山脊线山谷线提取实验报告

山脊线山谷线提取实验报告
山脊线山谷线提取实验报告

山脊线山谷线提取实验报告

实验内容描述:

山脊线和山谷线构成了地形起伏变化的分界线(骨架线),因此它对于地形地貌研究具有

重要意义;另一方面,对于水文物理过程研究而言,由于山脊、山谷分别代表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。

本次实验通过某区域栅格DEM掌握山脊线和山谷线这两个基本地形特征信息的理论及

其基于DEM的提取方法与原理;同时,熟练掌握利用ArcGIS软件对这两个地形特征信息的

提取方法。

实验原理:

1?本实验基于规则格网DEM数据使用平面曲率与坡形组合法提取山脊线和山谷线,首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。因此,提取过程中可以SOA代替平面曲率。2?主要用到以下理论知识:

1 )坡向变率:是指在提取坡向基础上,提取坡向的变化率,亦即坡向之坡度(Slope of Aspect,SOA)。它可以很好地反应等高线弯曲程度;

2)反地形DEM数据:求取原始DEM数据层的最大高程值,记为H,通过公式(H-DEM), 得到与原来地形相反的DEM数据层,即反地形DEM数据;

3)地面坡向变率SOA:地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原

理,提取地表局部微小范围内坡向的最大变化情况。但是SOA在提取过程中在北面坡将会

有误差产生,所以要将北坡坡向的坡向变率误差进行纠正,其公式为:

SOA=(( [SOA1]+[ SOA2] )-Abs( [SOA1]-[ SOA2] )2

其中:SOA1为原始DEM数据层坡向变率,SOA2为反地形DEM数据层坡向变率。

4)焦点统计

5)A rcScan自动矢量化

流程图

实验步骤:

1?相对路径

2?加载数据

3?提取原始dem的坡向(利用dem数据--空间分析--表面分析--坡度工具,命名为

9 £p曰吕I Analyst Toolslbx H 竜Conditional

匡心Density

1+ Dis-tance

1+ W Ewtrartion

S. %■ G电rer^li23tian + G refund water 匡帝Hydrology l±电Interpolation 1+ 4$^- Local 1+

竜Map Algebra 匡雜Matfi ld_ Multivanate l~《NeighLorhoed S ■ Overlay 11 tSv Raster

Creation 田心Redact

1+ ?Solar Radiation 1 $! Surface

Conicur

Gonlour List

Conlour with Barriers Curvature

Cut Fill

Hillshade

Ob server Points

Slope

Jf (

Views lied

Aspect)

X

4?提取原始DEM数据的坡向变率

(利用3中生成的Aspect图层--空间分析--表面分析--坡度工具,命名为S0A1)

G ? Spatial Analyst Tools.tbx

E Conditional

S 詹Density

3 弧Distance

3 Extract!on

? ?S* Generalization

?J ? Groundwater

S ■ Hydrology

? W? Interpolation

S @ Local

3 Map Algebra

E 心Math

S3 ? Multiva riate

? d Neighborhood

? Overlay

S 旳? Raster Creatio n

3 ? Reclass

田& Solar Radiation

曰心Surface 气Aspect 气Contour J Con tour List 弋Con*tour wrth Barriers o Curvature 气Cut Fill x - Hillshade

Viewshed

5?提取反地形DEM数据(栅格计算器--输入公式H-DEM)

1)找出DEM最大高程值(右键属性---找出数据源中最大值为1153.791870117188 )

2)栅格计算器提取反地形DEM数据(输入公式1153.791870117188 - "dem",命名为INdem)

Spatial Analyst Tools.tbx

E 耐ConditiQnal

B Density

l±i Di stance

l+i 笔/ Ejctraction

Fl 睦i Generalizaticn ? 薦i:Groundwateir l±i 氐Hydrology

Fi Interpolation

0 曹Loral

LI 転’ Map Al get ra

山脊线山谷线提取实验报告

山脊线山谷线提取实验报告 实验内容描述: 山脊线和山谷线构成了地形起伏变化的分界线(骨架线),因此它对于地形地貌研究具有重要意义;另一方面,对于水文物理过程研究而言,由于山脊、山谷分别代表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。 本次实验通过某区域栅格DEM掌握山脊线和山谷线这两个基本地形特征信息的理论及其基于DEM的提取方法与原理;同时,熟练掌握利用ArcGIS软件对这两个地形特征信息的提取方法。 实验原理: 1.本实验基于规则格网DEM数据使用平面曲率与坡形组合法提取山脊线和山谷线,首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。因此,提取过程中可以SOA代替平面曲率。 2.主要用到以下理论知识: 1)坡向变率:是指在提取坡向基础上,提取坡向的变化率,亦即坡向之坡度(Slope of Aspect,SOA)。它可以很好地反应等高线弯曲程度; 2)反地形DEM数据:求取原始DEM数据层的最大高程值,记为H,通过公式(H-DEM),得到与原来地形相反的DEM数据层,即反地形DEM数据; 3)地面坡向变率SOA:地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原理,提取地表局部微小范围内坡向的最大变化情况。但是SOA在提取过程中在北面坡将会有误差产生,所以要将北坡坡向的坡向变率误差进行纠正,其公式为: SOA=(( [SOA1]+[ SOA2] )-Abs( [SOA1]-[ SOA2] ))/2 其中:SOA1为原始DEM数据层坡向变率,SOA2为反地形DEM数据层坡向变率。 4)焦点统计 5)ArcScan自动矢量化 流程图

超过滤膜分离实验报告

实验二 超过滤膜分离 一、实验目的 1.了解和熟悉超过滤膜分离的工艺过程; 2.了解膜分离技术的特点; 二、分离机理 根据溶解-扩散模型,膜的选择透过性是由于不同组分在膜中的溶解度和扩散系数不同而造成的。若假设组分在膜中的扩散服从Fick 定律,则可推出透水速率F W 及溶质通过速率F S 方程。 1、 透水速率 '() ()w w M w D c V p F A p RT ππδ ?-?= =?-? 式中 22332/;;//;;;/w w w M w w M F g cm s D cm s c g cm V cm mol p atm atm R T K cm D c V A g cm s at RT πδδ-?-?--?-?-----??’透水速率,水在膜中的扩散系数,水在膜中的浓度,;水的偏摩尔体积,膜两侧的压力差,膜两侧的渗透压差,气体常数;温度,; 膜的有效厚度,; 膜的水渗透系数(= ),。 2、溶质透过速率 2323() ()s s s s s D K c D K c c F B c B c c δ δ ?-= = =?=- 式中 2/;s s D cm s K B c ---?-溶质在膜中的扩散系数,溶质在溶液和膜两相中的分配系数; 溶质渗透系数;膜两侧的浓度差。 有了上述方程,下面建立中空纤维在定态时的宏观方程。料液在管中流动情况如图十三

所示。 取假设条件: (1)径向混合均匀; (2)A BX π=A ,渗透压正比于摩尔分数; (3)A B N N ,3 1A X ,B 组分优先通过; (4)/AM D K δ?,1A X K 同或无关; (5)0U L PeB E = =∞,忽略轴向混合扩散。 图十三 料液在管中流动示意图 由假设看出,其实质是一维问题,只是侧壁有液体流出的情况,因为关心的是管中组分的浓度分布和平均速度分布,只需做出两个质量衡算方程即可求解。 由连续性方程: 和总流率方程:

叶绿素的提取和分离实验报告

陕西师范大学远程教育学院生物学实验报告 报告题目叶绿素的提取和分离 姓名刘伟 学号 专业生物科学 批次/层次 指导教师 学习中心

叶绿素的提取和分离 一、实验目的 1. 学习叶绿体色素的提取、分离方法。 2. 通过叶绿体色素提取、分离方法的学习了解叶绿体色素的相关理化性质。 3. 为进一步研究各叶绿体色素性质、功能等奠定基础。 二、原理 叶绿体中含有绿色素(包括叶绿素a和叶绿素b)和黄色素(包括胡萝卜素和叶黄素)两大类。它们与类囊体膜蛋白相结合成为色素蛋白复合体。它们的化学结构不同,所以它们的物化性质(如极性、吸收光谱)和在光合作用中的地位和作用也不一样。这两类色素是酯类化合物,都不溶于水,而溶于有机溶剂,故可用乙醇、丙醇等有机溶剂提取。提取液可用色谱分析的原理加以分离。因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各种成分在两相(固定相和流动相)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。 三、材料、仪器设备和试剂 1. 绿色植物如菠菜等的叶片。 2. 研钵、漏斗、三角瓶、剪刀、滴管、康维皿、圆形滤纸(直径11cm)。 3. 试剂:95%乙醇,石英砂,碳酸钙粉,推动剂:按石油醚:丙酮:苯=10:2:1比例配制(v/v) 四、试验步骤 1. 叶绿体色素的提取 (1)取菠菜或其他植物新鲜叶片4-5片(4g左右),洗净,擦干,去掉中脉剪碎,放入研钵中。 (2)研钵中加入少量石英砂及碳酸钙粉,加2-3ml 95%乙醇,研磨至糊状,再加10ml 95%乙醇,然后以漏斗过滤之,残渣用10ml 95%乙醇冲洗,一同过滤于三角瓶中。 2. 叶绿体色素的分离 (1)将11cm的滤纸的一端剪去二侧,中间留一长约1.5cm、宽约0.5cm窄条。 (2)用毛细管取叶绿体色素浓溶液点于窄条上端,用电吹风吹干,如一次点样量不足可反复在色点处点样数次,使色点上有较多的叶绿体色素。 (3)在大试管中加入四氯化碳3-5ml及少许无水硫酸钠。然后将滤纸条固定于软木塞上,插入试管内,使窄端浸入溶剂中,而色点略高于液面,滤纸条边缘不可碰到试管壁,软木塞盖紧,直立于阴暗处层析。 0.5-1小时后,观察色素带分布:最上端橙黄色(胡萝卜素),其次黄色(叶黄素),再崐次 蓝绿素(叶绿素a),最后是黄绿色(叶绿素b)。(4)当展层剂前沿接近滤纸边缘时便可结束实 验,此时可看到不同色素的同心圆环,各色素由内往外的顺序为:叶绿素b(黄绿色)、叶 绿素a(蓝绿色)、叶黄素(鲜黄色)、胡萝卜素(橙黄色),再用铅笔标出各种色素的位置 和名称。

果胶提取实验报告1

桔皮中果胶提取技术的试验分析 【摘要】酸浸提法提取果胶具有快速、简便、易于控制、提取率较高等特点,用盐酸浸提、乙醇沉淀法进行了从桔皮中提取果胶的工艺试验。用单因素试验进行工艺参数的优化,其适合的工艺条件是:液料质量比为20;浸提液pH值为2;浸提温度为90℃。 关键词:桔皮果胶提取工艺工艺参 引言:果胶是一种亲水性植物胶,属于多糖类物质,广泛存在于高等植物的根、茎、叶、果的细胞壁中。通常人们所说的果胶系指原果胶、果胶和果胶酸的总称,是一种高分子聚合物,分子量介于20 000-400 000之间。其基本结构是D一吡喃半乳糖醛酸,以1,4甙链连接成的长链,其中部分半乳糖醛酸被甲醇酯化 [1]。 胶凝剂、增稠剂、稳定剂和乳化剂,随着功能性多糖的开发研究,果胶作为水溶性膳食纤维,越来越受到重视。应用必定会越来越广泛[2-4]。我国是柑桔的主要产地,柑桔皮中果胶含量可达10%~30%。从桔皮中提取果胶不仅有极大的工业价值,而且对综合开发、利用柑桔资源,提高原材料利用率,减少环境污染,有重要的实际意义[2,4,6]。果胶的提取一般有酸提取法、离子交换法、微生物法和微波加热处理法等方法[5-9],由于酸提取法具有快速、简便且提取率高的优点,国内外大多采用此法。果胶分离沉淀主要有乙醇沉淀法和盐析法。国内主要采用乙醇沉淀法,而国外多用盐析法或不经沉淀直接喷雾干燥。针对我国情况而言,对乙醇沉淀法已有大量研究,而本实验也是在总结

别人成果的基础上进行对比以及提取工艺条件的优化。 1材料与方法 1.1 材料 桔皮采用成熟新鲜、无病虫果害的晚熟蜜桔,人工取皮,在40℃下干燥,粉碎至1~3 mm,待用。 盐酸、乙醇、氢氧化钠、无水氯化钙、冰醋酸和甲基红,均为化学纯。1.2 果胶提取方法 果胶提取工艺为:原料→洗涤→失活→干燥→粉碎→酸提取→过滤→浓缩→冷却→乙醇沉淀→离心分离→干燥→称量→粉碎→果胶。 剔除腐烂变质、发黑的桔皮,用清水洗净后,放入烧杯中,加水,加热至90 ℃保温5~10 min,使酶失活,捞出桔皮,将桔皮在40 ℃下干燥,切碎。将20 g原料加入用HC1预先配制的、具有一定pH值和温度的酸溶液中,维持所需的温度达到一定的提取时间,并不断搅拌。趁热用布氏漏斗过滤得果胶提取液。将滤液用旋转蒸发仪在60-70 ℃下浓缩至原体积的1/3时为止。果胶浸提液冷却至常温后加入1倍体积的95 乙醇,搅拌、静置2 h,使果胶沉淀析出。用布氏漏斗过滤得粗果胶。在60-70 ℃干燥,粉碎即得果胶粉。随后进行提取物中果胶含量的测定和提取率的计算。 1.3 试验方法 单因素试验,分别研究不同液料质量比对果胶提取率的影响(浸 提液pH值3、温度80℃、浸提时间45 min);不同浸提液pH值对果胶提取率的影响(浸提液温度80℃、液料质量比10、浸提时间45 min);不

山脊线、山谷线和鞍部点的提取知识讲解

山脊线、山谷线和鞍部点的提取

山脊线、山谷线和鞍部点的提取 一.实习背景 山脊线、山谷线是地形特征线,它们对地形、地貌具有一定的控制作用。它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。因此在数字地形分析中,山脊线和山谷线以及地形特征点等的提取和分析是很有必要的。 相邻两山头之间呈马鞍形的低凹部分称为鞍部,鞍部是两个山脊和两个山谷会合的地方。鞍部点是重要的地形控制点,它和山顶点、山谷点以及山脊线、山谷线等构成的地形特征点线,具有对地形具有很强的控制作用。因此,对这些地形特征点、线的分析研究在数字地形分析中具有很重要的意义。同时,由于鞍部点的特殊地貌形态,使得鞍部点的提取方法较山顶点和山谷的提取更难,目前没有什么有效的方法来提取鞍部点,利用水文分析的方法可以来提取一些鞍部点,但是它还是具有一定局限性。 二.实习目的 (1)熟练掌握基于DEM利用ArcGIS进行提取相关地形特征的方法与原理; (2)深入认识山脊线、山谷线和鞍部点3个基本地形特征;三.实习内容 1.提取dem数据的SOA 2基于地形表面的几何形态分析方法提取山脊线山谷线 3.基于DEM水文分析方法提取山脊线山谷线

4.鞍部点的提取 四.实习数据 DEM 五.实习工具 Surface Analyst,model工具 六.实习步骤 1.提取DEM的SOA数据 A.求取原始DEM数据层的最大高程值,记为H;通过Spatial Analysis 下的栅格计算器 Calculator,公式为(H-DEM),得到与原来地形相反的 DEM数据层,即反地形DEM数据; B.基于反地形 DEM数据求算坡向值; C.利用 SOA 方法求算反地形的坡向变率,记为 SOA2,由原始DEM数据求算出的坡向变率值为 SOA1; D.在 Spatial Analysis下使用栅格计算器 Calculator,公式为 SOA =(([SOA1]+[SOA2])-Abs([SOA1]-[SOA2]))/ 2,即可求出没有误差的 DEM 的坡向变率, 2.利用基于地形表面的几何形态分析方法提取山脊线山谷线 (1)山脊线的提取

叶绿素a测定实验报告

叶绿素a测定实验报告 (一)实验目的及意义 水体富营养化可以通过跟踪监测水中叶绿素的含量来实现,其中叶绿素a是所有叶绿素中含量最高的,因此叶绿素a的测定能示踪水体的富营养化程度。 (二)水样的采集与保存 1.确定具体采样点的位置 2.在采样点将采样瓶及瓶盖用待测水体的水冲洗3-5遍 3.将采样瓶下放到距水面0.5-1m处采集水样2.5L 4.在采样瓶中加保存试剂,每升水样中加1%碳酸镁悬浊液1mL 5.将采样瓶拧上并编号 6.用GPS同步定位采样点的位置 (三)仪器及试剂 仪器: 1.分光光度计 2.比色池:10mm 3.过滤装置:过滤器、微孔滤膜(孔径0.45μm,直径60mm) 4.研钵 5.常用实验设备 试剂: 1.碳酸镁悬浮液:1%。称取1.0g细粉末碳酸镁悬浮于100mL蒸馏水中。每次使用时要充分摇匀 2.乙醇溶液 (四)实验原理 将一定量的试样用微孔滤膜过滤,叶绿素会留在滤膜上,可用乙醇溶液提取。 将提取液离心分离后,测定750、663、645、630mm的吸光度,计算叶绿素的浓度。 (五)实验步骤 1.浓缩:在一定量的试样中添加0.2mL碳酸镁悬浮液,充分搅匀后,用直径60mm 的微孔滤膜吸滤.过滤器内无水分后,还要继续抽吸几分钟.如果要延时提取,可把载有浓缩样品的滤膜放在干燥器里冷冻避光贮存。 2. 提取:将载有浓缩样品的滤膜放入研钵中,加入7mL乙醇溶液至滤纸浸湿的程度,把滤膜研碎,再少量地加乙醇溶液,把滤膜完全研碎,然后用乙醇溶液将已磨碎的滤膜和乙醇溶液洗入带刻度的带塞离心管中,使离心管内提取液的总体积不超过10mL,盖上管塞,置于的暗处浸泡24h。 3.离心:将离心管放入离心机中,以4000r/min速度离心分离20min。将上清液移入标定过的10mL具塞刻度管中,加少量乙醇于原提取液的离心管中,再次悬浮沉淀物并离心,合并上清液。此操作重复2-3次,直至沉淀不含色素为止,最后将上清液定容至10mL。 4.测定:取上清液于10mm的比色池中,以乙醇溶液为对照溶液,读取波长750,663,645和630mm的吸光度。

DNA提取及PCR扩增实验报告.doc

PCR扩增及DNA琼脂糖凝胶电泳 刘琳1131428 环境科学 一、实验目的 1.学习并掌握PCR扩增的基本原理与实验技术。 2.对扩增后的DNA进行琼脂糖凝胶电泳试验,并分析相应结果。 二、实验原理 1. PCR扩增 多聚酶链反应(PCR)技术的原理类似于DNA的天然复制过程。在微量离心管中加入适量缓冲液,加入微量模板DNA、四种脱氧核苷酸(dNTP)、耐热T aq聚合酶及两个合成DNA的引物,而后加热使模板DNA在高温下(94℃)变性,双链解链,这是所谓变性阶段。降低溶液温度,使合成引物在低温(55℃)与模板DNA互补退火形成部分双链,这是所谓退火阶段。溶液反应温度升至中温(72℃),在Tap酶作用下,用四种dNTP为原料,引物为复制起点,模板DNA的一条双链在解链和退火之后延伸为两条双链,这是延伸阶段。如此反复,在同一反应体系中可重复高温变性、低温退火和DNA合成这一循环,使产物DNA重复合成,并在重复过程中,前一循环的产物DNA可作为后一循环的模板DNA而参与DNA的合成,使产物DNA的量按指数方式扩增。经过30~40个循环,DNA扩增即可完成。 2. DNA琼脂糖凝胶电泳实验 DNA分子在高于其等电点的溶液中带负电,在电场中向阳极移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即分子本身的大小和构型是主要的影响因素。DNA分子的迁移速度与其相对分子量成反比。不同构型的DNA分子的迁移速度不同。该电泳方法以琼脂凝胶作为支持物,利用DNA分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。 三、实验材料 仪器:PCR扩增仪、0.2ul薄壁管、1.5ml离心管、移液枪、枪头、微波炉、电泳仪、水平电泳槽、制胶版、紫外透射仪。 试剂:TapDNA聚合酶、dNTP、buffer、两种引物、16S全长DNA样本、无菌ddH2O、模板DNA 、TBE、琼脂糖、EB、显色剂。 四、实验步骤 1. PCR扩增 本次试验选择细菌16S rDNA V3区片段进行扩增。 1.1 根据计算,首先取1.5ml离心管按照 2.5ul 10×Buffer 、1 ul dNTP、0.5 ul 341GC、 0.5 ul 534、0.125 ul Taq、19.375u ddH2O的比例配置足量的PCR反应体系。 1.2 分别向9个薄壁管中分别加入24 ul的反应体系,并分别添加8种不同的模版,并于第9个薄壁管中加入无菌ddH2O作为阴性对照。 1.3 将薄壁管放入PCR扩增仪中,按照预定程序进行PCR扩增。其中循环过程需要达到30~40次。程序如下: 预变性:94℃3min 循环:94℃变性30s 55℃退火30s 72℃延伸30s 末次延伸:72℃5min

大学土壤微生物分离实验报告

从土壤中分离纯培养微生物并作初步观察鉴定 实验报告 生物科学与技术系 09食品(2)班 姓名:xxx 学号:xxx

从土壤中分离纯培养微生物并作初步观察鉴定 【摘要】利用分离纯化微生物的基本操作技术对土壤中的微生物进行分离与纯化,根据菌落形态观察及一系列的生理生化试验的结果,对照种属特征初步鉴定分离纯化的微生物所属的类群。 【关键词】细菌放线菌霉菌划线分离培养基的配制高压蒸汽灭菌 前言: 在自然条件下,微生物常常在各种生态系统中群居杂聚。群落是不同种类微物的混和体。为了生产和科研的需要,人们往往需要从自然界混杂的微生物群体中分离出 具有特殊功能的纯种微生物;或重新分离被其他微生物污染或因自发突变而丧失原 有优良性状的菌株;或通过诱变及遗传改造后选出优良性状的突变株及重组株。这种获得单一菌株纯培养的方法称为微生物的分离纯化技术。纯培养是指一株菌种或一个培养物中所有的细胞或孢子都是由一个细胞分裂、繁殖而产生的后代。 分离纯化技术主要由采集样品、富集培养、纯种分离和性能测定等几个基本环节组成。 实验目的: 1、学习从土壤中分离、纯化微生物的原理与方法。 2、学习、掌握微生物的鉴定方法。 3、对提取的土样进行微生物分离、纯化培养,根据菌落的形态特征判断未知菌的类别。实验原理: 从混杂的微生物群体中获得只含有某一种或某一株微生物的过程称为微生物的分离与纯化。通过如下几种方法可以分离纯化微生物:稀释倒平板法(pour plate method)、涂布平板法(spread plate method)、稀释摇管法(dilution shake culture method)、平板划线分离法(stesak plate method)。 此次实验采取的是平板分离法,该方法操作简便,普遍用于微生物的分离与纯化,其基本原理主要包括两个方面:(一)选择适合于待分离微生物的生长条件或加入某种抑制剂造成只利于待分离微生物生长,而抑制其它微生物生长的环境,从而淘汰大部分不需要的微生物。(二)微生物在固体培养基上生长形成的单个菌落可以是由一个细

山谷线、山脊线提取

自动提取山脊线和山谷线 arcmap 自动提取山脊线和山谷线的方法1 平面曲率与坡形组合法 基于规则格网DEM是最主要的自动提取山脊线和山谷线的方法,从算法设计原理上来分,大致可以分为以下五种: 1) 基于图像处理技术的原理; 2) 基于地形表面几何形态分析的原理; 3) 基于地形表面流水物理模拟分析原理; 4) 基于地形表面几何形态分析和流水物理模拟分析相结合的原理; 5) 平面曲率与坡形组合法。 平面曲率与坡形组合法提取的山脊、山谷的宽度可由选取平面曲率的大小来调节,方法简便,效果好。该方法基本处理过程为:首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。因此,下面的提取过程以SOA代替平面曲率。 具体提取过程为: 1)激活DEM 数据,在Spatial Analysis 下使用surface 菜单下的Derive Aspect 命令,提取DEM 坡向层面,记为A; 2)激活A 层面,在Spatial Analysis 下使用surface 菜单下的Derive Slope 命令,提取A 层面的坡度信息,记为SOA1; 3)求取原始DEM 数据层的最大高程值,记为H;通过Spatial Analysis 下的栅格计算器Calculator,公式为(H-DEM),得到与原来地形相反的DEM 数据层,即反地形DEM 数据; 4)基于反地形DEM 数据求算坡向值; 5)利用SOA 方法求算反地形的坡向变率,记为SOA2; 6)在Spatial Analysis 下使用栅格计算器Calculator,公式为SOA =(([SOA1]+[SOA2])-Abs ([SOA1]-[SOA2]))/ 2,即可求出没有误差的DEM 的坡向变率SOA; 7)激活原始DEM 数据,在Spatial Analysis 下使用栅格邻域计算工具Neighborhood Statistics;设置Statistic type 为平均值,邻域的类型为矩形(也可以为圆),邻域的大小为275×275 MAP,则可得到一个邻域为275×275 MAP的矩形的平均值层面,记为B; 8)在Spatial Analysis 下使用栅格计算器Calculator,公式为C =[DEM]-[B],即可求出正负地形分布区域, 9)在Spatial Analysis下使用栅格计算器Calculator,公式为D =[C] >0 & SOA > 70,即可求出山脊线; 10)同理,在栅格计算器Calculator 中,修改公式为D =[C] < 0 & SOA > 70,即可求出山谷线

叶绿体色素实验报告

叶绿体色素实验报告 ●实验名称 叶绿体色素的提取分离和理化性质测定 ●实验原理 叶绿体是光合作用的细胞器。叶绿体中叶绿素a、叶绿素b、胡萝卜素和叶黄素与类囊体膜结合成为色素蛋白复合体。这些色素可以溶解于乙醇等有机溶剂提取。 薄纸层析色谱法是将吸附剂均匀涂在玻璃板上成一薄层,将此吸附剂薄层作为固定相,把带分离的样品溶液点在薄层板下端,然后用一定量溶剂作流动相,将薄层板下端浸入展开剂中。由于吸附剂对不同物质的吸附能力不同,吸附力强的物质相对移得慢些,吸附力弱的物质相对移得快些,从而使各组分有不同的移动速度而分开。 叶绿素是一种由叶绿酸和叶绿酯形成的复杂酯,故可以与碱起皂化反应而生成甲醇和叶绿酯及叶绿酸盐,盐可溶于水,继而可以分离叶绿素和类胡萝卜素。叶绿素吸收光子转变为激发态,激发态的叶绿素分子很不稳定,当变回基态时可发出红光量子,产生荧光。叶绿体不稳定,容易受强光破坏,特别是当叶绿体与蛋白质分离后,破坏更快,而类胡萝卜素则较稳定。叶绿素中Mg2+可以被H+所取代而成褐色的去镁叶绿素,之后遇铜生成铜代叶绿素。 ●实验材料和工具 1.新鲜的菠菜叶 2.体积分数为95%的乙醇,碳酸钙粉末,展开剂(石油醚:丙酮:苯=7:5:1,体积比) 3.天平,研钵,漏斗,三角瓶,剪刀,点样毛细管,层析缸,硅胶预制板,滤纸 4.刻度试管,小试管,试管架,水浴锅,10ml移液管 5.苯,醋酸铜粉末,质量分数为5%的稀盐酸,醋酸—醋酸铜溶液,氢氧化钾—甲醇溶液 ●实验步骤

(一)色素提取液的制备 1.取新鲜叶片4~5片(2g左右),洗净,擦干叶表面,去中脉剪碎,放入研钵中 2.研钵中加入少量CaCO3,加2~3ml体积分数为95%的乙醇,研磨至糊状,再加10~15ml体积分数为95%的乙醇,上清液用漏斗过滤,残渣再用10ml 体积分数为95%的乙醇冲洗一次,一同过滤于三角瓶中,即制成叶绿体色素提取液,避免阳光直射 (二)叶绿色素的分离 1.取硅胶板一个,用点样毛细管吸取上述提取液,平行与硅胶板短边,据下边缘1cm处划线,风干后再划3~4次 2.干净的层析缸中加适量展开剂,高度约0.5cm,将硅胶板有色素一端放入,使其下端浸入展开剂。迅速盖好 当各种色素得到较好分离时,展开剂前沿接近硅胶板上边缘时,取出并迅速用铅笔标出展开剂前沿和各色素带位置 (三)理化性质的测定 ①光对叶绿色素的破坏 取2支小试管,各加入2.5ml叶绿体色素乙醇提取液,并用体积分数95%的乙醇稀释1倍。其中1支放在直射阳光下,另外1支放到暗处或用锡箔纸包严,40分钟后对比观察颜色变化 ②皂化作用 1.取1支10ml刻度试管加入3ml浓的叶绿素乙醇提取液,加入1ml氢氧化钾—甲醇溶液,充分摇匀 2.片刻后,加入3ml苯,摇匀,再沿管壁慢慢加入1ml左右蒸馏水,轻轻混匀,然后置于试管架上静置分层。 ③H+和Cu2+对叶绿素分子中Mg+的取代作用 1.取两支试管,第一支加叶绿色素提取液5ml作为对照。第二支试管加叶绿体色素提取液5ml后,再加质量分数为5%的HCl数滴,摇匀,观察溶液颜色变化。当溶液变褐后,再加入少量醋酸铜粉末,60℃水浴加热。 2.取新鲜植物叶两片,放入试管中,加醋酸—醋酸铜溶液,使之没过叶片,60℃水浴,观察颜色 ④荧光现象的观察 取一支小试管加入3ml浓的叶绿体色素乙醇提取液,在直射光照射下,比较溶液透射光和反射光颜色有何不同 实验结果 提取与分离 计算方法Rf=斑点中心到原点的距离 溶液前沿至原点的距离R f(叶绿素a)=60.5/84.5=0.716 R f(叶绿素b)=56.0/84.5=0.663 R f(叶黄素)=53.5/84.5=0.633

山脊线山谷线提取实验报告

山脊线山谷线提取实验报告 实验容描述: 山脊线和山谷线构成了地形起伏变化的分界线(骨架线),因此它对于地形地貌研究具有重要意义;另一方面,对于水文物理过程研究而言,由于山脊、山谷分别代表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。 本次实验通过某区域栅格DEM掌握山脊线和山谷线这两个基本地形特征信息的理论及其基于DEM的提取方法与原理;同时,熟练掌握利用ArcGIS软件对这两个地形特征信息的提取方法。 实验原理: 1.本实验基于规则格网DEM数据使用平面曲率与坡形组合法提取山脊线和山谷线,首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。因此,提取过程中可以SOA代替平面曲率。 2.主要用到以下理论知识: 1)坡向变率:是指在提取坡向基础上,提取坡向的变化率,亦即坡向之坡度(Slope of Aspect,SOA)。它可以很好地反应等高线弯曲程度; 2)反地形DEM数据:求取原始DEM数据层的最大高程值,记为H,通过公式(H-DEM),得到与原来地形相反的DEM数据层,即反地形DEM数据; 3)地面坡向变率SOA:地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原理,提取地表局部微小围坡向的最大变化情况。但是SOA在提取过程中在北面坡将会有误差产生,所以要将北坡坡向的坡向变率误差进行纠正,其公式为: SOA=(( [SOA1]+[ SOA2] )-Abs( [SOA1]-[ SOA2] ))/2 其中:SOA1为原始DEM数据层坡向变率,SOA2为反地形DEM数据层坡向变率。 4)焦点统计 5)ArcScan自动矢量化 流程图

叶绿素实验报告

一、实验目的: 1、了解植物组织中叶绿素分布及性质。 2、掌握测定叶绿素含量的原理和方法。 3、了解紫外分光光度计的用法。 4、了解一阶导数的含义。 5、了解如何如何排除互相干扰。 二、实验原理: 叶绿体中的色素都能够溶解于有机溶剂丙酮中,所以,可以用丙酮提取叶绿体中的色素。 层析液是一种脂溶性很强的有机溶剂。根据叶绿体中的四种色素在层析液中的溶解度不同来进行分离,溶解度高的在滤纸上扩散的快,溶解度低的扩散地慢。溶解度最高的是胡萝卜素,它随层析液在滤纸上扩散得最快,叶黄素和叶绿素a的溶解度次之;叶绿素b的溶解度最低,扩散速度最慢。这样,四种色素就在扩散过程中分离开来。 叶绿素a和叶绿素b的分子结构相似,它们的吸收光谱、荧光激发光谱和发射光谱重叠,用常规分光光度法和荧光方法难以实现其同时测定。但利用一阶导数光谱技术和同步荧光技术,消除了叶绿素a和叶绿素b的光谱干扰,可以同时测定它们的含量。 在600~700之间胡萝卜素一阶导数为零,没有吸收,在某个特定波长下,叶绿素a有一定的导数值,而叶绿素b的导数为零;同理,在另一个特定波长下,叶绿素b有一定的导数值,而叶绿素a的导数值为零。这样可以实现叶绿素b和叶绿素b的同时测定,又不受胡萝卜素的干扰。 三、实验材料: 1、仪器 干燥的定性滤纸、烧杯(100ml)、研钵、玻璃漏斗、分液漏斗、剪刀、小试管、试剂瓶、药勺、量筒(10ml)、天平、试管架、载玻片、铅笔、 直尺、棉花、移液管、洗耳球、毛细吸管、铁架台、胶头滴管、紫外分光 光度计。 2、药品 新鲜的菠菜叶、石英砂、碱式碳酸镁、90%丙酮、层析液(石油醚:丙酮:苯=20:2:1) 四、实验方法与步骤: 1.提取叶绿素中的色素 (1)取几片绿叶,去掉主脉,用天平称取20g叶片,剪碎,放入研钵。 (2)向研钵中加入少许二氧化硅和碳酸钙,进行充分的研磨。用量筒量取15ml丙酮。倒入研钵中,迅速充分研磨。 (3)将研磨液迅速倒入小玻璃漏斗中进行过滤。将滤液收集到一个小试管中,及时用棉塞将试管塞紧。 2.制备过滤纸 取一块预先干燥处理过的定性滤纸,将滤纸剪成长6cm,宽1cm的滤纸条,

颗粒自由沉淀实验报告

建筑与测绘工程学院 《水处理实验设计与技术》 实验报告

实验1 颗粒自由沉淀实验 颗粒自由沉淀实验是研究浓度较低时的单颗粒的沉淀规律。一般是通过沉淀柱静沉实验,获取颗粒沉淀曲线。它不仅具有理论指导意义,而且也是给水排水处理工程中沉砂池设计的重要依据。 一、实验目的 加深对自由沉淀特点、基本概念及沉淀规律的理解。 掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。 二、实验原理 浓度较低的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合Stokes (斯托克斯)公式。 但是由于水中颗粒的复杂性,颗粒粒径、颗粒相对密度很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。 由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀可在一般沉淀柱内进行,但其直径应足够大,一般应使内径D ≥100mm 以免颗粒沉淀受柱壁干扰。 具有大小不同颗粒的悬浮物静沉总去除率η与截留沉速u 0剩余颗粒重量百分率P 的关系如下: ()dP P u u P s ?+-=00 001η ( 1 ) 此种计算方法也称为悬浮物去除率的累积曲线计算法。 设在一水深为H 的沉淀柱内进行自由沉淀实验,如图1所示。实验开始,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径组成相同,悬浮物浓度为C 0(mg/L ),此时去除率η=0。 实验开始后,不同沉淀时间t i ,颗粒最小沉淀速度u i 相应为: i i t H u = ( 2 ) 此即为t i 时间内从水面下沉到池底(此处为取样点)的最小颗粒d i 所具有的沉速。此时取样点处水样悬浮物浓度为C i ,而: 00 0011η=-=-=-i i i P C C C C C ( 3 ) 此时去除率η0,表示u ≥u i (d ≥d i )的颗粒除去率,而:

质壁分离实验报告

实验名称:植物细胞的质壁分离与质壁分离复原 一、实验原理及流程实 验 原 理 原理:成熟的植物细胞在外界溶液浓度高的条件下,液泡水分外渗,原生质层与细胞壁脱离。当细胞液的浓度大于外界溶液的浓度时,外界溶液中的水分就透过原生质层进入到液泡中,使原生质层慢慢地恢复原状,植物细胞逐渐发生质壁分离复原。 流 程 实验材料:紫色的洋葱鳞片叶,刀片、镊子,滴管,载玻片,盖玻片,吸 水纸,电子显微镜,0.3g/ml蔗糖溶液,清水 流程图: 实 验 步 骤 实验步骤: 1.用镊子撕下一小块洋葱鳞片叶紫色的外表皮制作成临时装片。 2.用电子显微镜观察洋葱鳞片叶片细胞中紫色大液泡(原生质层紧贴细胞壁)。 3. 在盖玻片的一侧滴入0.3g/ml蔗糖溶液,在另一侧用吸水纸吸引。重复 几次,使盖玻片下面的洋鳞片叶表皮浸在蔗糖溶液中。用10X的物镜观察, 细胞中液泡的大小、颜色变化。 4.在盖玻片一侧滴入清水,在盖玻片的另一侧用吸水纸吸引。重复几次,使洋葱鳞片叶浸入清水中。用10X的物镜观察,细胞中液泡的大小、颜色 变化。 制作洋葱鳞片表皮临时装片 放在电子显微镜下观察 临时装片 0.3g/ml 蔗糖溶液 吸水纸吸引 放在电子显微镜下观察 临时装片 吸水纸吸引清水 放在电子显微镜下观察 植物细胞的质壁分离及质壁分离复原实验报告

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注) 二、 实验 结果 及分 析 实验结果 实验结果:在电子显微镜下观察原始的洋葱鳞片叶紫色表皮细胞时,可观察到有一个紫色的大液泡,原生质层紧贴细胞壁;当洋葱鳞片表皮浸润在蔗糖溶液中,可观察到液泡逐渐变小,紫色加深;当洋葱鳞片表皮浸润在清水中时,液泡又逐渐胀大,原生质层逐渐贴近细胞壁。 分 析 内因:原生质层具有半透性 细胞渗透失水(吸水) 细胞壁伸缩性小, 原生质层伸缩性大 外因:外界溶液浓度小于(大于)细胞液浓度 三、 实验 讨论 及反 思 讨论 1. 如果没有细胞壁,实验结果会有什么不同? 如果没有细胞壁,就不会发生质壁分离分离反应,只会单纯的吸水或失水。 2. 如果滴加的是0.5g/ml 的蔗糖溶液,实验结果会有什么不同? 如果使用高浓度的蔗糖溶液,会使细胞严重失水而死亡,不会发生质壁分离复原。 3. 为什么植物细胞失水时,原生质层与细胞壁不是一起变化,而是发生质壁分 离? 因为原生质层的伸缩性较大,而细胞壁的伸缩性较小。 4. 发生质壁分离时细胞壁与原生质层之间是空的吗? 不是空的,细胞壁与原生质层间存在蔗糖溶液。因为细胞壁具有全透性,蔗 糖溶液可以进入细胞壁,但不能进入具有选择透过性的原生质层。 细胞壁 细胞膜 叶绿体 细胞核 细胞液 细胞质 液泡膜 (伸缩性小)具有全透性 原生质层(伸缩性大)具有选择透过性 (相当于半透膜)

ArcGIS实验-Ex18-利用水文分析方法提取山脊、山谷线

第十一章水文分析 练习1:利用水文分析方法提取山脊、山谷线 一、背景 山脊线、山谷线是地形特征线,它们对地形、地貌具有一定的控制作用。它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。因此在数字地形分析中,山脊线和山谷线以及地形特征点等的提取和分析是很有必要的。 二、目的 理解基于DEM结合水文分析的方法提取出研究区域的山脊线和山谷线的原理;掌握水流方向、汇流累积量的提取方法以及它们的提取原理;能将水文分析的方法和其它的空间分析方法相结合以解决应用问题。 三、要求 1、利用水文分析思想和工具提取研究区域的山脊线; 2、利用水文分析思想和工具提取研究区域的山谷线。 四、数据 一幅25m分辨率的黄土地貌DEM数据,数据的区域大概有140 km2。数据存于…/ChP11/Ex1中,请将其拷贝到E:/ChP11/Ex1。结果数据保存在…/ChP11/Ex1/Result中。 五、算法思想 对于水文物理过程研究而言,由于山脊、山谷分别表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。因此,对于山脊线和山谷线就可以利用水文分析的方法进行提取。 基于DEM的这种地形表面流水物理模拟分析的原理是:对于山脊线而言,由于它同时也是分水线,那么对于分水线上的那些栅格,由于分水线的性质是水流的起源点,通过地表径流模拟计算之后这些栅格的水流方向都应该只具有流出方向而不存在流入方向,也就是其栅格的汇流累积量为零。通过对零值的汇流累积值的栅格的提取,就可以得到分水线,也就得到了山脊线;对于山谷线而言,由于其具有汇水的性质,那么对于山谷线的提取,可以利用反地形的特点,即是利用一个较大的数值减去原始的DEM数据,而得到了与原始地形完全相反的地形数据,也就是原始的DEM中的山脊变成负地形的山谷,而原始DEM中的山谷在负地形中就变成了山脊,那么,山谷线的提取就可以在负地形中利用提取山脊线的方法进行提取。 六、操作步骤 1、正负地形的提取 (1) 启动ArcToolbox,展开Analysis Tools工具箱,打开hydrology工具集。在图层管理器中加载研究区域的原始DEM数据。 (2) 加载Spatial Analyst模块,点击Spatial Analyst模块的下拉箭头,点击neighborhood statistics菜单工具,利用邻域分析的方法以11×11的窗口计算平均值,如图1。分析结果命名为meandem,如图2所示。

利用ArcGIS水文分析工具提取河网的具体操作

利用ArcGIS水文分析工具提取河网的操作ArcGIS 水文分析工具提取河网 DEM包含有多种信息,ArcToolBox提供了利用DEM提取河网的方法,但是操作比较烦琐(帮助可参看Hydrologic analysis sample applications),今天结合我自己的使用将心得写出来与大家分享。提取河网首先要有栅格DEM,可以利用等高线数据转换获得。在此基础上,要经过洼地填平、水流方向计算、水流积聚计算和河网矢量转化这几个不步骤。 1.洼地填平 DEM洼地(水流积聚地)有真是洼地和数据精度不够高所造成的洼地。洼地填平的主要作用是避免DEM 的精度不够高所产生的(假的)水流积聚地。洼地填平使用ArctoolBox->Spatial Analysis Tools->Hydrol ogy->Fill工具。 2.水流方向计算 水流方向计算就可以使用上一步所生成的DEM为源数据了(如果使用未经洼地填平处理的数据,可能会造成精度下降)。这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Direction 工具。输入的DE M采用第一步的Fill1_exam1 3.水流积聚计算 这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Accumulation工具流向。栅格数据就是第二步所获得的数据(FlowDir_fill1)。可以看到,生成的水流积聚栅格已经可以看到所产生的河网了。现在所需要做的就是把这些河网栅格提取出来。可以把产生的河网的支流的象素值作为阀值来提取河网栅格。

4.提取河网栅格 使用spatial analyst中的栅格计算器,将所有大于河网栅格阀值的象素全部提取出来。至于这个阀值是多少因具体情况而定。通常是要大于积聚计算后得到栅格的最低河流象素值。这里采用的是500这个值。最 后生成只有0、1值的栅格数据。其中1表示是河网,0是非河网。 5.生成河网矢量 这里主要使用ArctoolBox->Spatial Analysis Tools->Stream to Feature工具.Input Stream raster 为第 四步只有0、1值的河网栅格。流向栅格使用第二步所生成的栅格数据。

膜分离实验报告

. . 膜分离实验 一.实验目的 1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。 2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。 3. 了解和熟悉超滤膜分离的工艺过程。 二.基本原理 膜分离技术是最近几十年迅速发展起来的一类新型分离技术。膜分离是以对组分具有选择性透过功能的人工合成的或天然的高分子薄膜(或无机膜)为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。 微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(RO)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。 四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。微滤膜的孔径围为0.05~10μm,所施加的压力差为0.015~0.2MPa;超滤分离的组分是大分子或直径不大于0.1μm的微粒,其压差围约为0.1~0.5MPa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa左右,也有高达10MPa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。 2.1微滤与超滤 微滤过程中,被膜所截留的通常是颗粒性杂质,可将沉积在膜表明上的颗粒层视为滤饼层,则其实质与常规过滤过程近似。本实验中,以含颗粒的混浊液或悬浮液,经压差推动通过微滤膜组件,改变不同的料液流量,观察透过液测清液情况。 对于超滤,筛分理论被广泛用来分析其分离机理。该理论认为,膜表面具有无数个微孔,这些实际存在的不同孔径的孔眼像筛子一样,截留住分子直径大于孔径的溶质和颗粒,从而

(完整版)咖啡因提取及鉴定实验报告

咖啡因提取及鉴定实验报告 题目:茶叶中咖啡因的提取分离及结构鉴定 实验目的: 1. 了解天然产物及其提取的概念和一般分离方法 2. 了解并学会使用回流提取的原理和操作 3. 了解如何用升华法提纯有机固体 4. 对从茶叶中提取咖啡因的整个过程必须了解 咖啡因的理化性质:咖啡因(含结晶水时)是无色针状结晶,味苦,能溶于水(2%)、乙醇(2%)、(氯仿12%)、苯(1%)等,在100℃时即失 去结晶水,并开始升华,120℃升华显著,178 ℃时升华很快, 融点为234.5 ℃,呈弱碱性。在植物中,咖啡因常与有机酸、 丹宁等结合呈盐的形式存在。咖啡因属于甲基黄嘌呤的生物 碱。纯的咖啡因是白色的,强烈苦味的粉状物。它的化学式是 C8H10N4O2。分子量,194.19 。 咖啡因的结构式: 实验原理:本实验从茶叶中提取咖啡因是用适当的溶剂(95%乙醇),在回流装置中连续提取并用蒸馏装置除去乙醇,得到粗制咖啡因,最后通 过升华提纯得到。 实验仪器及试剂:(1)仪器: 两个圆底烧瓶、两个三口烧瓶、一个直行冷凝管、两个1000ml烧杯、 两个500ml烧杯,两个50ml烧杯蒸发皿、玻璃漏斗、蒸馏头、水浴 锅、砂浴锅、温度计(250℃)、滤纸、刮刀、酒精灯、石棉网、电热 套 (2)试剂: 100g茶叶、乙醇(95%)、生石灰 实验步骤: 1.粗提8:00 称量茶叶100g并研碎 9:00 安装回流装置,将称量好的茶叶装入三口烧瓶中,并加入800ml 95%的乙醇。 9:30 开始回流

(1)连续萃取:称取100g绿茶叶,研细,放入回流提取装置中。在三 口烧瓶中加入95%乙醇,用电热套加热,连续提取。当提取液的 颜色变的很淡,立即停止加热。将仪器改成蒸馏装置,回收提取 液中的大部分乙醇。 (3)中和酸除水:残液倒入蒸发皿中,拌入生石灰40 g,在蒸气 浴上加热,不断搅拌,蒸干为止。随着温度升高,从浓绿色溶液变为糊状液。最后变为绿色粉末 (4)焙炒:把蒸发皿放在石棉网上,焙炒片刻,除尽水分。 2、升华 (1)仪器安装:在蒸发皿上放一张用大号针刺有许多小孔的圆 形滤纸,再把一只直径和蒸发皿相当的玻璃漏斗盖在上面,漏斗 颈部疏松地塞一小团棉花

相关文档
最新文档