第三章_机械分离与固体流态化练习题

第三章_机械分离与固体流态化练习题
第三章_机械分离与固体流态化练习题

化工原理单元练习(三)

(第三章机械分离与固体流态化)

一、填空题

1、描述单个非球形颗粒的形状和大小的主要参数为、。

2、固体颗粒在气体中自由沉降时所受的力有力、力和

力。固体颗粒的自由沉降分为阶段和阶段。

3、沉降速度是指,此速度亦称为速度。

4、在斯托克斯定律区,颗粒的沉降速度与流体黏度的次方成反比,在牛顿定律区,颗粒的沉降速度与流体黏度的次方成反比。

5、降尘室的设计原则是时间大于等于时间。

6、理论上降尘室的生产能力与和有关,而与无关。

7、分离因数的定义式为。如果颗粒在离心力场内作圆周运动,其旋转半径为0.2m,切线速度为20m/s,则其分离因数为。

8、选用旋风分离器时主要依据

是、、。

9、旋风分离器的分割粒径d50是。

10、描述固体颗粒床层特性的主要参数有、、

和。

11、过滤方式主要有、和。

12、板框过滤机由810m m×810m m×25mm的20个框组成,

则其过滤面积为。

13、板框过滤机处理某悬浮液,已知过滤终了时的过滤速

E

d

dV

?

?

?

?

?

θ

为0.04m3/s,现采用横穿洗涤法洗涤10min,洗涤时操作压力差与过滤时相同,洗水和滤液为相同温度的水,则洗涤速率

W

d

dV

?

?

?

?

?

θ

为,所消耗的洗水体积为。

14、用38个635m m×635m m×25mm的框构成的板框过滤机过滤某悬浮液,操作条件下的恒压过滤方程为:

θ4

210

3

06

.0-

?

=

+q

q,式中q的单位为m3/m2,θ的单位为s。则过滤常数K= ,V e= 。

第 1 页共 4 页

15、根据分离因数可将离心机分为、和。

16、流体通过固体颗粒床层时,当气速大于速度、小于速度时,固体颗粒床层为流化床。

17、流化床的两种流化形式为和。

18、流化床的不正常现象有和。

二、选择题

1、颗粒的球形度越(),说明颗粒越接近于球形。

A.接近0 B.接近 1 C.大D.小

2、在重力场中,微小颗粒沉降速度与()无关。

A.颗粒几何形状B.粒子几何尺寸

C.流体与粒子的密度D.流体流速

3、一球形固体颗粒在空气中作自由沉降,若沉降在斯托克斯定律区,空气的温度提高时,颗粒的沉降速度将()。若沉降在牛顿定律区,空气的温度提高时,颗粒的沉降速度将()。忽略温度变化对空气密度的影响。

A.不变B.增加C.减小D.不确定

4、在斯托克斯定律区,颗粒的沉降速度与其直径的()次方成正比。牛顿定律区,颗粒的沉降速度与其直径的()次方成正比。

A.1 B.2 C.0.5 D.0.25

5、一球形固体颗粒在水中作自身沉降,若沉降在斯托克斯定律区,则随着水温升高,颗粒的沉降速度将()。若沉降在牛顿定律区,则随着水温升高,颗粒的沉降速度将()。忽略温度变化对水密度的影响。

A.不变B.增加C.减小D.不确定

6、颗粒在静止的流体中沉降时,在相同的Re t下,颗粒的球形度越小,阻力系数()。

A.越大B.越小C.不变D.不确定

7、降尘室的设计中,应保证气体在降尘室内的流动处于()。

A.层流B.过渡流C.湍流D.无限制

8、含尘气体通过边长为4m,宽为2m,高为1m的降尘室,若颗粒的沉降速度为0.2m/s,则降尘室的生产能力为()。

第 2 页共 4 页

A.4m3/s B.2.4m3/s C.6m3/s D.1.6m3/s

9、旋风分离器的切向进口气速不变,当其圆筒直径减小时,旋风分离器的临界粒径(),离心分离因数()。

A.增加B.减小C.不变D.不确定

10、若过滤和洗涤时操作压力差相同,洗水黏度和滤液黏度相同。板框过滤机,采用横穿洗涤法洗涤滤饼,洗涤速率等于()倍过滤终了时速率。叶滤机采用置换洗涤法,洗涤速率等于()倍过滤终了时速率。

A.1 B.2 C.0.5 D.0.25

11、理想流化床,随着气速的增大,床层高度(),床层压降()。

A.增加B.减小C.不变D.不确定

三、计算题

1、采用降尘室回收常压炉气中所含的密度的3500kg/m3球形固体颗粒。降尘室度面积为10m2。进入降尘室的炉气温度为200℃,200℃下气体密度为0.75kg/m3,黏度为 2.6×10-5Pa·s;降尘室的生产能力为3m3/s。试求:

(1)理论上能完全捕集的最小颗粒直径;

(2)若将气体降温至50℃后再进入降尘室分离,50℃时气体密度为 1.093kg/m3,黏度为 1.96×10-5Pa·s;此时若还保持原有的分离程度,即能完全捕集的最小颗粒直径不变,降尘室的处理能力可以提高多少?

2、一板框过滤机有12个尺寸为635mm×635mm×25mm的框,在1.3×105Pa压力差下过滤120min,得滤液30m3,假设介质阻力可忽略。

(1)增加滤框至20个,得30m3滤液需要多少时间?

(2)提高操作压力差至2.0×105Pa,仍为12个滤框,得30m3滤液需要85min,求此时的过滤常数K和滤饼的压缩性指数。

3、采用板框压滤机过滤某种水悬浮液,压滤机有10个尺

第 3 页共 4 页

寸为810mm×810mm×42mm的框,在过滤过程中,过滤10min,

得滤液1.3m3,再过滤10min,又得滤液量为0.7m3,已知滤浆

中固相体积分为5%,过滤所形成的滤饼的空隙率为45%,试求:(1)该条件下的恒压过滤方程式;

(2)滤框充满滤饼时所需过滤时间;

(3)若过滤后用总滤液量10%的清水洗涤滤饼,每批操

作的辅助时间为20min,求该过滤机的生产能力。

4、用板框过滤机处理某悬浮液,已知过滤机有38个尺寸

为635mm×635mm×25mm的框,操作压力差200kPa,ν=0.1。

操作条件下滤饼不可压缩,介质阻力可忽略,滤饼不需洗涤。

过滤15min后,得滤液3m3。

(1)若过滤机的生产能力为5m3/h,求每个生产周期所需

的辅助时间是多少?

(2)若操作压力差降为100kPa,每个生产周期所需的辅

助时间不变,需将过滤面积增加到多少才能维持生产能力不

变?

第 4 页共 4 页

机械设计第三章习题

1.凸轮机构就是一种低副机构。 2.凸轮机构中,凸轮得基圆半径越大,说明从动件得位移越大。 3.在运动规律一定时,凸轮得基圆半径越大,从动件就越不容易发生 自锁。 4.凸轮机构采用等加速等减速运动规律时,由于在起始点加速度出现 有限值得突变,因而产生惯性力得突变,结果引起刚性冲击。 5.当凸轮从动件采用等速运动规律时,机构自始至终工作平稳,不会 产生刚性冲击。 6.凸轮得基圆半径就就是凸轮理论廓线上得最小曲率半径。 7.滚子从动件盘型凸轮得实际轮廓曲线就是理论轮廓得等距曲线,因 此实际轮廓上各点得向径就等于理论轮廓上各点得向径减去滚子半径。 8.一般来说,在凸轮机构中,尖顶从动件可适应任何运动规律而不致 发生运动失真。 9.平底移动从动件盘型凸轮机构得压力角恒等于一个常量。 10.为避免从动件运动失真,平底从动件凸轮轮廓不能内凹。 11.凸轮机构偏距圆半径大小等于凸轮得回转中心到垂直距离。 12.凸轮得理论廓线与实际廓线两者之间为曲线,她们之间得径向距离 为得半径。 13.理论廓线相同而实际廓线不同得两个对心移动滚子从动件盘型凸 轮机构,其从动件得运动规律同。 14.凸轮机构得压力角若超过许用值,可采取增大得半径与(或)改变从

动件得得措施减小推程压力角。 15.与连杆机构相比,凸轮机构最大得缺点就是。 A 惯性力难以平衡B点、线接触,易磨损 C 设计较为复杂D 不能实现间歇运动 16.与其她机构相比,凸轮机构最大得优点就是。 A 可实现各种预期得运动规律B便于润滑 C制造方便,易获得较高精度D从动件行程可较大 17.凸轮机构中,若从动件按等速运动规律运动,则最大加速度理论上 为。 A 无穷大 B 0 C有限值D不定值 18.在凸轮机构中,下述运动规律既不产生柔性冲击,也不产生刚性冲 击,可用于高速场合。 A 等速 B 等加速等减速 C 摆线D简谐 19.为避免运动失真,并减小接触应力与磨损,滚子半径r r与理论廓线上 得最小曲率半径ρmin应满足。 A r r <ρmin B r r >ρmin C r r =ρmin D不一定 20.凸轮机构压力角对凸轮尺寸得影响反映在:如果机构压力角减小, 其她参数不变时,基圆将。 A 增大B减小C不变D不一定 21.若要盘型凸轮机构得从动件在某段时间内停止不动,对应得凸轮轮 廓应就是。 A 一段直线B一段圆弧C 一段抛物线D以凸轮转动中心为圆心

机械工程材料 第三章 铁碳合金

机械工程材料课程第三章铁碳合金 发布日期:[13-02-10 16:06:04] 浏览人次:[2517] 机械工程材料课程第三章铁碳合金 发布日期:[13-02-10 16:06:04] 浏览人次:[2520] 第四章铁碳合金 钢铁材料具有一系列优良的机械性能和工艺性能,因此在工业上得到了广泛的应用。钢铁材料的性能是由它的化学成分和内部组织结构所决定的。而组成钢铁材料的两个最基本的组元是铁和碳,所以研究铁碳合金有非常重要的意义。 通过铁碳合金相图的学习,来认识铁和碳的相互作用,从而了解铁碳合金成分、组织与性能三者之间的关系,以便正确地应用铁碳合金相图的知识,合理的选用钢铁材料和制定各种热加工工艺。 第一节铁碳合金的相组成 一、工业纯铁 一般来讲铁从来不会是纯的,其中总会有杂质。工业纯铁中常含有0.10~0.20%的杂质。这些杂质由碳、硅、锰、硫、磷、氮、氧等十几种元素所构成,其中碳约占0.006~0.02%左右。 工业纯铁的显微组织是由许多不规则的多边形小晶粒所组成。纯铁具有“同素异构”转变,即在固态下加热或冷却时,其内部结构发生变化,从一种晶格转变为另一种晶格的变化。如图4-1所示。 纯铁在室温下的晶体结构是体心立方晶格,称之为α-Fe,它的晶格常数a=2.86。α-Fe具有良好的塑性,同时具有良好的导磁性能。当温度升到770℃(居里点)稍上时,其晶体结构没有变化,仍是体心立方晶格,

但铁已失去了磁性,这种铁称之为β-Fe;由于α-Fe→β-Fe时,晶格未发生变化,故β铁不属于同素异构转变,而称为磁性转变。 当温度升高到912℃时,纯铁内部的晶体结构发生了变化,由体心立方晶格转变为面心立方晶格,称之为γ-Fe,,其晶格常数a=3.64,它存在于912~1394℃之间。由于γ-Fe和α-Fe的晶体结构不同,性能也不同。γ-Fe的塑性比α-Fe还要好,γ-Fe无磁性;γ-Fe的溶碳能力也大。 当温度继续升到1394℃稍上时,铁的晶格又由面心立方转变为体心立方,其晶格常数a=2.93,无磁性,它存在于1394~1538℃之间,这种铁称之为δ-Fe。当温度超过1538℃时,纯铁熔化成铁水。 由上可知,纯铁随温度的变化;发生了两次同素异构转变。纯铁的同素异构转变也遵循结晶的一般规律,即在旧相的晶界上形核,然后逐渐长大,直至转变完成。

机械设计练习题

第三章(1) 一般参数的闭式硬齿面齿轮传动的主要失效形式是。 A 齿面点蚀 B 轮齿折断 C 齿面磨损 D 齿面胶合 (2) 在闭式齿轮传动中,高速重载齿轮传动的主要失效形式是。 A 轮齿疲劳折断 B 齿面疲劳点蚀 C 齿面胶合 D 齿面磨粒磨损 E 齿面塑性变形 (3) 对齿轮轮齿材料性能的基本要求是。 A 齿面要硬,齿心要韧 B 齿面要硬,齿心要脆 C 齿面要软,齿心要脆 D 齿面要软,齿心要韧 (4) 斜齿轮和锥齿轮强度计算中的齿形系数和应力修正系数按查图。 A 实际齿数 B 当量齿数 C 不发生根切的最少齿数 (5) 一减速齿轮传动,主动轮1用45钢调质,从动轮2用45钢正火,则它们齿面接触应力的关系是。 A σH1 < σH2 B σH1 = σH2 C σH1 > σH2 D 可能相同,也可能不同 (6) 一对标准圆柱齿轮传动,已知z1=20,z2=50,则它们的齿根弯曲应力是。 A σF1 < σF2 B σF1 = σF2 C σF1 > σF2 D 可能相同,也可能不同 (7) 提高齿轮的抗点蚀能力,不能采用的方法。 A 采用闭式传动 B 加大传动的中心距 C 提高齿面的硬度 D 减小齿轮的齿数,增大齿轮的模数 (8) 在齿轮传动中,为了减小动载荷系数KV,可采取的措施是。 A 提高齿轮的制造精度 B 减小齿轮的平均单位载荷 C 减小外加载荷的变化幅度 D 降低齿轮的圆周速度 (9) 直齿锥齿轮传动的强度计算方法是以的当量圆柱齿轮为计算基础。 A 小端 B 大端 C 齿宽中点处 (10) 直齿圆柱齿轮设计中,若中心距不变,增大模数m,则可以。 A 提高齿面的接触强度 B 提高轮齿的弯曲强度 C 弯曲与接触强度均不变 D 弯曲与接触强度均可提高 (11) 一对相互啮合的圆柱齿轮,在确定轮齿宽度时,通常使小齿轮比大齿轮宽5~10mm,其主要原因是。 A 为使小齿轮强度比大齿轮大些 B 为使两齿轮强度大致相等 C 为传动平稳,提高效率 D 为了便于安装,保证接触线承载宽度 (12) 闭式软齿面齿轮传动的设计方法为。 A 按齿根弯曲疲劳强度设计,然后校核齿面接触疲劳强度 B 按齿面接触疲劳强度设计,然后校核齿根弯曲疲劳强度 C 按齿面磨损进行设计 D 按齿面胶合进行设计 (13) 下列措施中,不利于提高齿轮轮齿抗疲劳折断能力。 A 减轻加工损伤 B 减小齿面粗糙度值 C 表面强化处理 D 减小齿根过渡圆角半径 (1) 钢制齿轮,由于渗碳淬火后热处理变形大,一般须进过加工。 (2) 对于开式齿轮传动,虽然主要实效形式是,但目前尚无成熟可靠的计算方法,目前仅以作为设计准则。这时影响齿轮强度的主要几何参数是。 (3) 闭式软齿面齿轮传动中,齿面疲劳点蚀通常出现在处,提高材料可以增强轮齿抗点蚀的能力。 (4) 在齿轮传动中,若一对齿轮采用软齿面,则小齿轮材料的硬度比大齿轮的硬度高HBS。 (5) 在斜齿圆柱齿轮设计中,应取模数为标准值,而直齿锥齿轮设计中,应取模数

机械设计考前复习题------第三章例题

第三章机械零件的强度 题:(中南大学2009年机械设计试题)已知某变应力的循环特征系数为,平均应力。求、和,并画出应力随时间的变化曲线。 题:(吉林工业大学1997年考研试题)图示为40钢的极限应力线图。已知用此材料制成的转动心轴,工作时危险截面最大弯曲应力σb=110 N/mm2 ,综合影响系数Kσ= ,求轴的计算安全系数nca 。 解题要点: ⑴转动心轴只承受弯矩,其应力循环特性r =﹣1 ,即对称循环变应力; ⑵题中所给的是材料的极限应力线图,零件的极限应力线图是将材料极限应力线图中的疲劳极限应力线的纵坐标值除以综合影响系数,下移后得到的疲劳极限应力线。 解: σ-1e =σ-1 / Kσ= 280/ = N/mm2 , nca =σ’max /σmax =110 ≈ 题:(中南大学1998年考研试题)在图示零件极限应力图上,C和D为斜齿轮轴上两 种应力工作点。试在图中标出对应的极限应力点,并说明分别会出现什么形式的破坏 解题要点: ⑴斜齿轮轴上既承受弯矩又承受扭矩,为转轴,所以轴上各点应力循环特性r =常数,C、D 两点对应的极限应力点分别是OC、OD与极限应力线的交点C’、D’。 ⑵r =常数时,OAB区域内工作应力点的失效形式为疲劳失效,OBE区域内工作应力点的失效形式为屈服失效,其极限应力均为σs 。 解: 如图示C点对应的极限应力点为C’,D点对应的极限应力点为D’。 C点会出现屈服失效(塑性变形),D点会出现疲劳失效。 题:(天津大学1999年考研试题)某钢制零件材料性能为σ-1 =270MPa , σs =350 MPa , σo=450 MPa ,受单向稳定循环变应力,危险剖面的综合影响系数Kσ= ,寿命系数KN =1. ①若工作应力按σm =270MPa=常数的规律变化,问该零件首先发生疲劳破坏,还是塑性变形 ②若工作应力按循环特性r =常数的规律变化,问r在什么范围内零件首先发生疲劳破坏(图解法、解析法均可) 解: ①σ-1e =σ-1 / Kσ= 270/ =120 MPa , σo / 2Kσ=450/2*=100 MPa ;做该零件的极限应力线图。 σm =270MPa=常数时,应力作用点在NN’线上,与极限应力图交与CG线上,所以该零件首先发生疲劳破坏。 ②r =常数时,工作应力点在OGA范围内,即:G点σa/σm =(1-r) / (1+r)≈;所以 r<时首先发生疲劳破坏。 题:(大连理工大学2000年考研试题)某零件材料性能为σ-1 =500MPa , σs =850 MPa , σo=800 MPa ,综合影响系数Kσ= 2,零件工作时的最大应力σmax = 300 MPa ,最小应力 σmin = -50 MPa ,加载方式为r =常数。

第三章机械分离和固体流态化

第三章机械分离和固体流态化 具有不同物理性质(如密度差别)的分散物质和连续介质所组成的物系称为非均相混合物或非均相物系。 颗粒相对于流体(静止或运动)运动的过程称为沉降分离。流体相对于固体颗粒床层运动而实现固液分离的过程称为过滤。 工业上分离非均相混合物的目的是:1、回收有价值的分散物质。2、净化分散介质以满足后继生产工业的要求。3、环境保护和安全生产。 第一节颗粒及颗粒床层的特性 ;表 单一的颗粒:1、球形颗粒体积: 面积:;比表面积: 2、非球形颗粒:体积当量直径 形状系数(又称球形度): ,任何非球形颗粒 的形状系数皆小于1。 不同粒径范围内所含粒子的个数或质量,即粒径分

布。 当使用某一号筛子时,通过筛孔的颗粒量称为筛过量,截留于筛面上的颗粒量则称为筛余量。称取各号筛面上的颗粒筛余量即得筛分分析的基础数据。 颗粒的平均直径:最常用的是平均比表面积直径: 由颗粒群堆积成的床层疏密程度可用空隙率来表示: 床层的比表面积: 壁面附近床层的空隙率总是大于床层内部的,较多的流体必然趋向近壁处流过,使床层截面上流体分布不均匀,这种现象称为壁效应。 第二节沉降过程 沉降操作是指在某种力场中利用分散相和连续相 之间的密度差异,使之发生相对运动而实现分离的操作过程。实现沉降操作的作用力可以是重力,也可以是惯性离心力。因此,沉降过程有重力沉降和离心沉降两种方式。静止流体中颗粒的沉降过程可分为两个

阶段,起初为加速段而后为等速段。 滞流区或斯托克斯定律区(10-4

《机械工程材料》习题集参考答案(第三章-第六章)

第三章 金属的塑性变形与再结晶 三、填空题 1、 滑移、孪生;滑移 2、 原子密度最大 3、 {110}、6、<111>、2、12; {111}、4、<110>、3、12;面心立方、滑移方向对塑性变形 的作用比滑移面更大些 4、 λφστcos cos s k =、小、软 5、 晶界、相邻晶粒、高 6、 增大、增加、下降、中间退火 7、 变形织构 8、 回复、再结晶、晶粒长大 9、 回复、250~300 10、去应力退火 11、中间、消除加工硬化 12、再结晶温度、在再结晶温度以下、在再结晶温度以上 13、偏析、杂质、夹杂物、热加工纤维组织(流线) 14、大 四、选择题 1、C 2、B 3、A 4、B 5、B 6、C 7、B 8、C 9、B 10、A 11、C 12、A 13、B 14、A C 五、判断题 1、√ 2、× 3、× 4、× 5、√ 6、× 7、× 8、× 9、× 10、√ 11、√ 12、× 13、× 14、√ 15、√ 16、× 第四章 合金的相结构与二元合金相图 三、填空题 1、 固溶体、金属化合物 2、 溶剂、溶质、溶剂 3、 溶质、溶剂、间隙固溶体、置换固溶体 4、 提高、增强、降低 5、 正常价化合物、电子化合物、间隙化合物 6、 平衡、状态、平衡 7、 合金、相界(液相和固相) 8、 差、树枝、差、多、少 9、 晶体结构

10、三、水平 11、复相组织、数量、形态、大小 12、共晶、包晶、共析 13、固溶强化、晶界强化、形变强化 14、Ⅲ、Ⅱ、Ⅰ、Ⅲ、Ⅱ、Ⅰ 四、选择题 1、B 2、C 3、A 4、A B 5、A 6、C 7、A 8、B 9、A 五、判断题 1、× 2、√ 3、× 4、√ 5、× 6、√ 7、× 8、× 9、√10、×11、×12、×13、× 第五章铁碳合金 三、填空题 1、δ-Fe、γ-Fe、α-Fe、体心立方、面心立方、体心立方 2、F、Fe3C、2 3、五、L、δ、A、F、Fe3C 4、三,HJB、ECF、PSK、包晶转变、共晶转变、共析转变 5、<0.0218%、F+ Fe3CⅢ 6、4.3%、40.4%、47.8%、11.8% 7、0.471% 8、A、热塑、塑性 9、共晶、莱氏体、铸造 10、88.78%、11.22% 11、1.3% 12、PSK、GS、ES 13、碳、α-Fe、体心 14、Fe3CⅡ、珠光体(P) 15、铁素体、珠光体 16、Mn、Si、S、P、O、H、N;P,S;P,S 17、杂质P、S含量 18、<0.25%、0.25~0.6%、>0.6% 四、选择题 1、A 2、C 3、B 4、C 5、A 6、C 7、C 8、B 9、B 10、B 11、A 12、C 13、C 14、C 五、判断题 1、√ 2、√ 3、√ 4、× 5、× 6、√ 7、√ 8、× 9、×10、×

机械设计课后习题答案完整版

机械设计课后习题答案 3-1某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数60105?=N ,9=m ,试求循环次数N 分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。 [解] MPa 6.373107105180936910111=???==--N N σσN MPa 3.324105.2105180946920112=???==--N N σσN MPa 0.227102.61051809569 30113=???==--N N σσN 3-2已知材料的力学性能为MPa 260=s σ,MPa 1701=-σ,2.0=σ Φ,试绘制此 材料的简化的等寿命寿命曲线。 [解] )170,0('A )0,260(C 00 12σσσΦσ-=- σΦσσ+= ∴-1210 MPa 33.2832 .0117021210=+?=+=∴-σΦσσ 得)233.283,233.283(D ',即)67.141,67.141(D ' 根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示

3-4 圆轴轴肩处的尺寸为:D=72mm,d=62mm,r=3mm。如用题3-2中的材料,设其强度极限σB=420MPa,精车,弯曲,βq=1,试绘制此零件的简化等寿命疲劳曲线。 [解] 因2.1 45 54 = = d D,067 .0 45 3 = = d r,查附表3-2,插值得88.1= α σ ,查附 图3-1得78.0≈ σ q,将所查值代入公式,即 ()()69.1 1 88 .1 78 .0 1 1 1 k= - ? + = - α + = σ σ σ q 查附图3-2,得75.0= σ ε;按精车加工工艺,查附图3-4,得91.0=σβ, 已知1= q β,则 35 .2 1 1 1 91 .0 1 75 .0 69 .1 1 1 1 k = ?? ? ? ? ? - + = ?? ? ? ? ? - + = q σ σ σ σβ β ε K ()()() 35 .2 67 . 141 , 67 . 141 ,0, 260 , 35 .2 170 ,0D C A ∴ 根据()()() 29 . 60 , 67 . 141 , 0, 260 , 34 . 72 ,0D C A按比例绘出该零件的极限应力线图如下图 3-5 如题3-4中危险截面上的平均应力MPa 20 m = σ,应力幅MPa 20 a = σ,试分别按①C r=②C σ= m ,求出该截面的计算安全系数 ca S。 [解] 由题3-4可知35.2 ,2.0 MPa, 260 MPa, 170 s 1- = = = = σ σ K Φ σ σ

机械工程材料课后习题参考答案

机械工程材料 思考题参考答案 第一章金属的晶体结构与结晶 1.解释下列名词 点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体, 过冷度,自发形核,非自发形核,变质处理,变质剂。 答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。 线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。如位错。 面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。如晶界和亚晶界。 亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。 亚晶界:两相邻亚晶粒间的边界称为亚晶界。 刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。 滑移部分与未滑移部分的交界线即为位错线。如果相对滑移的结果上半部 分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃 口,故称“刃型位错”。 单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。 多晶体:由多种晶粒组成的晶体结构称为“多晶体”。

过冷度:实际结晶温度与理论结晶温度之差称为过冷度。 自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。 非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。 变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率, 细化晶粒,这种处理方法即为变质处理。 变质剂:在浇注前所加入的难熔杂质称为变质剂。 2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构? 答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格; α-Fe、Cr、V属于体心立方晶格; γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格; Mg、Zn属于密排六方晶格; 3.配位数和致密度可以用来说明哪些问题? 答:用来说明晶体中原子排列的紧密程度。晶体中配位数和致密度越大,则晶体中原子排列越紧密。 4.晶面指数和晶向指数有什么不同? 答:晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[] uvw;晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为() hkl。 5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响? 答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增

第三章 机械分离与固体流态化练习题

化工原理单元练习(三) (第三章机械分离与固体流态化) 班级学号姓名 一、填空题 1、描述单个非球形颗粒的形状和大小的主要参数为、。 2、固体颗粒在气体中自由沉降时所受的力有力、力和 力。固体颗粒的自由沉降分为阶段和阶段。 3、沉降速度是指,此速度亦称为速度。 4、在斯托克斯定律区,颗粒的沉降速度与流体黏度的次方成反比,在牛顿定律区,颗粒的沉降速度与流体黏度的次方成反比。 5、降尘室的设计原则是时间大于等于时间。 6、理论上降尘室的生产能力与和有关,而与无关。 7、分离因数的定义式为。如果颗粒在离心力场内作圆周运动,其旋转半径为0.2m,切线速度为20m/s,则其分离因数为。 8、选用旋风分离器时主要依据是、、。 9、旋风分离器的分割粒径d50是。 10、描述固体颗粒床层特性的主要参数有、、 和。 11、过滤方式主要有、和。 12、板框过滤机由810m m×810m m×25mm的20个框组成,则其过滤面积为。 13、板框过滤机处理某悬浮液,已知过滤终了时的过滤速率 E d dV ? ? ? ? ? θ 为0.04m3/s,现采用横穿洗涤法洗涤10min,洗涤时操作压力差与过滤时相同,洗水和滤液为相同温度的水,则洗涤速率 W d dV ? ? ? ? ? θ 为,所消耗的洗水体积为。 14、用38个635m m×635m m×25mm的框构成的板框过滤机过滤某悬浮液,操作条件下的恒压过滤方程为:θ4 210 3 06 .0- ? = +q q,式中q的单位为m3/m2,θ的单位为s。则过滤常数K= ,V e= 。 15、用叶滤机过滤固含量10%(体积分数)的某悬浮液,已知形成的滤饼的空隙率为50%,则滤饼体积与滤液体积之比υ= 。 16、根据分离因数可将离心机分为、和。 17、流体通过固体颗粒床层时,当气速大于速度、小于速度时,固体颗粒床层为流化床。 18、流化床的两种流化形式为和。 19、流化床的不正常现象有和。 20、气力输送按气流压力分类,可分为和。按气流中固相浓度分类,可分为和。 二、选择题 1、颗粒的球形度越(),说明颗粒越接近于球形。 A.接近0 B.接近1 C.大D.小 2、在重力场中,微小颗粒沉降速度与()无关。 A.颗粒几何形状B.粒子几何尺寸 C.流体与粒子的密度D.流体流速 3、一球形固体颗粒在空气中作自由沉降,若沉降在斯托克斯定律区,空气的温度提高时,颗粒的沉降速度将()。若沉降在牛顿定律区,空气的温度提高时,颗粒的沉降速度将()。忽略温度变化对空气密度的影响。 A.不变B.增加C.减小D.不确定 4、在斯托克斯定律区,颗粒的沉降速度与其直径的()次方成正比。

机械设计课后习题答案-徐锦康-top

机械设计答案 第1章机械设计概论 1-2 设计机器时应满足哪些基本要求? 答:1、功能要求 满足机器预定的工作要求,如机器工作部分的运动形式、速度、运动精度和平稳性、需要传递的功率,以及某些使用上的特殊要求(如高温、防潮等)。 2、安全可靠性要求 (1)使整个技术系统和零件在规定的外载荷和规定的工作时间内,能正常工作而不发生断裂、过度变形、过度磨损、不丧失稳定性。 (2)能实现对操作人员的防护,保证人身安全和身体健康。 (3)对于技术系统的周围环境和人不致造成危害和污染,同时要保证机器对环境的适应性。 3、经济性 在产品整个设计周期中,必须把产品设计、销售及制造三方面作为一个系统工程来考虑,用价值工程理论指导产品设计,正确使用材料,采用合理的结构尺寸和工艺,以降低产品的成本。设计机械系统和零部件时,应尽可能标准化、通用化、系列化,以提高设计质量、降低制造成本。 4、其他要求 机械系统外形美观,便于操作和维修。此外还必须考虑有些机械由于工作环境和要求不同,而对设计提出某些特殊要求,如食品卫生条件、耐腐蚀、高精度要求等。 1-4 机械零件的计算准则与失效形式有什么关系?常用的设计准则有哪些?它们各针对什么失效形式? 答:在设计中,应保证所设计的机械零件在正常工作中不发生任何失效。为此对于每种失效形式都制定了防止这种失效应满足的条件,这样的条件就是所谓的工作能力计算准则。它是设计机械零件的理论依据。 常用的设计准则有: 1、强度准则:确保零件不发生断裂破坏或过大的塑性变形,是最基本的设计准则。 2、刚度准则:确保零件不发生过大的弹性变形。 3、寿命准则:通常与零件的疲劳、磨损、腐蚀相关。 4、振动稳定性准则:高速运转机械的设计应注重此项准则。

机械基础第三章

机械基础第三章 1、判断题(本大题共99小题,总计99分) 1、(1分)与横截面垂直的应力称为正应力。() 2、(1分)长度和截面积相同,材料不同的两直杆受相同的轴向外力作用,则正应力也必然相同。() 3、(1分)杆件受轴向拉(压)时,平行于杆件轴线的纵向截面上的正应力为零。() 4、(1分)若两个轴向拉压杆的材料不同,但截面积相同,受相同的轴向力,则这两个拉压杆横截面上的应力也不相同。() 5、(1分)使用截面法求得的杆件轴力,与杆件截面积的大小无关。() 6、(1分)杆件的不同部位作用着若干个轴向外力,如果从杆件的不同部位截开时所求得的轴力都相同。() 7、(1分)轴向拉(压)时,杆件的内力的合力必与杆件的轴线重合。() 8、(1分)轴力是因外力而产生的,故轴力就是外力。() 9、(1分)“截面法”表明,只要将受力构件切断,即可观察到断面上的内力。() 10、(1分)弹性模量E表示材料在拉压时抵抗弹性变形的能力。() 11、(1分)钢的抗拉性能优于混凝土。()

12、(1分)在进行强度计算时,可以将屈服极限 作用塑性材料的许用力应力。() 13、(1分)1kN/mm2=1Mpa。() 14、(1分)工程中通常只允许各种构件受载后产生弹性变形。() 15、(1分)许用力是杆件安全工作应力的最大值。() 16、(1分)所有塑性材料的拉伸试验都有屈服现象。() 17、(1分)直径和长度相同而材料不同的两根轴,在相同扭矩作用下它们的最大剪应力不相同。() 18、(1分)材料力学中的杆件是变形体,而不是刚体。() 19、(1分)构件所受的外力与内力均可用截面法求得。() 20、(1分)应力表示了杆件所受内力的强弱程度。() 21、(1分)构件的工作应力可以和其极限应力相等。() 22、(1分)在强度计算中,只要工作应力不超过许用应力,构件就是安全。() 23、(1分)应力正负的规定是:当应力为压应力时为正() 24、(1分)在材料力学中各种复杂的变形都是由基本变形组合而成。() 25、(1分)构件的破坏是指构件断裂或产生过大的塑性变形。() 26、(1分)强度是指构件在外力作用下抵抗破坏的能力。()

机械设计第三章习题

1.凸轮机构就是一种低副机构。() 2.凸轮机构中,凸轮的基圆半径越大,说明从动件的位移越大。() 3.在运动规律一定时,凸轮的基圆半径越大,从动件就越不容易发生 自锁。() 4.凸轮机构采用等加速等减速运动规律时,由于在起始点加速度出现 有限值的突变,因而产生惯性力的突变,结果引起刚性冲击。() 5.当凸轮从动件采用等速运动规律时,机构自始至终工作平稳,不会 产生刚性冲击。() 6.凸轮的基圆半径就就是凸轮理论廓线上的最小曲率半径。() 7.滚子从动件盘型凸轮的实际轮廓曲线就是理论轮廓的等距曲线,因 此实际轮廓上各点的向径就等于理论轮廓上各点的向径减去滚子半径。() 8.一般来说,在凸轮机构中,尖顶从动件可适应任何运动规律而不致 发生运动失真。() 9.平底移动从动件盘型凸轮机构的压力角恒等于一个常量。() 10.为避免从动件运动失真,平底从动件凸轮轮廓不能内凹。() 11.凸轮机构偏距圆半径大小等于凸轮的回转中心到()垂直距离。 12.凸轮的理论廓线与实际廓线两者之间为()曲线,她们之间的径向距 离为()的半径。 13.理论廓线相同而实际廓线不同的两个对心移动滚子从动件盘型凸 轮机构,其从动件的运动规律()同。 14.凸轮机构的压力角若超过许用值,可采取增大()的半径与(或)改变

从动件的()的措施减小推程压力角。 15.与连杆机构相比,凸轮机构最大的缺点就是()。 A 惯性力难以平衡B点、线接触,易磨损 C 设计较为复杂D 不能实现间歇运动 16.与其她机构相比,凸轮机构最大的优点就是()。 A 可实现各种预期的运动规律B便于润滑 C制造方便,易获得较高精度D从动件行程可较大 17.凸轮机构中,若从动件按等速运动规律运动,则最大加速度理论上 为()。 A 无穷大 B 0 C有限值D不定值 18.在凸轮机构中,下述()运动规律既不产生柔性冲击,也不产生刚性冲 击,可用于高速场合。 A 等速 B 等加速等减速 C 摆线D简谐 19.为避免运动失真,并减小接触应力与磨损,滚子半径r r与理论廓线上 的最小曲率半径ρmin应满足()。 A r r <ρmin B r r >ρmin C r r =ρmin D不一定 20.凸轮机构压力角对凸轮尺寸的影响反映在:如果机构压力角减小, 其她参数不变时,基圆将()。 A 增大B减小C不变D不一定 21.若要盘型凸轮机构的从动件在某段时间内停止不动,对应的凸轮轮 廓应就是()。 A 一段直线B一段圆弧C 一段抛物线D以凸轮转动中心为圆心

机械设计课后习题答案

第三章 机械零件的强度p45 习题答案 3-1某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数6 0105?=N ,9=m ,试求循环次数N 分别为 7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。 [解] MPa 6.37310710 518093 6 9 10111=???==--N N σσN 3-2已知材料的力学性能为MPa 260=s σ,MPa 1701=-σ,2.0=σΦ,试绘制此材料的简化的等寿命寿命曲线。 [解] )170,0(' A )0,260(C 得)2 33.283,233.283(D ',即)67.141,67.141(D ' 根据点)170,0('A ,)0,260(C ,)67.141,67.141(D ' 按比例绘制该材料的极限应力图如下图所示 3-4 圆轴轴肩处的尺寸为:D =72mm ,d =62mm ,r =3mm 。如用题3-2中的材料,设其强度极限σB =420MPa ,精车,弯曲,βq =1,试绘制此零件的简化等寿命疲劳曲线。 [解] 因 2.14554==d D ,067.045 3==d r ,查附表3-2,插值得88.1=ασ,查附图3-1得78.0≈σq ,将所查值代入公式,即 查附图3-2,得75.0=σε;按精车加工工艺,查附图3-4,得91.0=σβ,已知1=q β,则 根据()()()29.60,67.141,0,260,34.72,0D C A 按比例绘出该零件的极限应力线图如下图 3-5 如题3-4中危险截面上的平均应力MPa 20m =σ,应力幅MPa 20a =σ,试分别按①C r =②C σ=m ,求出该截面的计算安全系数ca S 。 [解] 由题3-4可知35.2,2.0MPa,260MPa,170s 1-====σσK Φσσ (1)C r = 工作应力点在疲劳强度区,根据变应力的循环特性不变公式,其计算安全系数 (2)C σ=m 工作应力点在疲劳强度区,根据变应力的平均应力不变公式,其计算安全系数

第三章-颗粒流体力学与机械分离习题Word版

1)有两种固体颗粒,一种是边长为a 的正立方体,另一种是正圆柱体,其高度为h ,圆柱直径为d 。试分别写出其等体积当量直径 和形状系数 的计算式。 d h dh dh d d h d h d d h d d b a a a d a d a d a v e v e v e v e v e +=?+==∴==?= ?= ?=∴=2)18()/(2])2/3[(] )2/3[()4/)6/()() 6/(6/6(6) /6()6/()(][3 1 22 32 23 1 2,23,3 1 2 2 32 2 2,3 1 ,3 3,πππψππππππψππ()解 2)某内径为0.10m 的圆筒形容器堆积着某固体颗粒,颗粒是高度h=5mm ,直径d=3mm 的正圆柱,床层高度为0.80m ,床层空隙率 、若以1atm ,25℃的空气以0.25 空速通过 床层,试估算气体压降。 [解] 圆柱体:Pa d u d u L P s Pa m kg C atm mm d h dh d d h dh h d d v e v e m v e v e 7.177]10 46.325.0185.152.052.0175.1)1046.3(25.010835.152.0)52.01(150[80.0] )1(75.1)(1(150[10835.1,/185.1:)25,146.3)352/(533)2/(3) 2() 18(,])2/3[(3 2 323532,2 22,32 530,3 231 2 ,=???-?+????-?=???-?+??-?=???===+???=+=?∴+==----ψρεεψεμεμρψψ)按欧根公式计算压降: 空气( 3)拟用分子筛固体床吸附氯气中微量水份。现以常压下20℃空气测定床层水力特性,得两组数据如下: 空塔气速 0.2 , 床层压降 14.28mmH 2O 0.6 93.94mmH 2O 试估计25℃、绝对压强1.35atm 的氯气以空塔气速0.40 通过此床层的压降。(含微量水 份氯气的物性按纯氯气计)氯气 , [解]常压下, ,/20.1203 0m Kg C =ρ空气:.018.0cP =μ 欧根公式可化简为

(完整版)机械设计课后习题答案

第一章绪论 1-2 现代机械系统由哪些子系统组成,各子系统具有什么功能? 答:组成子系统及其功能如下: (1)驱动系统其功能是向机械提供运动和动力。 (2)传动系统其功能是将驱动系统的动力变换并传递给执行机构系统。 (3)执行系统其功能是利用机械能来改变左右对象的性质、状态、形状或位置,或对作业对象进行检测、度量等,按预定规律运动,进行生产或达到其他预定要 求。 (4)控制和信息处理系统其功能是控制驱动系统、传动系统、执行系统各部分协调有序地工作,并准确可靠地完成整个机械系统功能。 第二章机械设计基础知识 2-2 什么是机械零件的失效?它主要表现在哪些方面? 答:(1)断裂失效主要表现在零件在受拉、压、弯、剪、扭等外载荷作用时,由于某一危险截面的应力超过零件的强度极限发生的断裂,如螺栓的断裂、齿轮轮齿根部的折断等。 (2)变形失效主要表现在作用在零件上的应力超过了材料的屈服极限,零件产生塑性变形。 (3)表面损伤失效主要表现在零件表面的腐蚀、磨损和接触疲劳。 2-4 解释名词:静载荷、变载荷、名义载荷、计算载荷、静应力、变应力、接触应力。答:静载荷大小、位置、方向都不变或变化缓慢的载荷。 变载荷大小、位置、方向随时间变化的载荷。 名义载荷在理想的平稳工作条件下作用在零件上的载荷。 计算载荷计算载荷就是载荷系数K和名义载荷的乘积。 静应力不随时间变化或随时间变化很小的应力。 变应力随时间变化的应力,可以由变载荷产生,也可由静载荷产生。 2-6 机械设计中常用材料选择的基本原则是什么? 答:机械中材料的选择是一个比较复杂的决策问题,其基本原则如下: (1)材料的使用性能应满足工作要求。使用性能包含以下几个方面: ①力学性能 ②物理性能 ③化学性能 (2)材料的工艺性能应满足加工要求。具体考虑以下几点: ①铸造性 ②可锻性 ③焊接性 ④热处理性 ⑤切削加工性 (3)力求零件生产的总成本最低。主要考虑以下因素: ①材料的相对价格 ②国家的资源状况 ③零件的总成本 2-8 润滑油和润滑脂的主要质量指标有哪几项? 答:衡量润滑油的主要指标有:粘度(动力粘度和运动粘度)、粘度指数、闪点和倾点等。 衡量润滑脂的指标是锥入度和滴度。

《机械制图教案》第三章

第十四讲§3—1 基本几何体的投影及尺寸标注 课题:1、平面立体的投影及表面取点 2、曲面立体的投影及表面取点 课堂类型:讲授 教学目的:1、讲解平面立体和曲面立体的种类及其三视图画法 2、讲解在平面立体和圆柱体表面取点、取线的作图方法 教学要求:1、能够熟练掌握平面立体和圆柱体的三视图画法 2、能够熟练运用利用点所在的面的积聚性法和辅助线法在平面立体和圆柱体表 面取点、取线 教学重点:1、平面立体和曲面立体的种类及其三视图画法。 2、在平面立体和圆柱体表面取点、取线的作图方法 教学难点:在圆柱体表面取点、取线的作图方法 教具:基本体模型:三棱柱、四棱柱、五棱柱、六棱柱、三棱锥、四棱锥、圆柱体等教学方法:用教学模型辅助讲解。 教学过程: 一、复习旧课 结合作业复习直线和平面投影变换的作图方法和步骤。 二、引入新课题 机器上的零件,不论形状多么复杂,都可以看作是由基本几何体按照不同的方式组合而成的。 基本几何体——表面规则而单一的几何体。按其表面性质,可以分为平面立体和曲面立体两类。 1、平面立体——立体表面全部由平面所围成的立体,如棱柱和棱锥等。(出示模型给学生看)。 2、曲面立体——立体表面全部由曲面或曲面和平面所围成的立体,如圆柱、圆锥、圆球等。(出示模型给学生看)。曲面立体也称为回转体。 三、教学内容 (一)平面立体的投影及表面取点 1、棱柱 棱柱由两个底面和棱面组成,棱面与棱面的交线称为棱线,棱线互相平行。棱线与底面

垂直的棱柱称为正棱柱。本节仅讨论正棱柱的投影。 (1)棱柱的投影 以正六棱柱为例。如图3-1(a)所示为一正六棱柱,由上、下两个底面(正六边形)和六个棱面(长方形)组成。设将其放置成上、下底面与水平投影面平行,并有两个棱面平行于正投影面面。 上、下两底面均为水平面,它们的水平投影重合并反映实形,正面及侧面投影积聚为两条相互平行的直线。六个棱面中的前、后两个为正平面,它们的正面投影反映实形,水平投影及侧面投影积聚为一直线。其他四个棱面均为铅垂面,其水平投影均积聚为直线,正面投影和侧面投影均为类似形。 (a)立体图(b)投影图 图3-1正六棱柱的投影及表面上的点 边画图边讲解作图方法与步骤。 总结正棱柱的投影特征:当棱柱的底面平行某一个投影面时,则棱柱在该投影面上投影的外轮廓为与其底面全等的正多边形,而另外两个投影则由若干个相邻的矩形线框所组成。 (2)棱柱表面上点的投影 方法:利用点所在的面的积聚性法。(因为正棱柱的各个面均为特殊位置面,均具有积聚性。) 平面立体表面上取点实际就是在平面上取点。首先应确定点位于立体的哪个平面上,并分析该平面的投影特性,然后再根据点的投影规律求得。 举例:如图3-1(b)所示,已知棱柱表面上点M的正面投影m′,求作它的其他两

机械制造装备设计第三章习题答案(关慧贞)

· 第三章典型部件设计 1.主轴部件应满足那些基本要求 答:主轴部件应满足的基本要求有旋转精度、刚度、抗振性、温升热变形和精度保持性等。主轴的旋转精度是指装配后,在无载荷、低速转动条件下,在安装工件或刀具的主轴部位的径向和轴向跳动。旋转精度取决于主轴、轴承、箱体孔等的制造、装配和调整精度。主轴部件的刚度是指其在外加载荷作用下抵抗变形的能力,通常以主轴前端产生单位位移的弹性变形时,在位移方向上所施加的作用力来定义,主轴部件的刚度是综合刚度,它是主轴、轴承等刚度的综合反映。主轴部件的抗振性是指抵抗受迫振动和自激振动的能力。主轴部件的振动会直接影响工件的表面加工质量,刀具的使用寿命,产生噪声。主轴部件的精度保持性是指长期地保持其原始制造精度的能力,必须提高其耐磨性。 2.主轴轴向定位方式有那几种各有什麽特点适用场合 答:(1)前端配置两个方向的推力轴承都分布在前支撑处;特点:在前支撑处轴承较多,发热大,升温高;但主轴承受热后向后伸,不影响轴向精度;适用场合:用于轴向精度和刚度要求较高的高精度机床或数控机床。 (2)后端配置两个方向的推力轴承都布置在后支撑处;特点:发热小、温度低,主轴受热后向前伸长,影响轴向精度;适用范围:用于普通精度机床、立铣、多刀车床。 (3)两端配置两个方向的推力轴承分别布置在前后两个支撑处;特点:这类配置方案当主轴受热伸长后,影响轴承的轴向间隙,为避免松动,可用弹簧消除间隙和补偿热膨胀;适用范围:用于短主轴,如组合机床。 (4)中间配置两个方向的推力轴承配置在前支撑后侧;特点:此方案可减少主轴的悬伸量,使主轴热膨胀后向后伸长,但前支撑结构复杂,温升可能较高。 3.} 4.试述主轴静压轴承的工作原理 答:主轴静压轴承一般都是使用液体静压轴承,液体静压轴承系统由一套专用供油系统、节流器和轴承三部分组成。静压轴承由供油系统供给一定压力油,输进轴和轴承间隙中,利用油的静压压力支撑载荷、轴颈始终浮在压力油中。所以,轴承油膜压强与主轴转速无关,承载能力不随转速而变化。静压轴承与动压轴承

机械制造装备设计第三章习题标准答案(关慧贞)

第三章典型部件设计 1.主轴部件应满足那些基本要求? 答:主轴部件应满足的基本要求有旋转精度、刚度、抗振性、温升热变形和精度保持性等。主轴的旋转精度是指装配后,在无载荷、低速转动条件下,在安装工件或刀具的主轴部位的径向和轴向跳动。旋转精度取决于主轴、轴承、箱体孔等的制造、装配和调整精度。主轴部件的刚度是指其在外加载荷作用下抵抗变形的能力,通常以主轴前端产生单位位移的弹性变形时,在位移方向上所施加的作用力来定义,主轴部件的刚度是综合刚度,它是主轴、轴承等刚度的综合反映。主轴部件的抗振性是指抵抗受迫振动和自激振动的能力。主轴部件的振动会直接影响工件的表面加工质量,刀具的使用寿命,产生噪声。主轴部件的精度保持性是指长期地保持其原始制造精度的能力,必须提高其耐磨性。 2.主轴轴向定位方式有那几种?各有什麽特点?适用场合 答:(1)前端配置两个方向的推力轴承都分布在前支撑处;特点:在前支撑处轴承较多,发热大,升温高;但主轴承受热后向后伸,不影响轴向精度;适用场合:用于轴向精度和刚度要求较高的高精度机床或数控机床。 (2)后端配置两个方向的推力轴承都布置在后支撑处;特点:发热小、温度低,主轴受热后向前伸长,影响轴向精度;适用范围:用于普通精度机床、立铣、多刀车床。 (3)两端配置两个方向的推力轴承分别布置在前后两个支撑处;特点:这类配置方案当主轴受热伸长后,影响轴承的轴向间隙,为避免松动,可用弹簧消除间隙和补偿热膨胀;适用范围:用于短主轴,如组合机床。 (4)中间配置两个方向的推力轴承配置在前支撑后侧;特点:此方案可减少主轴的悬伸量,使主轴热膨胀后向后伸长,但前支撑结构复杂,温升可能较高。 3.试述主轴静压轴承的工作原理 答:主轴静压轴承一般都是使用液体静压轴承,液体静压轴承系统由一套专用供油系统、节流器和轴承三部分组成。静压轴承由供油系统供给一定压力油,输进轴和轴承间隙中,利用油的静压压力支撑载荷、轴颈始终浮在压力油中。所以,轴承油膜压强与主轴转速无关,承载能力不随转速而变化。静压轴承与动压轴承相比有如下优点:承载能力高;旋转精度高;油膜有均化误差的作用,可提高加工精度;抗振性好;运转平稳;既能在极低转速下工作,也能在极高转速下工作;摩擦小,轴承寿命长。

相关文档
最新文档