2013MATLAB原理及应用实验报告第三章

2013MATLAB原理及应用实验报告第三章
2013MATLAB原理及应用实验报告第三章

《MATLAB原理及应用》实验报告

第三章MATLAB的符号运算

一.实验目的

1、掌握符号对象的命名方法

2、掌握符号表达式的基本运算

3、掌握符号级数的求法

二.实验设备

计算机、MATLAB软件

三.实验内容

1.确定符号表达式的变量

为了简化符号对象的操作和计算,MATLAB为用户提过了findsym命令。

r=findsym(S)确定符号表达式或者矩阵S中自由符号变量

r=findsym(S,n)确定符号表达式或者矩阵S中靠近x最近的n个独立符号变量。【实验3-1】使用MA TLAB的命令确定符号表达式的变量。

在MATLAB的命令窗口中输入下例内容:

>> syms a x y z t

确定下面简单符号表达式中的符号变量信息:

>>findsym(sin(pi*t))

ans =

t

确定下面简单符号表达式中的符号变量信息:

>>findsym(x+i*y-j*z)

ans =

x, y, z

确定下面简单符号表达式中的符号变量信息:

>>findsym(a+y,1)

ans =

y

2.符号表达式元算

1.符号表达式的四则运算

表达式的四则运算与数字运算一样,用+、-、/、运算符实现,其运算结果依然是一个符号表达式。

【实验3-2】

在MATLAB的命令窗口中输入下例内容:

>>f=sym('2*x^2+3*x-5');%定义符号表达式

g=sym('x^2-x+7');

f+g

ans =

3*x^2+2*x+2

ans =

3*x^2+2*x+2

>> f^g

ans =

(2*x^2+3*x-5)^(x^2-x+7)

3.符号表达式的提取分子和分母运算

如果符号表达式是一个有理分式或可以展开为有理分式,可以可利用numden函数来提取符号表达式的分子或分母。期一般调用格式为[n,d]=numden函数来提取符号表达式

该函数提取的符号表达式s的分子和分母,分别将它们存放在n和d中。

【实验3-3】

在MA TLAB的命令窗口中输入下例内容:

>> f= sym('a*x/(b+x)');

>> [n,d]=numden(f)

n =

a*x

d =

b+x

numden函数在提取各部分之前,将符号表达式有利化后返回所得分子和分母 >> g=sym('(x^2+3)/(2*x-1)+3*x/(x+1)');

>> [n,d]=numden(g)

n =

x^3+7*x^2+3

d =

(2*x-1)*(x+1)

如果符号表达式是一个符号矩阵,numden返回两个新矩阵n和d,其中n 是分子矩阵,d是分母矩阵。

>> h=sym('[3/2,(2*x+1)/3;a/x+a/y,x+4]')

h =

[ 3/2, (2*x+1)/3]

[ a/x+a/y, x+4]

>> [n,d]=numden(h)

n =

[ 3, 2*x+1]

[ a*(y+x), x+4]

d =

[ 2, 3]

[ x*y, 1]

4.符号表达式的因式分解与展开

MATLAB提供了符号表达式分解与展开的函数,函数的调用格式为

①factor(s) :对符号表达式s分解因式。

②expand(s):对符号表达式s进行展开。

③collect(s):对符号表达式s进行合并同类型。

④collect(S,v) 将表达式S中相同次幂的合并,v的默认值是x

【实验3-4】

>> syms x y

下面简单符号表达式s1因式分解

>> s1=x^3-y^3;

>> factor(s1)

ans =

(x-y)*(x^2+x*y+y^2)

下面简单符号表达式s2进行展开

>> s2=(-7*x^2-8*y^2)*(-x^2+3*y^2);

>> expand(s2)

ans =

7*x^4-13*x^2*y^2-24*y^4

下面简单符号表达式s3按变量y合并同类型

>> s3=(x+y)*(x^2+y^2+1);

>> collect(s3,y)

ans =

y^3+x*y^2+(x^2+1)*y+x*(x^2+1)

下面简单符号整数分解因式

>> factor(sym(630))

ans =

(2)*(3)^2*(5)*(7)

5.符号表达式的化简

MATLAB提供的对符号表达式化简的函数如下

Simplify(s) ;应用MuPAD简化规则对s进行化简。

Simple(s):调用MA TLAB的其他函数对表达式进行综合化简,并显示化简过程。

【实验3-5】

在MATLAB的命令窗口中输入下例内容:

>> s=sym('(x^2+5*x+6)/(x+2)');

>> simplify(s)

ans =

x+3

>> s=sym('[2*cos(x)^2-sin(x)^2,sqrt(16)]');

>> simplify(s)

ans =

[ 3*cos(x)^2-1, 4]

函数simple试用了几种不同的化简工具,然后选择在结果表达式中含有最少字符的那种形式。

下面是表达式cos(3arccos(x))的化简结果 >> s=sym('cos(3*acos(x))');

>> simple(s) %自动调用多种函数对s 化简,并显示每步结果 显示一系列化简过程后,最后显示化简结果 ans = 4*x^3-3*x

6.级数符号求和

求无穷级数的和需要符号表达式求和函数symsum,其调用格式为 Symsum(s,v,,n,m)

其中s 表示一个级数的通项,是一个符号表达式。v 是求和变量,v 省略时使用系统的默认变量。n 和m 是求和的开始项和末项。 【实验3-6】求 +++++

2

22131211k 在MA TLAB 的命令窗口中输入下例内容:

>> syms k

>> symsum(1/k^2,k,1,inf) ans = 1/6*pi^2 >> eval(ans) ans =

1.6449

7.符号微积分

1.符号的积分

符号积分由函数int 来实现,一般调用格式如下。 int(s):没有指定积分变量和积分阶数时,

int(s,v): 义v 为自变量,对被积函数或符号表达式求不定积分。

int(s,v,a,b): 求定积分运算,a,b 分别表示定积分的上下限。求函数的定积分 【实验3-6】

(1)dx x ?

cos

在MA TLAB 的命令窗口中输入下例内容: >> f=sym('cos(x)'); >> int(f) ans = sin(x)

2.符号的微分

diff 函数用于对符号表达式求导数,一般调用格式如下。

diff(s) :按findsym 函数指示的默认变量对符号表达式s 求一阶导数。 diff(s ,’v ’) :以v 为自变量,对符号表达式s 求一阶导数。

diff(s ,n) :按findsym 函数指示的默认变量对符号表达式s 求n 阶导数。

diff(s,’v’,n) ::以v为自变量,对符号表达式s求n阶导数。

【实验3-7】已知f(x)=ax2+bx+c,求f(x)的微分。

在MA TLAB的命令窗口中输入下例内容:

>> f=sym('a*x^2+b*x+c');

>> diff(f)

ans =

2*a*x+b

8.符号方程的求解

在MATLAB中,求解用符号表达式表示的代数方程可以用solve实现,其调用格式如下:

solve(s):求解符号表达式s的代数方程,求解变量为默认变量。

solve(s,v):求解符号表达式s的代数方程,求解变量为v

Solve (s1,s2…sn,v1,v2 …vn):求解符号表达式s1,s2…sn组成的代数方程,求解变量分别为v1,v2 …vn。

【实验3-8】求方程x2+2x+1=0的解

在MATLAB的命令窗口中输入下例内容:

>> f=sym('x^2+2*x+1=0');

>> solve(f)

ans =

-1

-1

9.课后练习题

1.提取符号表达式2

22m z u ar +++的自由变量

(当符号表达式中含有多余一个符号变量时,只有一个变量是独立变量,其余的符号当作常量。如果不指定那一个变量当作是自由变量,matlab 将基于一定原则选择一个自由变量。) 提示:findsym (s ,n ) >> syms a r u z m

>> findsym(a*r^2+u^2+z+m^2,1) ans = z

2.在MATLAB 中计算多项式2

35

2212-+++-x x x x 的父母和分子 (提示:使用[n ,d]=numden (A )) >> f=sym('(x^2-1)/(x+2)+(2*x+5)/(3*x-2)'); [n,d]=numden(f) n =

3*x^3 + 6*x + 12 d =

3*x^2 + 4*x - 4

2.1、建立符号函数5

332232-+x x

(1)提取该表达式的分子和分母,并分别付给两个变量

>> s=sym('3/2*x^2+2/3*x-3/5'); [n,d]=numden(s) n =

45*x^2 + 20*x - 18

d =

30

(2)对这两个变量分别进行代数运算(加减乘除及乘方)

>> f=sym('45*x^2 + 20*x - 18');

>> g=30;

>> f+g

ans =

45*x^2 + 20*x + 12

>> f-g

ans =

45*x^2 + 20*x - 48

>> f*g

ans =

1350*x^2 + 600*x - 540

>> f/g

ans =

(3*x^2)/2 + (2*x)/3 - 3/5

>> f^g

ans =

类项。 对参数x : >> syms x y

>> s=(x+exp(-y)*x^3-y)*((x^(1/2))*y+exp(-2*y)*x); >> collect(s,x) ans =

x^4/exp(3*y) + ((x^(1/2)*y)/exp(y))*x^3 + x^2/exp(2*y) + (x^(1/2)*y - y/exp(2*y))*x - x^(1/2)*y^2 对参数y : syms x y

s=(x+exp(-y)*x^3-y)*((x^(1/2))*y+exp(-2*y)*x); collect(s,y) ans =

(-x^(1/2))*y^2 + (- x/exp(2*y) + x^(1/2)*(x^3/exp(y) + x))*y + (x*(x^3/exp(y) + x))/exp(2*y)

>> f=sym('(x+exp(-y)*x^3-y)*(aqrt(x)*y+exp(-2*y)*x)') f =

(x+exp(-y)*x^3-y)*(aqrt(x)*y+exp(-2*y)*x)

>> collect(f) ans =

exp(-y)*exp(-2*y)*x^4+exp(-y)*aqrt(x)*y*x^3+exp(-2*y)*x^2+(-y*exp(-2*y)+aqrt(x)*y)*x-y^2*aqrt(x)

3.1.按t e -来合并表达式

))(1(2t t e x xe x --+++的同类项。 >> syms t

>> s=(x^2+x*exp(-t)+1)*(x+exp(-t)); >> collect(s,exp(-t)) ans =

x/exp(2*t) + (2*x^2 + 1)/exp(t) + x*(x^2 + 1)

4、使用simple和simplify两个指令分别化简

3

2

3

8

12

6

1

+

+

+

=

x

x

x

f

,比较两个

结果有什么不同

用simplify:

>> s=sym('(1/x^3+6/x^2+12/x+8)^(1/3)'); >> simplify(s)

结果为:

ans =

((2*x + 1)^3/x^3)^(1/3)

用simple:

>> s=sym('(1/x^3+6/x^2+12/x+8)^(1/3)'); >> simple(s)

simplify:

((2*x + 1)^3/x^3)^(1/3)

radsimp:

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) simplify(100):

((2*x + 1)^3/x^3)^(1/3)

combine(sincos):

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) combine(sinhcosh):

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) combine(ln):

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) factor:

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) expand:

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) combine:

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3)

rewrite(exp):

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) rewrite(sincos):

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) rewrite(sinhcosh):

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) rewrite(tan):

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) mwcos2sin:

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) collect(x):

(12/x + 6/x^2 + 1/x^3 + 8)^(1/3) 结果为: ans =

((2*x + 1)^3/x^3)^(1/3)

1)>> syms x k >> symsum(x^k,k,0,inf) ans =

piecewise([1 <= x, Inf], [abs(x) < 1, -1/(x - 1)])

>>syms x k

>>symsum((x^k)/(factorial(k)),k,0,inf)

6.分别求下例积分 (1)

dx x ?+211 (2)dx x b a ?+2

11 (3)dx x ?+21211

>> s=sym('1/(1+x^2)'); >> int(s,x) ans =

atan(x)

>> syms a b; >> int(s,x,a,b)

ans =

atan(b)-atan(a)

>> int(s,x,1,2)

ans =

atan(2)-1/4*pi

7.

2

cos x

y 求'y、''y、'''y 'y:

>> f=sym('cos(x^2)')

f =

cos(x^2)

>> diff(f)

ans =

-2*x*sin(x^2)

''y:

>> f=sym('cos(x^2)');

>> diff(f,2)

ans =

- 2*sin(x^2) - 4*x^2*cos(x^2) '''y:

>> f=sym('cos(x^2)');

>> diff(f,3)

ans =

8*x^3*sin(x^2) - 12*x*cos(x^2)

8. 求三元非线性方程组 ??

?

??-=?=+=++1430122z y z

x x x 的解 >> syms x y z

[x y z]=solve('x^2+2*x+1=0','x+3*z=4','y*z=-1','x','y','z') x = -1 y = -3/5 z = 5/3

叠加原理-实验报告范文(含数据处理).doc

精品资料 叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。

机械原理习题及解答

机构的结构分析 2-1填充题及简答题 (1)平面运动副的最大约束数为,最小约束数为。 (2)平面机构中若引入一高副将带入个约束,而引入一个低副将带入个约束。 (3)机构具有确定运动的条件是什么? (4)何谓复合铰链、局部自由度和虚约束? (5)杆组具有什么特点?如何确定机构的级别?选择不同的原动件对机构级别有无影响? 答案: (1)平面运动副的最大约束数为2,最小约束数为1 (2)平面机构中若引入一高副将带入1个约束,而引入一个低副将带入2个约束。 (3)机构具有确定运动的条件是:机构的自由度大于零,且自由度数等于原动件数。 (4)复合铰链:在同一点形成两个以上的转动副,这一点为复合铰链。 局部自由度:某个构件的局部运动对输出构件的运动没有影响,这个局部运动的自由度叫局部自由度。 虚约束:起不到真正的约束作用,所引起的约束是虚的、假的。 (5)杆组是自由度为零、不可再拆的运动链。机构的级别是所含杆组的最高级别。选择不 同的原动件使得机构中所含杆组发生变化,可能会导致机构的级别发生变化。 2-2 计算下图机构的自由度,若含有复合铰链,局部自由度,虚约束等情况时必须一一指出, 图中BC、ED、FG分别平行且相等。要使机构有确定运动,请在图上标出原动件。 2-2答案:B点为复合铰链,滚子绕B点的转动为局部自由度,ED及其两个转动副引入虚 约束,I、J两个移动副只能算一个。

11826323=-?-?=--=h L p p n F 根据机构具有确定运动的条件,自由度数等于原动件数,故给凸轮为原动件。 2-3 题图2-3所示为一内燃机的机构简图,试计算其自由度,以AB 为原动件分析组成此机 构的基本杆组。又如在该机构中改选EF 为原动件,试问组成此机构的基本杆组是否与前有所不同,机构的级别怎样? 2-3答案:110273=?-?=F 。注意其中的C 、F 、D 、H点并不是复合铰链。 以AB 为原动件时: 此时,机构由三个Ⅱ级基本杆组与原动件、机架构成,机构的级别为二级。 以EF 为原动件时: 机构由1个Ⅱ级基本杆组,1个Ⅲ级基本杆组和机架组成。机构的级别为三级。显然,取不同构件为原动件,机构中所含的杆组发生了变化,此题中,机构的级别也发生了变化。 2-4 图示为一机构的初拟设计方案。试分析:

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

实验二_基尔霍夫定律和叠加原理的验证(实验报告答案)

实验二基尔霍夫定律和叠加原理的验证 一、实验目的 1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。 3.进一步掌握仪器仪表的使用方法。 二、实验原理 1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 (1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。 (2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。 基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。 基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。 2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。某独立源单独作用时,其它独立源均需置零。(电压源用短路代替,电流源用开路代替。)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流数字电压表 1 块 3.直流数字毫安表 1 块 4.万用表 1 块 5.实验电路板 1 块 四、实验内容 1.基尔霍夫定律实验 按图2-1接线。

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

北邮通信原理软件实验报告XXXX27页

通信原理软件实验报告 学院:信息与通信工程学院 班级: 一、通信原理Matlab仿真实验 实验八 一、实验内容 假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。 二、实验原理 1、具有离散大载波的双边带幅度调制信号AM 该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为: 应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制: AM信号的频谱特性如下图所示: 由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。 2、双边带抑制载波调幅(DSB—SC AM)信号的产生 双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波 c(t)相乘得到,如图所示: m(t)和正弦载波s(t)的信号波形如图所示:

若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。 3、单边带条幅SSB信号 双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。 单边带条幅SSB AM信号的其表达式: 或 其频谱图为: 三、仿真设计 1、流程图:

《微机原理及应用》教材课后习题参考答案

《80X86/Pentium微型计算机原理及应用》教材课后习题参考答案 第三章 3-5 (1)MOV SI, 2100H 源:立即数;目标:寄存器 (2)MOV CX, DISP[BX] 源:基址,EA=BX+DISP,PA=DS×16+BX+DISP;目标:寄存器 (3)源:寄存器;目标:寄存器间接寻址EA=SI,PA=DS×16+SI (4)源:基址加变址,EA=BX+SI,PA=DS×16+BX+SI;目标:寄存器 (5)源:寄存器;目标:寄存器 (6)源:基址,EA=BX+10H,PA= DS×16+BX+10H;目标:寄存器 (7)源:寄存器间接,EA=BX,PA= ES×16+BX;目标:寄存器 (8)源:带位移量的基址加变址,EA=BX+SI+20H,PA= DS×16+BX+SI+20H;目标:寄存器 (9)源:寄存器;目标:寄存器间接,EA=BP,PA= SS×16+BP (10)源:寄存器;目标:存储器,EA=SP-2,PA= SS×16+SP-2 3-7 (1)源操作数错,基址+基址不能用在存储器寻址方式中,只能基址+变量,改成MOV AX, [BX+SI] (2)错,V ALUE1和V ALUE2一般为自己定义的变量名称,则此两操作数的组合形式为存储器和存储器,ADD指令无此组合形式 (3)错,立即数不能直接传给段寄存器 (4)错,CS不能作为目标操作数 (5)错,立即数不能作为目标操作数,两个操作数互换位置即可 (6)如果V ALUE1是用DW定义的WORD型变量,则此题正确,否则错误 (7)错,段寄存器不能直接传给段寄存器 (8)错,移位次数超过1时,应该先将移位次数送给CL,改成MOV CL, 3; ROL [BX][DI],CL (9)错,NOT操作符只有一个操作数 (10)对,CS不能作为目标操作数,但可以作为源操作数 (11)错,不能直接将立即数压入堆栈 (12)错,两处错误,1:IN指令应该AL在前,端口地址在后;2:端口地址100H超过8位数能表示的范围,应该先将100H送给DX,改成MOV DX, 100H; IN AL, DX (13)错,LEA指令的第二操作数必需为存储器寻址方式 (14)错,CX不能作为寄存器间接寻址方式,应将CX改成BX/BP/SI/DI之一 3-8 (1)AX=3355H, SP=1FFEH (2)AX=3355H, DX=4466H, SP=1FFCH 3-9 BX=4154H, [2F246H]=6F30H 3-10 BX=139EH 3-11 SI=0180H, DS=2000H 3-12 (1) CL=F6H (2) [1E4F6H]=5678H (3) BX=9226H, AX=1E40H

叠加原理 实验报告范文(含数据处理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时, I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。

机械原理实验报告

机械原理实验指导 实验一 机构运动简图的测绘 一、 实验目的 1.掌握根据各种机构实物或模型绘制机构运动简图的方法; 2.验证机构自由度的计算公式; 3.分析某些四杆机构的演化过程。 二、 实验设备和工具 1.各类机构的模型和实物; 2.钢板尺、量角器、内外卡钳等; 3.三角尺、铅笔、橡皮、草稿纸等(自备)。 三、 实验原理 由于机构的运动仅与机构中构件的数目和构件所组成的运动副数目、类型和相对位置有关。因此,可以撇开构件的实际外形和运动副的具体构造,用简单的线条来表示构件,用规定的或惯用的符号来表示运动副,并按一定的比例画出运动副的相对位置,这种简单的图形即为机构运动简图。 四、 实验步骤 1.使被测机构缓慢运动,从原动件开始,循着传动路线观察机构的运动,分清各个运动单元,确定组成机构的构件数目; 2.根据直接相联接两构件的接触情况及相对运动性质,确定运动副的种类; 3.选择能清楚表达各构件相互关系的投影面,从原动件开始,按传动路线用规定的符号,以目测的比例画出机构运动示意图,再仔细测量与机构有关的尺寸,按确定的比例再画出机构运动简图,用数字1、2、3……分别标注各构件,用字母A 、B 、C ……分别标注各运动副; 比例尺) (构件在图纸上的长度 ) (构件实际长度mm AB cm L AB L = μ 4.分析机构运动的确定性,计算机构运动的自由度。

五、思考题 1.一张正确的机构运动简图应包括哪些内容? 2.绘制机构运动简图时,原动件的位置能否任意选择?是否会影响简图的正确性? 3.机构自由度的计算对测绘机构运动简图有何帮助? 六、实验报告

实验二 渐开线齿轮的范成原理 一、 实验目的 1.掌握用范成法加工渐开线齿轮齿廓曲线的原理; 2.了解齿廓产生根切现象的原因及避免根切的方法; 3.了解刀具径向变位对齿轮的齿形和几何尺寸的影响。 二、 实验设备和工具 1.齿轮范成仪; 2.剪刀、绘图仪; 3.圆规、三角尺、两种颜色的铅笔或圆珠笔(自备)。 三、 实验原理 范成法是利用齿轮啮合时其共轭齿廓互为包络线的原理来加工齿轮的一种方法。加工时,其中一轮为刀具,另一轮为轮坯。他们之间保持固定的角速度比传动,好象一对真正的齿轮啮合传动一样,同时刀具还沿轮坯的轴向作切削运动,这样制得的齿轮齿廓就是刀具的刀刃在各个位置的包络线。为了能清楚地看到包络线的形成,我们用范成仪来模拟实现齿轮轮坯与刀具间的传动“切削”过程。 齿轮范成仪构造如图2——1所示,半圆盘2绕固定于机架上的轴心转动,在圆盘的周缘刻有凹槽,凹槽内嵌有两条钢丝3,钢丝绕在凹槽内,其中心线形成的圆相当于被加工齿轮的分度圆。两条钢丝的一端固定在圆盘2上的B 、B ‘ 点,另一端固定在拖板4的A 、A ’ 点,拖板可水平方向移动,这与被加工齿轮相对齿条刀具的运动方向相同。 在拖板4上还装有带有刀具的小拖板5,转动螺钉7可以调节刀具中线至轮坯中心的距离。 齿轮范成仪中,已知基本参数为: 1. 齿条刀具:压力角0 20=α,模数mm m 25=, 齿顶高系数0.1* =a h ,径向间隙系数25.0* =C 2. 被加工齿轮:分度圆直径mm d 200= 四、 实验步骤 1.根据已知基本参数分别计算被加工齿轮的基圆直径d b 、最小变位系数x min ,标准齿轮和变位齿轮的齿顶圆直径d a1和d a2、齿根圆直径d f1和d f2,将上述六个圆

通信原理实验报告

AM调制和解调的仿真原理:1)AM调制的原理是,发射信号的一侧将信号加到高频振荡上,然后通过天线发射出去。在此,高频振荡波是载波信号,也称为载波。调幅是通过调制信号来控制高频载波的幅度,直到其随调制信号线性变化。在线性调制系列中,第一幅度调制是全幅度调制或常规幅度调制,称为am。在频域中,调制频谱是基带调制信号频谱的线性位移;在时域中,调制包络与调制信号波形具有线性关系。设正弦载波为:C(T)= ACOS (WCT +φ0),其中a为载波幅度;WC是载波角频率;φ0是载波的初始相位(通常假设φ0 = 0)。调制信号(基带信号)为m(T)。根据调制的定义,幅度调制信号(调制信号)通常可以表示为:如果调制信号M(T)的频谱为m(W),则SM(T)= am(T)cos(WCT),则调制信号的频谱SM(T):SM(W)= a [M(W + WC)+ m(w﹥6 ﹣1wc)] /22。从高频调制信号中恢复调制信号的过程称为解调。)也称为检测。对于幅度调制信号,解调是从幅度变化中提取调制信号的过程。解调是调制的逆过程。产品类型的同步检波器可用于解调振幅。可以将调制信号与本地恢复载波信号相乘,并且可以通过低通滤波来获得解调信号。下图显示了AM解调的原理:原理图和仿真结果:参数设置:正弦波WAVE1和正弦波WAVE2

模块分别在发送器和接收器处生成载波信号,并且角频率ωC设置为60 rad / s,并且调幅系数为1;调制信号M(T)由正弦波模块产生,为正弦波信号,角频率为5rad / s,幅度为1V。直流分量A0恒定。低通滤波器模块的截止频率设置为6rad / s。承运人:sin60t;调制信号:sin(5T)sin(60t)2 2. B DSB调制和解调模拟调制原理:在幅度调制的一般模型中,如果滤波器是全通网络(= 1),则滤波器中没有DC分量。调制信号,则输出调制信号是没有载波分量(DSB)的双边带调制信号。当源信号的极性改变时,调制信号的相位将突然改变π。SDSB (T)= m(T)coswct调制的目的是将调制信号的频谱移动到所需位置,从而提高系统信息传输的有效性和可靠性。DSB调制原理的框图如图4-3所示:图1:DSB信号本质上是基带信号和载波的乘法,而卷积在频域中。表达式为:调制后,s DSB(W)= [M(W + WC)+ m (W?6?1 WC)] / 2(1),已调制信号的带宽变为原始基带信号带宽的两倍:模拟基带信号的带宽为W。则调制信号的带宽为2W;(2)在调制信号中没有离散的载波频率分量,因为原始的模拟基带信号不包含离散的DC分量。(3)(4)某个信号的频谱或随机信号的功率谱是基带信号的频谱/功率谱的线性位移。因此,它称为线性调制。解调原理:DSB只能进

微机原理及应用陈继红徐晨课后习题答案

微机原理及应用(陈继红、徐晨)课后习题答案 第三章 8086/8088指令系统和寻址方式习题答案(部分) 3.1 总结计算机中十进制、二进制、八进制及十六进制数的书写形式。 123D、0AFH、 77Q、1001110B分别表示什么计数制的数 答案:123D、0AFH、77Q、1001110B分别表示十进制、十六进制、八进制、二进制。3.2字长为 8位、16位二进制数的原码、补码表示的最大数和最小数分别是什么 答案:8位原码表示的最大数:(27-1)、8位补码表示的最大数:(27-1)、8位原码表示的最小数:-(27-1)、8位补码表示的最小数 -27。 16位原码表示的最大数:(215-1)、16位补码表示的最大数:(215-1)、16位原码表示的最小数:-(215-1)、16位补码表示的最小数 -215。 3.3 把下列十进制数分别转换为二进制数和十六进制数。 (1)125 (2)255 (3)72 (4)5090 答案:(1) 125二进制数: 0111 1101B;十六进制数: 7DH。 (2)255二进制数: 1111 1111B;十六进制数:0FFH。 (3)72二进制数: 0100 1000B;十六进制数: 48H。 (4)5090二进制数: 0001 0011 1110 0010B;十六进制数: 13E2H。 3.4 把下列无符号二进制数分别转换为十进制数和十六进制数。 (1)1111 0000 (2)1000 0000 (3)1111 1111 (4)0101 0101 答案:(1)1111 0000十进制数: 240D;十六进制数: 0F0H。 (2)1000 0000十进制数: 128D;十六进制数: 80H。 (3)1111 1111十进制数:255D;十六进制数: 0FFH。 (4)0101 0101十进制数: 85D;十六进制数: 55H。 3.5 把下列无符号十六进制数分别转换为十进制数和二进制数。 (1)FF (2)ABCD (3)123 (4)FFFF 答案:(1)FF十进制数:255D;二进制数;

通信原理实验报告systemview-数字信号的基带传输

通信原理实验报告 实验名称:数字信号的基带传输 一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性;

(3)通过时域、频域波形分析系统性能。 二、仿真环境 SystemView 仿真软件 三、实验原理 (1)数字基带传输系统的基本结构 它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。 1.信道信号形成器 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的。 2.信道 是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。 3.接收滤波器 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 4.抽样判决器 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取。 (2) 奈奎斯特第一准则 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变, 即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号, 因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个 传送过程传递函数满足: 令k′=j -k , 并考虑到k′也为整数,可用k 表示: 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器 是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波 器。 升余弦滤波器满足的传递函数为: ???=+-0)(1])[(0或其它常数t T k j h b k j k j ≠=???=+0 1)(0t kT h b 00≠=k k

叠加原理实验报告

一、实验目的 1、通过实验来验证线性电路中的叠加原理以及其适用范围。 2、学习直流仪器仪表的测试方法。 二、实验器材 序号名称数量备注 1稳压、稳流源1DG04 2直流电路实验1DG05 3 1D31-2 直流电压、电流表 三、实验原理 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 四、实验内容及步骤 实验线路如图3-4-1所示。 图3-4—1 1、按图3-4-1,取U1=+12V,U2调至+6V。 2、U1电源单独作用时(将开关S1拨至U1侧,开关S2拨至短路侧),用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表格中。 3、U2电源单独作用时(将开关S1拨至短路侧,开关S2拨至U2侧),重复实验步骤2的测量和记录。 4、令U1和U2共同作用时(将开关S1和S2分别拨至U1和U2侧),重复上述的测量和记录。 五、实验数据处理及分析 线性叠加定理数据记录表 实验内容I?I?I?Uab Ucd Uad Ude Ufa U?单独作用8.360 -2.274 6.313 2.378 0.845 3.26 4.351 4.379

U?单独作用-1.06 3.586 2.422 -3.46 -1.24 1.245 -0.59 -0.537 U?,U?共同作 7.423 1.231 8.761 -1.248 -0.411 4.413 3.797 3.783 用 非线性叠加定理数据记录表 实验内容I?I?I?Uab Ucd Uad Ude Ufa U?单独作用8.556 -2.23 6.296 0.38 0.663 3.161 4.395 4.397 U?单独作用0.041 0.041 0.045 -0.002 5.872 0 0 0 U?,U?共同作 7.82 0 7.836 -0.002 -2.089 3.957 3.974 3.953 用 电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。电阻改为二极管后,叠加原理不成立。 六、实验总结 测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。

机械原理实验思考题参考

《机构测绘、分析及设计》实验思考题参考答案 1.一个正确的“机构运动简图”应能说明哪些内容? 机构运动简图应着重表达机构各构件间的相对运动关系,应包括原动件的运动规律、机构中所有构件和运动副的类型、数目及其相对位置(即转动副的中心位置、移动副的中心线位置和高副接触点的位置),而与构件的外形、断面尺寸、组成构件的零件数目及其固联方式和运动副的具体结构无关。因此绘制机构运动简图可以撇开构件的复杂外形和运动副的具体构造,用简单的线条和规定的符号代表构件和运动副,并按比例定出各运动副的相对位置。 2.根据所装配的曲柄滑块机构,分析此机构中曲柄存在条件是什么?连杆长度与机构传力性能之间有什么关联? 曲柄滑块机构中曲柄存在条件是: L AB +e<=L BC 连杆长度越长则机构传力性能越好,因为连杆越长则压力角越小。 3.牛头刨六杆机构中滑杆的行程长度如何调整?调整曲柄长度 4.曲柄滑块机构、曲柄摇块机构、摆动导杆机构之间的演化关系如何?举例说明机构演化的方法有哪些? 铰链四杆机构可以通过四种方式演化出其它形式的四杆机构。即①取不同构件为机架;②转动副变移动副;③杆状构件与块状构件互换;④销钉扩大。 曲柄滑块机构曲柄摇块机构摆动导杆机构

曲柄滑块机构、曲柄摇块机构、摆动导杆机构之间通过取不同构件为机架来演化。 对心曲柄滑块机构偏心轮滑块机构 牛头刨六杆机构正弦机 构曲柄摇杆机构 《平面机构特性分析》实验思考题参考答案 1、铰链四杆机构(L1=50 mm,L2=100 mm,L3=80 mm)中,通过改变机架长度可得到何种机构? 设四杆机构中机架L4<=50,L4=L min,则由曲柄存在条件:最短杆与最长杆的长度之和必须小于或等于其余二杆的长度之和(L max+L min<=L2+L3)可得: 100+L4<=50+80 即0=100,L4=L max,则由曲柄存在条件:最短杆与最长杆的长度之和必须小于或等于其余二杆的长度之和(L max+L min<=L2+L3)可得:

通信原理软件仿真实验报告-实验3-模拟调制系统—AM系统

成绩 西安邮电大学 《通信原理》软件仿真实验报告 实验名称:实验三模拟调制系统——AM系统院系:通信与信息工程学院 专业班级:通工 学生姓名: 学号:(班内序号) 指导教师: 报告日期:2013年5月15日

实验三模拟调制系统——AM系统 ●实验目的: 1、掌握AM信号的波形及产生方法; 2、掌握AM信号的频谱特点; 3、掌握AM信号的解调方法; 4*、掌握AM系统的抗噪声性能。 ●仿真设计电路及系统参数设置: 图1 模拟调制系统——AM系统仿真电路 建议时间参数:No. of Samples = 4096;Sample Rate = 20000Hz 1、记录调制信号与AM信号的波形和频谱; 调制信号为正弦信号,Amp= 1V,Freq=200Hz; 直流信号Amp = 2V; 余弦载波Amp = 1V,Freq= 1000Hz; 频谱选择|FFT|; 2、采用相干解调,记录恢复信号的波形和频谱; 接收机模拟带通滤波器Low Fc = 750Hz,Hi Fc = 1250Hz,极点个数6;接收机模拟低通滤波器Fc = 250Hz,极点个数为9;

3、采用包络检波,记录恢复信号的波形和频谱; 接收机包络检波器结构如下: 其中图符0为全波整流器Zero Point = 0V; 图符1为模拟低通滤波器Fc = 250Hz,极点个数为9; 4、在接收机模拟带通滤波器前加入高斯白噪声; 建议Density in 1 ohm = 0.00002W/Hz; 观察并记录恢复信号波形和频谱的变化; 5*、改变高斯白噪声的功率谱密度,观察并记录恢复信号的变化。 仿真波形及实验分析: 1、记录调制信号与AM信号的波形和频谱; 图1-1 调制信号波形 图1-2 AM已调信号波形

叠加原理 实验报告范文(含数据处理)

叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1 3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。

表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。 七、实验小结 测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。

哈工程通信原理软件仿真实验报告

实验报告 哈尔滨工程大学教务处制

实验一基带码型仿真 (一)单、双极性归零码仿真 一、实验原理 1.1归零码 归零码,是信号电平在一个码元之内都要恢复到零的编码方式,它包括曼彻斯特编码和差分曼彻斯特编码两种编码方式。 1.2单、双极性归零码 对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。 A)单极性不归零码,无电压表示”0”,恒定正电压表示”1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。 单极性归零码(RZ)即是以高电平和零电平分别表示二进制码1 和0,而且在发送码1 时高电平在整个码元期间T 只持续一段时间τ,其余时间返回零电平.在单极性归零码中,τ/T 称为占空比.单极性归零码的主要优点是可以直接提取同步信号,因此单极性归零码常常用作其他码型提取同步信号时的过渡码型.也就是说其他适合信道传输但不能直接提取同步信号的码型,可先变换为单极性归零码,然后再提取同步信号 B)双极性不归零码,”1”码和”0”码都有电流,”1”为正电流,”0”为负电流,正和负的幅度相等,判决门限为零电平。 双极性归零码是二进制码0 和1 分别对应于正和负电平的波形的编码,在每个码之间都有间隙产生.这种码既具有双极性特性,又具有归零的特性.双极性归零码的特点是:接收端根据接收波形归于零电平就可以判决1 比特的信息已接收完毕,然后准备下一比特信息的接收,因此发送端不必按一定的周期发送信息.可以认为正负脉冲的前沿起了起动信号的作用,后沿起了终止信号的作用.因此可以经常保持正确的比特同步.即收发之间无需特别的定时,且各符号独立地构成起止方式,此方式也叫做自同步方式.由于这一特性,双极性归零码的应用十分广泛。 1.3 功率谱密度 求信号的功率谱,功率谱= 信号的频率的绝对平方/ 传输序列的持续时间,求得的 功率谱进行单位换算以dB值表示

微机原理及应用试题库(附答案)

《微机原理及应用》试题库 1. 8086和8088的引脚信号中, D 为地址锁存允许信号引脚。 A.CLK B.INTR C.NMI D.ALE 2. 下面的哪项是有效标识符: B A . 4LOOP: B. DELAYIS: C. MAIN A/B: D. GAMA$1: 3. 如图所示的三态输出电路,当 A 时,V B≈V DD。 A. E(ENABLE)=1, A=1 B. E(ENABLE)=1, A=0 C. E(ENABLE)=0, A=1 D. E(ENABLE)=0, A=0 4. 设(SS)=2000H,(SP)=0100H,(AX)=2107H,则执行指令PUSH AX 后,存放数据21H的物理地址是 D 。 A. 20102H B. 20101H C. 200FEH D. 200FFH 5. 汇编语言中,为了便于对变量的访问, 它常常以变量名的形式出现在程序中, 可以认为它是存放数据存储单元的 A 。 A.符号地址B.物理地址C.偏移地址D.逻辑地址 6. 下列四个寄存器中,不能用来作为间接寻址方式的寄存器是 A 。 A. CX B. BX C. BP D. DI (C)7. 执行下列程序段: MOV AX,0 MOV BX,1 MOV CX,100 AA:ADD AX,BX INC BX LOOP AA HLT 执行后的结果:(AX)= ,(BX)= 。 A. 5050,99 B. 2500,100 C. 5050,101 D. 2550,102 8. 假设V1和V2是用DW定义的变量,下列指令中正确的是 A 。 A.MOV V1, 20H B.MOV V1, V2 C.MOV AL, V1 D.MOV 2000H, V2 9. – 49D的二进制补码为 A 。

机械原理实验报告大全

机械原理实验项目 机械原理课程实验(一) 机械传动性能测试实验 一、实验目的 (1) 通过测试常见机械传动装置(如带传动、链传动、齿轮传动、蜗杆传动等)在传递运动与动力过程中的速度、转矩、传动比、功率及机械效率等,加深对常见机械传动性能的认识与理解。 (2) 通过测试由常见机械传动组成的不同传动系统的机械参数,掌握机械传动合理布置的基本要求。 (3) 通过实验认识机械传动性能综合实验台的工作原理、提高计算机辅助实验能力。 二、实验设备 机械传动性能测试综合实验台。 三、实验内容 机械传动性能测试是一项基于基本传动单元自由组装、利用传感器获取相关信息、采用工控机控制实验对象的综合性实验。它可以测量用户自行组装的机械传动装置中的速度、转矩、传动比、功率与机械效率,具有数据采集与处理、输出结果数据与曲线等功能。 机械传动性能测试实验台的逻辑框图 变频 电机 ZJ 扭矩 传感器 ZJ 扭矩 传感器 工作载荷 扭矩测量卡 转速调节 机械传动装置 负载调节 工控机 扭矩测量卡

机械原理课程实验(二) 慧鱼机器人设计实验 一、实验目的 1)通过对慧鱼机器人、机电产品的系统运动方案的组装设计,培养学生独立确定系统运动方案设计与选型的能力。 2)利用“慧鱼模型”组装机器人模型,探索机器人各个功能的实现方法,进行机电一体化方面的训练。 二、实验设备 1)慧鱼创意组合模型包; 2)计算机一台; 3)可编程控制器、智能接口板; 4)控制软件。 三、实验内容 “慧鱼创意组合模型”是工程技术型模型,能够实现对工程技术以及机器人技术等的模拟仿真。模型是由各种可以相互拼接的零件所组成,由于模型充分体现了各种结构、动力、控制的组成因素,并设计了相应的模块,因此,可以拼装成各种各样的机器人模型,可以用于检验学生的机械结构和机械创新设计与控制的合理可行性。 慧鱼机器人实验二室 自动步行车 学生创新实验

word版本hslogic_通信原理仿真实验报告

通信原理仿真实验报告 实验一 功率谱密度 1.1功率谱密度简介 平稳过程的任何一个非零样本函数的持续时间为无限长,显然都不满足绝对可积和总能量有限的条件。因此,它的傅里叶变换不存在即没有频谱函数。所以我们用功率谱密度来表述其频谱特性。 随机过程的任一实现是一个确定的功率型信号。而对于任意的确定功率信号f(t),它的功率谱密度为: 2 ()()lim T f T F P T ωω→∞ = 式中,()T F ω是f(t)的截短函数() T f t 对应的频谱函数。f(t)是平稳随机过程() t ξ的一个实现。而随机过程某一个实现的功率谱密度不能作为过程的功率谱密度。过程的功率谱密度应该看作是任一实现的功率谱密度的统计平均,即 2 () ()[()]lim T f T E F P E P T ξωωω→∞ == 虽然该式给出了平稳随机过程的功率谱密度,但我们通常都不利用这个式子来计算功率谱。我们知道,确知的非周期功率信号的自相关函数与功率谱密度是一对傅里叶变换。对于平稳随机过程,也有类似的关系,即 ()()j P R e d ωτ ξωττ ∞ --∞=?和 1 ()()2j R P e d ωτ ξτωωπ ∞ -∞ = ? 对于平稳随机过程我们通常先求出其自相关函数再利用上式求出其功率谱密度。 1.2实验要求 ? 1.了解平稳随机信号功率谱的概念及计算方法 ? 2.仿真不同占空比,等概、非等概双极性矩形随机信号的归一化功率谱密度 ? 3.分析不同信号(不同占空比,等概非等概)所包含的频谱分量,有无直流 分量和定时分量信息 1.3实验 1、随机的脉冲序列没有确定的频谱函数,所以只能用功率谱来描述它的频谱特征。随机序列的功率谱密度可能包含连续谱和离散谱,其中连续谱可以确定随机序列的带宽,离散谱可以确定随机序列是否包含直流分量和定时分量。 2、仿真图形

相关文档
最新文档