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位就是Bohr 半径

第一性原理简介

第一性原理是什么 第一性原理怎么用 1什么是第一性原理 根据原子核和电子互相作用的原理及其基本运动规律,运用,从具体要求出发,经过一些近似处理后直接求解的算法,称为第一性原理。广义 的第一原理包括两大类,以Hartree-Fock自洽场计算为基础的从头算和 (DFT计算。 从定义可以看出第一性原理涉及到量子力学、、Hartree-Fock自洽场、等许多对我来说很陌生的物理化学定义。因此我通过向师兄请教和上网查资料一点点的了解并学习这些知识。 2第一性原理的作用 以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的

物理现象和物理规律。密度泛函计算的一些结果能够与实验直接进行比较一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第 一原理计算方法的广泛应用。 密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT及其计算已经快速发展成 为材料建模模拟的一种“标准工具”。 密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS、光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用 目前我所学到的利用第一性原理的软件为Material Studio 、VASP软件。其中Materials Studio (简称MS是专门为材料科学领域研究者幵发的一款可运行在PC上的模拟软件。使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 模块简介 Materials Studio 采用了大家非常熟悉的Microsoft标准用户界面, 允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。 目前,Materials Studio 软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio 的其他产品。是Materials Studio 产品系列的核心模块。 Discover: Materials Studio 的分子力学计算引擎。使用多种分子力学和动力学 方法,以仔细推导的力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。

第一性原理计算原理和方法精编

第一性原理计算原理和 方法精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似和关于分子波函数的方程形成计算量子化学的数学基础。 SCF-MO 方法的基本原理 分子轨道的自洽场计算方 法(SCF-MO)是各种计算方法的理论基础和核心部分,因此在介绍本文计算工作所用方法之 前,有必要对其关键的部分作 一简要阐述。 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本 R AB =R 图2-1分子体系的坐标

近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ () 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 以及原子核的动能 ∑?-=A A A N M H 2121? 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图所示。可以用V(R,r)代表-式中所有位能项之和 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,12121),( 原子单位

如何分析能带图及第一性原理的计算

分析能带图 能带结构是目前采用第一性原理(从头abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。能带可分为价带、禁带和导带三部分,倒带和价带之间的空隙称为能隙,基本概念如图所示: 如何能隙很小或为0 ,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传倒带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料距能导电。 能带用来定性地阐明了晶体中电子运动的普遍特点。价带(valence band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。在导带(conduction band)中,电子的能量范围高于价带,而所有在传导带中的电子均可经由外在的电

场加速而形成电流。对与半导体以及绝缘体而言,价带的上方有一个能隙(band gap),能隙上方的能带则是传导带,电子进入传导带后才能在固体材料内自由移动,形成电流。对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。 费米能级(fermi level)是绝对零度下的最高能级。根据泡利不相容原理,一个量 子态不能容纳两个或两个以上的费米子(电子),所以在绝度零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子态的“费米海”。“费米海” 中每个电子的平均能量为(绝对零度下)为费米能级的3/5。海平面即是费米能级。一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。 能量色散(dispersion of energy)。同一个能带内之所以会有不同能量的量子态, 原因是能带的电子具有不同波向量(wave vector),或是k-向量。在量子力学中, k-向量即为粒子的动量,不同的材料会有不同的能量-动量关系(E-K relationship)。能量色散决定了半导体材料的能隙是直接能隙还是间接能隙。如导带最低点与价带最高点的K值相同,则为直接能隙,否则为间接能隙。 能带的宽度。能带的宽度或三度,即能带最高和最低能级之间的能量差,是一个非常重要的特征,它是由相互作用的轨道之间的重叠来决定的,因而反应出轨道之间的重叠情况,相邻的轨道之间重叠越大,带宽就越大。

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似, 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122 ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??? ?????-++?-?-∑∑∑∑∑∑≠≠ (2.1) 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p

与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2.2) 以及原子核的动能 ∑?-=A A A M H 2? (2.3) 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图2.1所示。可以用V(R,r)代表(2.2)-(2.4)式中所有位能项之和 ∑∑∑-+= ≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2.5) 原子单位 上述的Schrodinger 方程和Hamilton 算符是以原子单位表示的,这样表示的优点在于简化书写型式和避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位是Bohr 半径 能量是以Hartree 为单位,它定义为相距1Bohr 的两个电子间的库仑排斥作用能 质量则以电子制单位表示之,即定义m e =1 。

第一节第一性原理计算方法综述

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT软件包。 1.1 第一性原理 第一性原理计算( 简称从头计算,the abinitio calculation) ,指 从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。【1】第一性原理计算就只需要用到五个最基本的物理常量即( m o.e.h.c.k b ) 和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。

第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT。 1.2量子力学与Born-Oppenheimer 近似固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系【2】,相应的体系哈密顿量可以写成如下形式: H (r,R) E H(r ,R) (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子( 原子核和电子) 的动能和粒子之间的相互作用能,即 H H e H N H e N (1-2) 其中,以是电子部分的哈密顿量,形式为: 22 1 e2 H e(r) r2i 1 e(1-3)

第一性原理计算

实验一、第一性原理计算 1. 实验目的 (1) 掌握第一性原理和密度泛涵的计算方法; (2) 学会使用Visualizer 的各种建模和可视化工具; (3) 熟悉CASTEP 模块的功能。 2. 实验原理 CASTEP 是基于密度泛涵理论平面波赝势基础上的量子力学计算。 密度泛涵理论的基本思想是原子、分子和固体的基本物理性质可以用粒子密度函数进行描述。可以归纳为两个基本定理: 定理1:粒子数密度函数是一个决定系统基态物理性质的基本参量。 定理2:在粒子数不变的条件下能量对密度函数变分得到系统基态的能量。不计自旋的全同费米子的哈密顿量为:H T U V =++ 其中动能项为:()()T dr r r ψψ+=??? 库仑作用项为:11'()(')()(')2 ' U drdr r r r r r r ψψψψ++=-? V 为对所有粒子均相同的局域势u(r)表示的外场影响:()()()V dru r r r ψψ+=?粒子数密度函数为: ()()()r r r ρψψ+=ΦΦ 对于给定的()r υ,能量泛函[]E ρ定义为: []()()E dr r r T U ρυρ=+Φ+Φ ?;[]F T U ρ=Φ+Φ系统基态的能量: ' ''''[]''''[][]()()[][]()()[] E T U V G E F dr r r E G G F dr r r E G ρρυρφρυρρΦ=Φ+Φ+ΦΦ==+>?=+=? 3. 实验内容 材料的电子结构计算; 4. 实验设备和仪器 (1) 硬件:多台PC 机和一台高性能计算服务器。 软件:主要利用Materials studio 软件包里的Materials Visualizer 和CASTEP 模块 5. 实验步骤

第一节第一性原理计算方法综述

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT 软件包。 1.1第一性原理 第一性原理计算(简称从头计算,the abinitio calculation),指从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。【1】第一性原理计算就只需要用到五个最基本的物理常量即(b o k c h e m ....)和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。

第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。 以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT 。 1.2量子力学与Born-Oppenheimer 近似 固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系【2】,相应的体系哈密顿量可以写成如下形式: ),(),(R r E R r H H ψψ= (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子(原子核和电子)的动能和粒子之间的相互作用能,即 N e N e H H H H -++= (1-2) 其中,以是电子部分的哈密顿量,形式为:

第一性原理计算方法讲义

第一性原理计算方法 引言 前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。 量子力学是反映微观粒子运动规律的理论。量子力学的出现,使得人们对于物质微观结构的认识日益深入。原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。 但是固体是具有?1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。绝热近似(Born-Oppenheimei 近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。Hartree-Fock 近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。1964年,Hohenberg和Kohn提出了严格的 密度泛函理论(Density Functional Theory, DFT )。它建立在非均匀电子气理论基础之上,以粒子数密度(『)作为基本变量。1965年,Kohn和Sham提出Kohn-Sham方程将复杂的多电子问题及其对应的薛定谔方程转化为相对简单的单电子问题及单电子Kohn-Sham方程。将精确的密度泛函理 论应用到实际,需要对电子间的交换关联作用进行近似。局域密度近似(LDA、广义梯度近似(GGA 等的提出,以及以密度泛函理论为基础的计算方法(赝势方法、全电子线形缀加平面波方法(FLAPW)等、的提出,使得密度泛函理论在化学和固体物理中的电子结构计算取得了广泛的应用,从而使得固体材料的研究取得长足的进步。 第一性原理计算方法的应用 1、体系的能量

第一性原理计算

钙钛矿型PbZrO3电子能带结构的第一性原理计算 班级:s1467 姓名:学号:201421801014 锆酸铅(PbZrO3)是最早发现的反铁电体之一,在工业上的一个重要应用是其固溶物Pb(Zr,Ti)O3。由于反铁电材料在相开关、电荷存储、电流源、电容、微电子及微型机电设备等方面有重要应用,其电子结构和物理特性一直为人们所关注。PbZrO3的有三个不同的相,在233℃以上为立方顺电相,具有钙钛矿结构,所属的空间群为Pm3m;当晶体处于233℃以下,将发生氧八面体的扭曲畸变和阳离子相对于O的移动,形成结构相变;230~233℃为正交铁电相,而230℃以下的基态为正交晶系,空间群为Pbam。基态正交相中离子移动主要由Pb、O之间的相对位移提供,由于相邻晶格之间Pb-O的位移相反,因此其为反铁电体。 1、原理及计算 采用第一性原理局域密度近似下的投影缀加平面波方法精确计算并比较了钙钛矿材料PbZrO3低温正交相(反铁电相)、高温立方相(顺电相)的电子能带结构,计算了PbZrO3材料正交相、立方相的电子结构。PbZrO3立方相的空间群为Pm3m,计算采用实验得到的晶格常量为a=4.11nm,Wyckoff坐标为Pb:(0,0,0),Zr:(0.5,0.5,0.5),O:(0.5,0.5,0)。正交相的空间群为Pmam,采用的晶格常数a=5.9411nm,b=11.8024nm,c=8.2564nm,各原子坐标见表1。正交相和立方相的多面体结构模型如图1所示。平面波截断能取为500eV,布里渊区积分分别采用5×5×5及7×3×5的K点网格,高斯展宽因子为0.1eV。 表1 正交相PbZrO3原胞内的原子位置

第一性原理简介

1什么是第一性原理? 根据原子核和电子互相作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法,称为第一性原理。广义的第一原理包括两大类,以Hartree-Fock自洽场计算为基础的从头算和密度泛函理论(DFT)计算。 从定义可以看出第一性原理涉及到量子力学、薛定谔方程、Hartree-Fock自洽场、密度泛函理论等许多对我来说很陌生的物理化学定义。因此我通过向师兄请教和上网查资料一点点的了解并学习这些知识。 2第一性原理的作用 以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的物理现象和物理规律。密度泛函计算的一些

结果能够与实验直接进行比较,一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第一原理计算方法的广泛应用。 密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT)及其计算已经快速发展成为材料建模模拟的一种“标准工具”。 密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS)、光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用? 目前我所学到的利用第一性原理的软件为Material Studio、V ASP软件。其中Materials Studio(简称MS)是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件。使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 模块简介 Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。目前,Materials Studio软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。是Materials Studio产品系列的核心模块。 Discover: Materials Studio的分子力学计算引擎。使用多种分子力学和动力学方法,以仔细推导的力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。

如何分析第一原理的计算结果

[转]如何分析第一原理的计算结果 2007-03-17 用 第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论: 1、电荷密度图(charge density); 2、能带结构(Energy Band Structure); 3、态密度(Density of States,简称DOS)。 电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓"差分"是指原子组成体系(团簇)之后电荷的重新分布,"二次"是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。 能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。首先当然可以看出这个体系是金属、半导体还是绝缘体。判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则为半导体或者绝缘体。对于本征半导体,还可以看出是直接能隙还是间接能隙:如果导带的最低点和价带的最高点在同一个k点处,则为直接能隙,否则为间接能隙。在具体工作中,情况要复杂得多,而且各种领域中感兴趣的方面彼此相差很大,分析不可能像上述分析一样直观和普适。不过仍然可以总结出一些经验性的规律来。主要有以下几点: 1)因为目前的计算大多采用超单胞(supercell)的形式,在一个单胞里有几十个原子以及上百个电子,所以得到的能带图往往在远低于费米能级处非常平坦,也非常密集。原则上讲,这个区域的能带并不具备多大的解说/阅读价值。因此,不要被这种现象吓住,一般的工作中,我们主要关心的还是费米能级附近的能带形状。 2)能带的宽窄在能带的分析中占据很重要的位置。能带越宽,也即在能带图中的起伏越大,说明处于这个带中的电子有效质量越小、非局域(non-local)的程度越大、组成这条能带的原子轨道扩展性越强。如果形状近似于抛物线形状,一般而言会被冠以类sp带(sp-like band)之名。反之,一条比较窄的能带表明对应于这条能带的本征态主要是由局域于某个格点的原子轨道组成,这条带上

第一性计算原理

Vasp 我所用第一原理是基于密度泛函(DFT)的从头计算,是以电子密度作为基本变量(HK定理),通过求解kohn-sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质。还有一种是基于hartree-fock自洽计算,通过自洽求解HF方程,获得体系的波函数,求基态性质。KS方程的计算水平达到了HF水平,同时还考虑了电子间的交换关联作用。关于DFT中密度泛函的Function其实是交换关联泛函,包括LDA,GGA,杂化泛函等等。一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案;GGA为广义梯度近似,不仅将电子密度作为交换关联泛函的变量,也考虑了密度的梯度为变量,包括PBE,PE.RPBE等方案。 在处理计算体系中原子的电子态时有两种方法,一种是考虑所有电子叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);另一种是只考虑价电子而把芯电子和原子核构成离子实放在一起考虑即赝势法,一般贋势法是选取一个截断半径,截断半径以内波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且贋势法得到的本征值和全电子法应该相同。贋势的测试标准应是贋势与全电子法计算结果的匹配度,而不是贋势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。 关于Ecut的收敛测试。一般情况下,总能相对于不同Ecut做计算,当截断能增大时总能变化不明显即可。但是在需要考虑体系应力时,还需要对应力进行收敛测试,而且应力相对于截断能要比总能更为苛刻。也就是某个截断能下总能已经收敛了,但应力未必收敛。(力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。计算量的增大和误差的传递导致力收敛慢。) K点也是需要经过测试的。 何时需要考虑自旋?例如BaTiO3中,三个元素分别为=+2,+4,-2价,离子全部为各个轨道满壳层的结构,此时就不必考虑自旋了。对于BaMnO3中,由于Mn+4价时d轨道还有电子但未满,因此需要考虑Mn(4s23d5)的自旋,Ba和O就不必考虑。其实设定自旋就是给定一个原子磁矩的初始值,只在刚开始计算时作为初始值使用。 几何优化包括晶格常数和原子位置的优化,一般情况下也有不优化几何结构直接计算电子结构的,但是对于缺陷形成的计算则往往要优化。 软件大致分为基于平面波的软件,如CASTEP,PWSCF.ABINIT等,计算量大概和体系原子数目的三次方相关;还有基于原子轨道线性组合的软件,比如openmx等,计算量和体系原子数目相关,一般可模拟较多原子数目的体系。 V ASP是使用贋势和平面波基组,进行从头量子力学分子动力学计算的软件包。V ASP中的方法基于有限温度下的局域密度近似(用自由能作为变量)以及对每一MD步骤用有效矩阵对角方案和有效Pulay混合求解瞬时电子基态。这些技术可以避免元氏的Car-Parrinello 方法存在的一切问题,而后者是基于电子、离子运动方程同时积分的方法。离子和电子的相互作用超缓Vanderbilt贋势(US-PP)或投影扩充波(PAW)方法描述。两种技术都可以相当程度地减少过度金属或第一行元素的每个原子所必须的平面波数量。V ASP可以很容易地计算力与张力,用于把原子衰减到其瞬时基态中。!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! V ASP程序亮点: 1、使用PAW方法或超软贋势,因此基组尺寸非常小,描述材料一般需要原子不超过100 个平面波,大多数情况下甚至每原子50个平面波就能得到可靠结果。 2、2. 在平面波程序中,某些部分代码的执行是三次标度。在VASP中,三次标度部分的前 因子足可忽略,导致关于体系尺寸的高效标度。因此可以在实空间求解势的非局域贡献,

第三节第一性原理计算简介

第一性原理计算简介 在物理学中,第一性原理计算或称从头计算是指,基于构建物理学的基础定理,不作任何假设,例如:经验模型和拟合参数,所进行的计算研究。特别地,在凝聚态物理中,指的是运用薛定愕方程在一定的近似情况下,但不包括拟合实验数据所得到的参数和模型,对物质的电子结构进行计算r 从而得到所研究物质的性质的一种研究方法。近些年,随着计算机技术的飞速发展,其运算能力越来越强大,使得人们可以处理更庞大更繁杂的物质结构体系,同时也使得计算物理成为了现代物理学,尤其是在凝聚态物理领域的一个重要分支。众所周知,固体是由相对重且带正电的粒子——原子核,以及相对轻且带负电的粒子——电子聚集在一起构成的。如果有个原子,需要处理的问题是包含有N+ZN(Z 为原子核所含的质子的个数)个粒子的电磁相互作用,是一个多体问题。另一方面,由于处理的是微观粒子的运动,所以需要运用量子力学来描述其基本的运动规律和相互作用。对于该系统,精确的多粒子哈密顿量可以写作: i 2i i i 1122R H M ?=--∑∑ Fuuuuuuuuj 其中位于為处的原子核的质量为M,.,位于巧处的电子的质量为m 一第一项是原子核的动能算符,第二项是电子的动能算符。后三项分别是描述电子与原子核,单个电子与其它电子以及单个原子核与其它原子核之间的库伦相互作用。很显然,直接精确求解(1.64)式几乎是不可能的。为了在合理的近似条件下得到体系的本征值,需要作不同层次的近似。 1.3.1波恩-奥本海默(Bom-Oppenheimer)近似 由于原子核的质量远大于电子质量,所以,原子核的运动速度远小于电子。因此,可以将原子“冻结”在固定的位置,并假设电子在瞬时与原子核是平衡的。或者说,只有电子在这个多体问题中是考察对象,原子核仅仅被当作一个带正电的外源场,相对于电子云是外在独立的。该近似被称为波恩-奥本海默(Bom-Oppenheimer)近似。原来的多体问题被简化成在原子的静电势下,瓜个带负电的粒子的相互作用。波恩-奥本海默认为,原子核不再运动,其动能为零,因此,(1.64)式的第一项被消除,最后一项退化为常数。(1.64)式简化为只含有电子气的动能,电 子与电子之间的相互作用所产生的势能,以及电子在可看作外源的原子核的势中的势能。(1.64)式可重写为: H = f + V + V^, 值得注意的是,(1.65)式中的动能以及电子与电子间的相互作用只取决于所处理的是系统是多电子系统,而不是多质子系统中强的原子内部作用力,并不依赖于特定的多电子系统本身,例如,Br2或者水分子,Cu 还是Fe, bcc-Fe 还是fcc-Fe,等等。因此,前两项是普适的,包含特定系统信息的部分均在第三项中。 1.3.2 密度泛函理论(Density functional theory) 在波恩-奥本海默近似后,该量子多体问题得到了极大的简化,但是,依然很难直接求解。存在许多方法将方程(1.65)进一步近似变为易于处理的形式,历史上非常重要的是Hartree-Fock 方法。该方法在处理原子以及分子时效果很好,因此在量子化学中被广泛使用。但对于处理固体问题,其精度不够高。本文中使用的是更为现代且可能更强大的方法:密度泛函理论。 密度泛函理论的建立可以追溯到1964年Hohenberg 和Kohn[7]提出的两条定理。 1.3. 2.1 Hohenberg-Kohn 定理 两条定理的原始表述如下: 第一定理:多电子体系(原子,分子,固体)基态时的电荷密度pOO 与外源的势之间存在着一一

第一原理计算的一些心得

第一原理计算的一些心得 1)第一性原理其实是包括基于密度泛函的从头算和基于Hartree-Fock自洽计算的从头算,前者以电子密度作为基本变量(霍亨伯格-科洪定理),通过求解Kohn-Sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质;后者则通过自洽求解Hartree-Fock方程,获得体系的波函数,求基态性质; 评述:K-S方程的计算水平达到了H-F水平,同时还考虑了电子间的交换关联作用。 (2)关于DFT中密度泛函的Functional,其实是交换关联泛函 包括LDA,GGA,杂化泛函等等 一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案; GGA为广义梯度近似,不仅将电子密度作为交换关联泛函的变量,也考虑了密度的梯度为变量,包括PBE,PW,RPBE等方案,BL YP泛函也属于GGA; 此外还有一些杂化泛函,B3L YP等。 (3)关于赝势 在处理计算体系中原子的电子态时,有两种方法,一种是考虑所有电子,叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);此外还有一种方法是只考虑价电子,而把芯电子和原子核构成离子实放在一起考虑,即赝势法,一般赝势法是选取一个截断半径,截断半径以内,波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且赝势法得到的能量本征值和全电子法应该相同。 赝势包括模守恒和超软,模守恒较硬,一般需要较大的截断能,超软势则可以用较小的截断能即可。另外,模守恒势的散射特性和全电子相同,因此一般红外,拉曼等光谱的计算需要用模守恒势。 赝势的测试标准应是赝势与全电子法计算结果的匹配度,而不是赝势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。 (4)关于收敛测试 (a)Ecut,也就是截断能,一般情况下,总能相对于不同Ecut做计算,当Ecut增大时总能变化不明显了即可;然而,在需要考虑体系应力时,还需对应力进行收敛测试,而且应力相对于Ecut的收敛要比总能更为苛刻,也就是某个截断能下总能已经收敛了,但应力未必收敛。 (b)K-point,即K网格,一般金属需要较大的K网格,采用超晶胞时可以选用相对较小的K网格,但实际上还是要经过测试。 (5)关于磁性 一般何时考虑自旋呢?举例子,例如BaTiO3中,Ba、Ti和O分别为+2,+4和-2价,离子全部为各个轨道满壳层的结构,就不必考虑自旋了;对于BaMnO3中,由于Mn+3价时d 轨道还有电子,但未满,因此需考虑Mn的自旋,至于Ba和O则不必考虑。其实设定自旋就是给定一个原子磁矩的初始值,只在刚开始计算时作为初始值使用,具体的可参照磁性物理。 (6)关于几何优化 包括很多种了,比如晶格常数和原子位置同时优化,只优化原子位置,只优化晶格常数,还有晶格常数和原子位置分开优化等等。 在PRL一篇文章中见到过只优化原子位置,晶格常数用实验值的例子(PRL 100, 186402 (2008));也见到过晶格常数先优化,之后固定晶格常数优化原子位置的情况;更多的情况则是Full geometry optimization。

第一性原理计算简述

第一性原理计算简述 第一性原理,英文First Principle,是一个计算物理或计算化学专业名词,广义的第一性原理计算指的是一切基于量子力学原理的计算。我们知道物质由分子组成,分子由原子组成,原子由原子核和电子组成。量子力学计算就是根据原子核和电子的相互作用原理去计算分子结构和分子能量(或离子),然后就能计算物质的各种性质。从头算(ab initio)是狭义的第一性原理计算,它是指不使用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。但是这个计算很慢,所以就加入一些经验参数,可以大大加快计算速度,当然也会不可避免的牺牲计算结果精度。那为什么使用“第一性原理”这个字眼呢?据说这是来源于“第一推动力”这个宗教词汇。第一推动力是牛顿创立的,因为牛顿第一定律说明了物质在不受外力的作用下保持静止或匀速直线运动。如果宇宙诞生之初万事万物应该是静止的,后来却都在运动,是怎么动起来的呢?牛顿相信这是由于上帝推了一把,并且牛顿晚年致力于神学研究。现代科学认为宇宙起源于大爆炸,那么大爆炸也是有原因的吧。所有这些说不清的东西,都归结为宇宙“第一推动力”问题。科学不相信上帝,我们不清楚“第一推动力”问题只是因为我们科学知识不完善。第一推动一定由某种原理决定。这个可以成为“第一原理”。爱因斯坦晚年致力与“大统一场理论”研究,也是希望找到统概一切物理定律的“第一原理”,可惜,这是当时科学水平所不能及的。现在也远没有答案。但是为什么称量子力学计算为第一性原理计算?大概是因为这种计算能够从根本上计算出来分子结构和物质的性质,这样的理论很接近于反映宇宙本质的原理,就称为第一原理了。广义的第一原理包括两大类,以Hartree-Fork自洽场计算为基础的ab initio从头算,和密度泛函理论(DFT)计算。也有人主张,ab initio专指从头算,而第一性原理和所谓量子化学计算特指密度泛函理论计算。 根据原子核和电子互相作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法,习惯上称为第一原理。第一性原理通常是跟计算联系在一起的,是指在进行计算的时候除了告诉程序你所使用的原子和他们的位置外,没有其他的实验的,经验的或者半经验的参量,且具有很好的移植性。作为评价事物的依据,第一性原理和经验参数是两个极端。第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。但是就某个特定的问题,第一性原理和经验参数没有明显的界限,必须特别界定。如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。 最早期的从头算主要是一些量子化学的专家在研究。其实这还要从头说起,薛定谔搞出了薛定谔方程。方程写起来虽然简单,而且直观。(动能算符+势能算符)*波函数=能量的本征值*波函数。这是定态波函数,这个方程主要是用来求基态。方程虽然容易写,但是求解起来实在是太难了。有点像经典力学里的混沌现象。虽然每个粒子都服从牛顿三大定律,但是求解是不可能的。首先,求解的难题是电子和核的相互作用项难以分开。还好奥本海默提出了绝热近似,即核的质量和电子的质量不是一个数量级的,所以速度也不是一个数量级的。认为核缓慢的能跟上电子的运动。这样,我们即可将核的方程和电子的方程分开。而在真实的材料中,电子的作用是很大。例如成键主要是指电子和电子的相互作用。因此我们只需要仔细求解电子的薛定谔方程即可。对于N个电子的系统,方程是3N维的。其求解仍然很难。

相关文档
最新文档