函数连续和可导性练习题

函数连续和可导性练习题

'.

;. 1. 讨论函数??

?<-≥-=1,11,1)(x x x x x f 在1=x 处的连续性。 2. 已知???>+≤=1

,1,2)(x b ax x x x f 在1=x 处的连续,试求a 值。 3. 设函数???≥+<=0

,0,)(x x a x e x f x 在0=x 处的连续,试求a 值。 4. 讨论函数???<-≥=0

,0,)(x x x x x f 在0=x 处的连续性和可导性。 5. 设函数???≥<=0

,0,sin )(x x x x x f ,求)0(f '。 6. 证明函数??

???=≠=0,00,1arctan )(x x x x x f 在0=x 处的连续但不可导。 7. 确定b a 与.的值,使?

??<-≥+++=0,10,2)sin 1)(x e x a x b x f ax (在0=x 处可导。 8. 已知函数???<-≥=0

,0,)(2x x x x x f ,求)0(+'f 及)0(-'f 又)0(f '是否存在? 9. 设函数??

???<=>=0,0,0,)(2x x x A x x x f ,则A 为何值时)(x f 在0=x 处的连续,并讨论此时函数在0=x 处是否可导。

10. 确定b a 与.的值,使???>+≤=3

,3,)(2x b ax x x x f 在3=x 处可导。

(完整版)函数的单调性练习题及答案

函数的单调性练习题 一 选择题: 1. 函数f (x )=x 2+2x-3的递增区间为 ( ) A .(-∞,-3] B .[-3,1] C .(-∞,-1] D .[-1,+∞) 2. 如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是( ) A.[-3,+∞) B.(-∞,-3] C.(-∞,5] D.[3,+∞) 3. 函数111 y x =-- ( ) A .在(-1,+∞)内是单调递增 B .在(-1,+∞)内是单调递减 C .在(1,+∞)内是单调递减 D .在(1,+∞)内是单调递增 4. 如果函数()f x kx b =+在R 上单调递减,则( ) A. 0k > B. 0k < C. 0b > D. 0b < 5. 在区间(,0)-∞上为增函数的是( ) A .2y x =- B .2y x = C .||y x = D .2y x =- 6. 函数2()2f x x x =-的最大值是( ). A. -1 B. 0 C. 1 D. 2 7. 函数y x =+ ). A. 0 B. 2 C. 4 D. 二 填空题: 8. 函数f (x )=2x 2一mx+3,在(一∞,一1)上是减函数,在[一1,+∞)上是增函数,则m=_______。 9.已知()x f 是定义在()2,2-上的减函数,并且()()0211>---m f m f ,则实数m 的取值范围______________。 三 解答题: 10. 利用单调函数的定义证明:函数)2,0(2)(在区间x x x f + =上是减函数.

11.已知定义在区间(0,+∞)上的函数()x f 满足()()2121x f x f x x f -=???? ??,且当1>x 时 ()0

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

高中数学必修一函数的性质单调性测试题含答案解析

函数的性质单调性 1.在区间(0,+∞)上不是增函数的函数是() 222xxyxyyyx+ 1 DC..B.A.==2=3+1 +=2+1 x2mxxfx+5在区间[-2,+∞]上是增函数,在区间-2.函数((-∞,-)=42) 上是减函数,f(1)等于(则) B.1 C.17 A.-7 D.25 fxyfx+5)的递增区间是 (( (-2,3)上是增函数,则)=3.函数 ()在区间A.(3,8) B.(-7,-2) C.(-2,3) D.(0,5) ax?1axf的取值范围是 ).函数上单调递增,则实数(()=-2,+∞在区间() 4x?211,+∞) C.(-2,+∞) D.(-∞,-1)∪(1) A.(0,B.( ,+∞) 22fxabfafbfxab]内(, ())=0]上单调,且在区间([) ()<5.已 知函数0()在区间[,,则方程 A.至少有一实根 B.至多有一实根 C.没 有实根 D.必有唯一的实根 22gxxgxfxxxf) (.已知函数)=( ))=8+2( 2--,那么函数,如果 (() 6 A.在区间(-1,0)上是减函数 B.在区间(0,1)上是减函数 C.在区间(-2,0)上是增函数 D.在区间(0,2)上是增函数 fxf(x|,1)是其图象上的两点,那么不等式上的增函数,A(0,-1).已知函数7、(B(3)是R+1)|<1的解集的补集是 A.(-1,2) B.(1,4) C.(-∞,-1)∪[4,+∞) D.(-∞,-1)∪[2,+∞) fxtftf(5=,都有)(5R的函数+(上单调递减,对任意实数)在区间(-∞,5)8.定 义域为tfff(13) <(9)(-1)-<),下列式子一定成立的是 A.fffffffff(9) <-(13)<(-1) <1)B.(13)<(13) D(9)<.(-1) C.((9)<f(x)?|x|和g(x)?x(2?x)的递增 区间依次是(.函数9 ) B. A. C. D )??[1,[0,????)),][0,,(??,0],(??1]??),(??,1[(??,0],1,??????a4?,?的取值范 围是(10.已知函数)在区间上是减函数,则实数221fx??xx?2a?aaaa≥.3 .D≤≤3 B.5 ≥-3 C A.fxabab≤0,则下列不等式中正确的是(∈R且+11.已知())在区间(-∞,+∞上是增函数,)、 fafbfafbfafbfafb) ()(+)≤A .(()+(≤-)-()+B()].-()+

三角函数的单调性测试题(人教A版)(含答案)

三角函数的单调性(人教A版) 一、单选题(共13道,每道7分) 1.下列四个命题中,正确的个数是( )(1)在定义域内是增函数;(2) 在第一、第四象限是增函数;(3)与在第二象限都是减函数;(4) 在上是增函数. A.1个 B.2个 C.3个 D.4个 答案:A 解题思路: 试题难度:三颗星知识点:正切函数的单调性 2.的单调递增区间是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 3.函数的一个单调递增区间为( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 4.在上,使为增函数,为减函数的区间为( ) A. B. C. D. 答案:A

解题思路: 试题难度:三颗星知识点:余弦函数的单调性 5.在上,使为增函数,为减函数的区间为( ) A. B.或 C. D.或 答案:A 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 6.的单调递增区间是( )

A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:正切函数的单调性 7.关于函数,下列说法正确的是( ) A.在上递减 B.在上递增 C.在上递减 D.在上递减答案:C

解题思路: 试题难度:三颗星知识点:余弦函数的单调性 8.函数的最小正周期为,则( ) A.在上单调递减 B.在上单调递减 C.在上单调递增 D.在 上单调递增 答案:B 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 9.使函数为增函数的区间是( )

A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 10.函数的单调递减区间为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 11.已知函数,则在区间上的最大值与最小值

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

函数的连续性与间断点

第七节 函数的连续性与间断点 一、函数的连续性 1. 增量:变量x 从初值1x 变到终值2x ,终值与初值的差叫变量x 的增量,记作 x ?,即x ?=1x -2x 。(增量可正可负)。 例1 分析函数2x y =当x 由20=x 变到05.20=?+x x 时,函数值的改变量。 2.函数在点连续的定义 定义1:设函数y =)(x f 在点0x 的某个邻域内有定义,如果自变量x 的增量 x ?=0x x -趋向于零时,对应的函数增y ?=)()(0x f x f -也趋向于零,则称函数y =)(x f 在点0x 处连续。 定义2:设函数y =)(x f 在点0x 的某个邻域内有定义,如果函数)(x f 当 0x x →时的极限存在,即)()(lim 00 x f x f x x =→,则称函数y =)(x f 在点0x 处连续。 定义3:设函数y =)(x f 在点0x 的某个邻域内有定义,如果对任意给定的正数 ε,总存在正数δ,使得对于适合不等式δ<-0x x 的一切x ,所对应的函数值 )(x f 都满足不等式:ε <-)()(0x f x f ,则称函数y =)(x f 在点0x 连续。 注:1、上述的三个定义在本质上是一致的,即函数)(x f 在点0x 连续,必须同时满足下列三个条件:(1) 函数y =)(x f 在点0x 的某个邻域内有定义(函数y =)(x f 在点0x 有定义) ,(2) )(lim 0 x f x x →存在;(3))()(lim 00 x f x f x x =→。 3.函数y =)(x f 在点0x 处左连续、右连续的定义: (1)函数y =)(x f 在点0x 处左连续?)(x f 在(]00,x x δ-内有定义,且 )()(lim 000 x f x f x x =-→(即)()0(00x f x f =-)。 (2)函数y =)(x f 在点0x 处右连续?)(x f 在[)δ+00,x x 内有定义,且 )()(lim 000 x f x f x x =+→(即)()0(00x f x f =+)。 显然,函数y =)(x f 在点0x 处连续?函数y =)(x f 在点0x 处既左连续又右连

函数的单调性练习题

高一数学同步测试(6)—函数的单调性 一、选择题: 1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y =2x +1 B .y =3x 2+1 C .y = x 2 D .y =2x 2 +x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数, 则f (1)等于 ( ) A .-7 B .1 C .17 D .25 3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0, 2 1) B .( 2 1,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1)∪[2,+∞) 8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5 -t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞ C .]1,(),,0[-∞+∞ D ),1[),,0[+∞+∞

判断函数可导性的步骤【微积分】

《判断函数在x=x。处可导性的步骤》 利用知识:左右导数。 本人正读高中,知能浅薄,自行探究,若有疏漏请见谅。 【第一步】~~将原函数化成当x <x。与x>x。的"分段函数".(像y=x2这样,分段之后两个式子一样的也要写出来); 【第二步】~~将这两个式字都化成两个等价的、可用公式方便地求导的式子.(若原本很完美就省略这步); 【第三步】~~根据求导公式对每个式子进行求导。求导过程中,只着手式子,不用看定义域怎样。定义域照抄下来; 【第四步】 分类讨论···㈠若此时y′为常数,则比较y′左是否等于y′右······························?如果y′左=y′右=这个常数,则说y=f(x)在x=x。处可导····················?如果y′左≠y′右,则说y=f(x)在x=x。处不可导 ···㈡若此时y′为含x代数式,则看当把x=x。代入时有无意义··············?有意义,则代入x=x。后比较y′左与y′右·····①相同,可导②不相同,不可导···············?无意义,不可导。 【【例题演示】】 第一题 ··············判断y=|X|在x=0处是否可导.·············· 【第一步】y=|X|等价于y=-x x<0 y=x x>0 【第二步】省略 【第三步】y′=(|X|)′等价于y′左= -1 x<0 y′右= 1 x>0 【第四步】 其为常数,又由于两个常数不等,即左右导数不等,所以y=|X|在x=0处是否不可导。 第二题 ··············判断y=x2在x=0处是否可导····(X的平方)············ 【第一步】y=x2等价于 y=x2 x<0 y=x2 x>0

函数的连续性与间断点(重点内容全)

函数的连续性与间断点 一、函数的连续性 1. 增量:变量x 从初值1x 变到终值2x ,终值与初值的差叫变量x 的增量,记作x ?,即x ?=1x -2x 。(增量可正可负)。 例1 分析函数2x y =当x 由20=x 变到05.20=?+x x 时,函数值的改变量。 2.函数在点连续的定义 定义1:设函数y =)(x f 在点0x 的某个邻域内有定义,如果自变量x 的增量x ?=0x x -趋向于零时,对应的函数增y ?=)()(0x f x f -也趋向于零,则称函数y =)(x f 在点0x 处连续。 定义2:设函数y =)(x f 在点0x 的某个邻域内有定义,如果函数)(x f 当 0x x →时的极限存在,即)()(lim 00 x f x f x x =→,则称函数y =)(x f 在点0x 处连续。 定义3:设函数y =)(x f 在点0x 的某个邻域内有定义,如果对任意给定的正数ε,总存在正数δ,使得对于适合不等式δ<-0x x 的一切x ,所对应的函数值)(x f 都满足不等式:ε<-)()(0x f x f ,则称函数y =)(x f 在点0x 连续。 注:1、上述的三个定义在本质上是一致的,即函数)(x f 在点0x 连续,必须同时满足下列三个条件:(1) 函数y =)(x f 在点0x 的某个邻域内有定义(函数y = )(x f 在点0x 有定义),(2) )(lim 0x f x x →存在;(3))()(lim 00 x f x f x x =→。 3.函数y =)(x f 在点0x 处左连续、右连续的定义: (1)函数y =)(x f 在点0x 处左连续?)(x f 在(]00,x x δ-内有定义,且)()(lim 000x f x f x x =-→(即)()0(00x f x f =-)。 (2)函数y =)(x f 在点0x 处右连续?)(x f 在[)δ+00,x x 内有定义,且)()(lim 000x f x f x x =+→(即)()0(00x f x f =+)。 显然,函数y =)(x f 在点0x 处连续?函数y =)(x f 在点0x 处既左连续又右连

函数的单调性检测题及参考答案

函数的单调性检测题 一、选择题 1.若),(b a 是)(x f 的单调增区间,()b a x x ,,21∈,且21x x <,则有 A . ()()21x f x f < B . ()()21x f x f = C . ()()21x f x f > D . ()()021>x f x f 2.函数()2 2-=x y 的单调递减区间为 A .[)+∞,0 B .(]0,∞+ C .),2[+∞ D .]2,(-∞ 3.下列函数中,在区间(0,2)上递增的是 A .x y 1 = B .x y -= C .1-=x y D .122++=x x y 4. 若函数1 2)(-=x a x f 在()0,∞-上单调递增,则a 的取值范围是 A .()0,∞- B .()+∞,0 C .()0,1- D .()+∞,1 5. 设函数x a y )12(-=在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 6. 函数2)1(2)(2 +-+=x a x x f 在区间(]2,∞-上是减函数,则实数a 的取值范围是 A .3≤a B .3≥a C .3-≥a D .3-≤a 二、填空题 7.函数1-=x y 的单调递增区间是____________. 8.函数)(x f 在()+∞,0是增函数,则)2(f a =、 )2 (π f b =、)2 3 (f c =的大小关系是 . 9.函数32)(2+--= x x x f 的单调递增区间是_______. 10.若二次函数45)(2 ++=mx x x f 在区间]1,(--∞是减函数,在区间),1(+∞-上是增函数, 则f (1)=________.

高等数学函数的极限与连续习题精选及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

函数的连续性与间断点

第 6 次课 2 学时

§1.9 函数的连续性与间断点 一、函数的连续性 连续性是函数的重要性态之一,在实际问题中普遍存在连续性问题,如气温的变化,物体速度的变化,动植物的生长等。这些现象在函数上的反映,就是函数的连续性问题。 1.函数的增量 一个变量u 由初值1u 变到终值2u ,终值与初值之差称为u 的增量( 或改变量),记作 1,u u ??-2即 u=u 对于函数()y f x =,设它在0x 及0x 的某个邻域内有定义,在0x 处给自变量 x 一个增量x ?,则函数有相应的增量00((y y f x f x ??=?, +x)- ) (几何解释) 21()2 1.f x x =-??例设分别求: (1) x 由1变到1.2时, (2) x 由1变到0.8时, 的增量x 和y . 解:(略) 2.函数的连续性 如果自变量 x 的增量 x ?很小时,函数y 的增量y ? 也很小,则说明函数是随着自变量的渐变而渐变的,这时称函数是连续的。 定义 1:设)(x f y =在0x 的某邻域内有定义,如果当自变量x 在0x 的增量0x ?→时,相应函数的增量00()()0y f x x f x ?=+?-→,就称函数)(x f y =在0x 点处连续。 注 :)(x f 在0x 点连续0lim 0x y ?→??=。 例2 :证明函数2 ()21f x x =-在x=1 处连续。 证明:函数的定义域为(),-∞+∞,在x=1 的邻域内有定义。 ()()()()2222002:1112*1142lim lim 420()211x x x x x x y x x f x x x ?→?→→+?→??????---=?+??? ???=?+?=? ?=-= , f(x): f(1)f(1+x) y=f(1+x)-f(1)=21+x 故 在 处连续 . (类似可证该函数在其定义域内的任意一点处都连续。)

高二数学函数的单调性与导数测试题

选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是() A.b2-4ac>0B.b>0,c>0 C.b=0,c>0 D.b2-3ac<0 [答案] D [解析]∵a>0,f(x)为增函数, ∴f′(x)=3ax2+2bx+c>0恒成立, ∴Δ=(2b)2-4×3a×c=4b2-12ac<0,∴b2-3ac<0. 2.(2009·广东文,8)函数f(x)=(x-3)e x的单调递增区间是() A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) [答案] D [解析]考查导数的简单应用. f′(x)=(x-3)′e x+(x-3)(e x)′=(x-2)e x, 令f′(x)>0,解得x>2,故选D. 3.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+∞) B.(-∞,2] C.(-∞,-1)和(1,2) D.[2,+∞) [答案] B [解析]令k≤0得x0≤2,由导数的几何意义可知,函数的单调减区间为(-∞,2]. 4.已知函数y=xf′(x)的图象如图(1)所示(其中f′(x)是函数f(x)

的导函数),下面四个图象中,y =f (x )的图象大致是( ) [答案] C [解析] 当01时xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此否定A 、B 、D 故选C. 5.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( ) A.? ????-π,-π2和? ?? ??0,π2 B.? ????-π2,0和? ?? ??0,π2 C.? ????-π,-π2和? ?? ??π2,π D.? ????-π20和? ?? ??π2,π

函数的连续性与间断点共5页

一、函数的连续性 变量的增量: 设变量u 从它的一个初值u 1变到终值u 2, 终值与初值的差 u 2u 1就叫做变量u 的增量, 记作u , 即u u 2u 1. 设函数y f (x )在点x 0的某一个邻域内是有定义的. 当自变量 x 在这邻域内从x 0变到x 0x 时, 函数y 相应地从f (x 0)变到 f (x 0 x ), 因此函数y 的对应增量为 y f (x 0 x ) f (x 0). 函数连续的定义 设函数y f (x )在点x 0 的某一个邻域内有定义, 如果当自变量的增量 x x x 0 趋于零时, 对应的函数的增量 y f (x 0x ) f (x 0 )也趋于零, 即 lim 0 =?→?y x 或)()(lim 00 x f x f x x =→, 那么就称函数y f (x )在点x 0 处连续. 注 ①0)]()([lim lim 000 =-?+=?→?→?x f x x f y x x ②设x x 0+x , 则当 x 0时, x x 0, 因此 lim 0 =?→?y x 0 )]()([lim 00 =-→x f x f x x )()(lim 00 x f x f x x =→. 函数连续的等价定义2:设函数y f (x )在点x 0的某一个邻域内有定义, 如果对于任意给定义 的正数 , 总存在着正数 , 使得对于适合不等式

|x x 0|< 的一切x , 对应的函数值f (x )都满足不等式 |f (x )f (x 0)|< , 那么就称函数y f (x )在点x 0处连续. 左右连续性: 如果)()(lim 00x f x f x x =- →, 则称y f (x )在点0x 处左连续. 如果)()(lim 00x f x f x x =+ →, 则称y f (x )在点0x 处右连续. 左右连续与连续的关系: 函数y f (x )在点x 0处连续?函数y f (x )在点x 0处左连续且 右连续. 函数在区间上的连续性: 在区间上每一点都连续的函数, 叫做在该区间上的连续函数, 或者说函数在该区间上连续. 如果区间包括端点, 那么函数在右端点连续是指左连续, 在左端点连续是指右连续. 连续函数举例: 1. 如果f (x )是多项式函数, 则函数f (x )在区间(¥, ¥) 内是连续的. 这是因为, f (x )在( ¥, ¥)内任意一点x 0处有定义, 且 ) ()(lim 00 x P x P x x =→ 2. 函数 x x f =)(在区间[0, ¥)内是连续的. 3. 函数y sin x 在区间( ¥, ¥)内是连续的. 证明 设x 为区间( ¥, ¥)内任意一点. 则有

函数的单调性题型归纳

函数的单调性 一、教学目标:理解函数单调性的定义,会用函数单调性解决一些问题. 二、教学重点:函数单调性的判断和函数单调性的应用. 三、教学过程: (一)主要知识: 1、函数单调性的定义; 2、判断函数单调性(求单调区间)的方法: (1)从定义入手(2)从导数入手(3)从图象入手(4)从熟悉的函数入手 (5)从复合函数的单调性规律入手注:先求函数的定义域 3、函数单调性的证明:定义法;导数法。 4、一般规律 (1)若f(x),g(x)均为增函数,则f(x)+g(x)仍为增函数; (2)若f(x)为增函数,则-f(x)为减函数; (3)互为反函数的两个函数有相同的单调性; (4)设()[]x g f y =是定义在M 上的函数,若f(x)与g(x)的单调性相反,则()[]x g f y =在M 上是 减函数;若f(x)与g(x)的单调性相同,则()[]x g f y =在M 上是增函数。 (二)主要方法: 1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集; 2.判断函数的单调性的方法有:(1)用定义;(2)用已知函数的单调性;(3)利用函数的导数. 3.注意函数的单调性的应用;4.注意分类讨论与数形结合的应用. (三)例题分析: 例1.(1)求函数2 0.7log (32)y x x =-+的单调区间; (2)已知2()82,f x x x =+-若2()(2)g x f x =-试确定()g x 的单调区间和单调性. 解:(1)单调增区间为:(2,),+∞单调减区间为(,1)-∞, (2)2 2 2 ()82(2)(2)g x x x =+---4228x x =-++,3 ()44g x x x '=-+, 令 ()0g x '>,得1x <-或01x <<,令 ()0g x '<,1x >或10x -<< ∴单调增区间为(,1),(0,1)-∞-;单调减区间为(1,),(1,0)+∞-. 例2.设0a >,()x x e a f x a e = + 是R 上的偶函数. (1)求a 的值;(2)证明()f x 在(0,)+∞上为增函数. 例3.若()f x 为奇函数,且在(,0)-∞上是减函数,又(2)0f -=,则()0x f x ?<的解集为 (,2)(2,) -∞-+∞ . 例4.已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有 1 21 2()()()f x x f x f x ?=+,且当 1x >时()0,(2)1f x f >=, (1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数;(3)解不等式2 (21)2f x -<. 解:(1)令121x x ==,得(1)2(1)f f =,∴(1)0f =,令121x x ==-,得∴(1)0f -=, ∴()(1)(1)()()f x f x f f x f x -=-?=-+=,∴()f x 是偶函数. (2)设210x x >>,则221111 ()()()()x f x f x f x f x x -=? -22111 1 ()( )()( )x x f x f f x f x x =+-=

函数的极限及函数的连续性典型例题

函数的极限及函数的连续 性典型例题 Last revision on 21 December 2020

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ②要掌握常见的几种函数式变形求极限。 ③函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。 ④计算函数极限的方法,若在x=x0处连续,则。 ⑤若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。 二、典型例题 例1.求下列极限 ①② ③④ 解析:①。 ②。 ③。 ④。例2.已知,求m,n。 解:由可知x2+mx+2含有x+2这个因式, ∴ x=-2是方程x2+mx+2=0的根, ∴ m=3代入求得n=-1。

例3.讨论函数的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的, 又, ∴,∴ f(x)在x=1处连续。 由, 从而f(x)在点x=-1处不连续。 ∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。 例4.已知函数, (a,b为常数)。 试讨论a,b为何值时,f(x)在x=0处连续。 解析:∵且, ∴,∴ a=1, b=0。 例5.求下列函数极限 ①② 解析:①。②。

例6.设,问常数k为何值时,有存在 解析:∵,。 要使存在,只需, ∴ 2k=1,故时,存在。 例7.求函数在x=-1处左右极限,并说明在x=-1处是否有极限 解析:由,,∵,∴ f(x)在x=-1处极限不存在。 三、训练题: 1.已知,则 2.的值是_______。 3. 已知,则=______。 4.已知,2a+b=0,求a与b的值。 5.已知,求a的值。 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0

(完整版)导数与函数的单调性练习题.docx

2.2.1 导数与函数的单调性 基础巩固题: 1.函数 f(x)= ax 1 在区间( -2, +∞)上为增函数,那么实数 a 的取值范围为( ) x 2 A.0 1 C.a> 1 D.a>-2 2 2 2 答案: C 解析:∵ f(x)=a+ 1 2a 在 (-2,+ ∞ )递增,∴ 1-2a<0, 即 a> 1 . x 2 2 2.已知函数 f(x)= x 2+ 2x + aln x ,若函数 f(x)在 (0,1)上单调,则实数 a 的取值范围是 ( ) A . a ≥ 0 B . a<- 4 C . a ≥ 0 或 a ≤- 4 D . a>0 或 a<- 4 a 答案: C 解析: ∵ f ′ ( x)=2x + 2+ x , f(x)在 (0,1) 上单调, ∴ f ′ (x)≥ 0 或 f ′ (x)≤ 0 在 (0,1) 上恒成立,即 2x 2+2x + a ≥ 0 或 2x 2+ 2x +a ≤ 0 在 (0,1)上恒成立, 所以 a ≥ - (2x 2+ 2x) 或 a ≤ - (2x 2+ 2x)在 (0,1) 上恒成立.记 g(x)=- (2x 2+ 2x),0< x<1,可知- 4

数学分析(华东师大)第四章函数的连续性

第四章函数的连续性 §1 连续性概念 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说,连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我们不能满足于这种直观的认识,而应给出函数连续性的精确定义, 并由此出发研究连续函数的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一函数在一点的连续性 定义1 设函数f 在某U( x0 ) 内有定义.若 lim x → x f ( x) = f ( x0), (1) 则称f 在点x0 连续. 例如, 函数 f ( x ) = 2 x + 1 在点x = 2 连续, 因为 又如, 函数lim x →2 f ( x) = lim x →2 ( 2 x + 1 ) = 5= f (2 ). f ( x) = x sin 1 x , x ≠ 0, 0, x =0 在点x = 0 连续, 因为 lim x →0 f ( x) = lim x →0 x sin 1 x =0= f ( 0). 为引入函数y = f ( x ) 在点x0 连续的另一种表述, 记Δx = x-x0 , 称为自变量x( 在点x0 ) 的增量或改变量.设y0 = f ( x0 ) , 相应的函数y ( 在点x0 ) 的增量记为Δy= f ( x) - f ( x0) = f ( x0 + Δx)- f ( x0 ) = y - y0 . 注自变量的增量Δx 或函数的增量Δy 可以是正数, 也可以是0 或负数. 引进了增量的概念之后,易见“函数y= f( x)在点x0 连续”等价于 lim Δy = 0 . Δx →0

70 第四章 函数的连续性 由于函数在一点的连续性是通过极限来定义的, 因而也可直接用ε- δ方 式来叙述, 即: 若对任给的ε>0 , 存在δ> 0 , 使得当|x - x 0 | <δ时有 | f (x)- f ( x 0 ) |<ε, (2) 则称函数 f 在点 x 0 连续 . 由上述定义, 我们可得出函数 f 在点 x 0 有极限与 f 在 x 0 连续这两个概念 之间的联系.首先, f 在点x 0 有极限是f 在x 0 连续的必要条件;进一步说“, f 在 点x 0 连续”不仅要求f 在点x 0 有极限,而且其极限值应等于f 在x 0 的函数值 f( x 0) .其次,在讨论极限时,我们假定f 在点x 0 的某空心邻域U °( x 0 )内有定 义( f 在点x 0 可以没有定义),而“f 在点x 0 连续”则要求f 在某U( x 0 )内(包括 点x 0)有定义,此时由于(2)式当x = x 0 时总是成立的,所以在极限定义中的“0 <|x - x 0 |<δ”换成了在连续定义中的“|x - x 0 |<δ”.最后,(1)式又可表示为 lim x → x f (x)= f lim x , x → x 可见“f 在点x 0 连续”意味着极限运算lim x → x 与对应法则 f 的可交换性 . 例1证明函数 f (x ) = x D( x ) 在点 x = 0 连续, 其中 D ( x ) 为狄利克雷 函数 . 证 由 f (0 ) = 0 及| D( x ) | ?1 , 对任给的ε>0 , 为使 | f ( x) - f ( 0) | = | xD( x ) | ? | x | <ε, 只要取δ=ε,即可按ε-δ定义推得f 在x =0连续. □ 相应于f 在点x 0 的左、右极限的概念,我们给出左、右连续的定义如下: 定义 2 设函数 f 在某 U + ( x 0 ) ( U - ( x 0 ) ) 内有定义.若 lim x → x + f (x)= f (x 0) lim - x → x f (x)= f (x 0) , 则称 f 在点 x 0 右( 左) 连续 . 根据上述定义1 与定义2 , 不难推出如下定理 . 定理4.1 函数 f 在点x 0 连续的充要条件是:f 在点 x 0 既是右连续, 又是 左连续 . 例 2 讨论函数 在点 x = 0 的连续性 . 解 因为 f ( x ) = x + 2 , x ? 0 , x - 2 , x <0 lim x → 0 + lim x → 0 - f ( x ) = lim x → 0 + f (x)= lim x → 0 - ( x + 2 ) = 2 , ( x - 2) = - 2, 而 f (0 ) = 2 , 所以 f 在点 x = 0 右连续, 但不左连续, 从而它在 x = 0 不连续( 见 ●

相关文档
最新文档