透明质酸-量子点的制备及应用

透明质酸-量子点的制备及应用
透明质酸-量子点的制备及应用

量子点的制备及应用进展

龙源期刊网 https://www.360docs.net/doc/ad3830255.html, 量子点的制备及应用进展 作者:于潇张雪萍王才富倪柳松等 来源:《科技视界》2013年第29期 【摘要】本文分别从量子点的概念、特性、制备方法、表面修饰等方面对量子点进行了 描述及讨论,在此基础上,对量子点在生物传感器方面的应用进行了,最后分析了量子点生物传感器的存在的问题,对其未来发展趋势进行了展望。 【关键词】量子点;光学;生物传感器 量子点主要是由Ⅱ-Ⅵ族和Ⅲ-Ⅴ族元素组成的均一或核壳结构纳米颗粒,又称半导体纳米晶体。由于发生结构和性质发生宏观到微观的转变,其拥有独特的光、电、声、磁、催化效应,因此成为一类比较特殊的纳米材料。国内外关于量子点传感器的研究非常广泛,例如在生命科学领域,可以用于基于荧光共振能量转移原理的荧光探针检测,可以用于荧光成像,生物芯片等;在半导体器件领域,量子点可以用于激光器,发光二极管、LED等。本文对量子点 的制备方法和应用领域及前景进行了初步讨论。 1 量子点的基本特性及其制备方法 1.1 量子点的特性及优势 量子点的基本特性有:量子尺寸效应、表面效应、量子限域效应、宏观量子隧道效应,除此之外,量子点具有一些独特的光学效应,这使得量子点较传统的荧光染料用来标记生物探针具有以下优势: (1)量子点具有宽的激发光谱范围,可以用波长短于发射光的光激发,产生窄而对称的发射光谱,避免了相邻探测通道之间的干扰。 (2)量子点可以“调色”,即通过调节同一组分粒径的大小或改变量子点的组成,使其荧光发射波长覆盖整个可见光区。尺寸越小,发射光的波长越小。 (3)量子点的稳定性好,抗漂白能力强,荧光强度强,具有较高的发光效率。半导体量子点的表面上包覆一层其他的无机材料,可以对核心进行保护和提高发光效率,从而进一步提高光稳定性。正是由于量子点具有以上特性使其在生物识别及检测中具有潜在的应用前景,有望成为一类新型的生化探针和传感器的能量供体,因此备受关注。 1.2 量子点的制备方法 根据原料的不同分为无机合成路线和金属-有机物合成路线,两种合成方法各有利弊。

石墨烯量子点制备与应用

石墨烯量子点的概述 石墨烯量子点的性质 GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显着,因此具有许多独特的物理和化学性质。其与传统的半导体量子点(QDs)相比,GQDs 具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5 eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求。GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显着变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小。GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。 石墨烯量子点的制备 GQDs的合成方法可以分为两大类:自上而下法和自下而上法,如图1-1所示。自上而下法是通过简单的物理化学作用,进行热解和机械剥离块状石墨,得到尺寸较小的GQDs,是最常用的制备方法,比如改进的Hummers法,其使用的原料廉价,但是反应条件比较苛刻,制备周期比较长,通常需要经过强酸、强氧

半导体量子点发光

. 半导体量子点发光 一、半导体量子点的定义 当半导体的三维尺寸都小于或接近其相应物质体相材料激子的玻尔半径(约5.3nm)时,称为半导体量子点。 二、半导体量子点的原理 在光照下,半导体中的电子吸收一定能量的光子而被激发,处于激发态的电子向较低能 级跃迁,以光福射的形式释放出能量。大多数情况下,半导体的光学跃迁发生在带边,也就是说光学跃迁通常发生在价带顶和导带底附近。半导体的能带结构可以用图的简化模型来表 示。如图所示,直接带隙是指价带顶的能量位置和导带底的能量位置同处于一个K 空间,间接带隙是指价带顶位置与导带底位置的K 空间位置不同。电子从高能级向低能级跃迁,伴随着发射光子,这是半导体的发光现象。

. 对于半导体量子点,电子吸收光子而发生跃迁,电子越过禁带跃迁入空的导带,而在原来的价带中留下一个空穴,形成电子空穴对(即激子),由于量子点在三维度上对激子施加 量子限制,激子只能在三维势垒限定的势盒中运动,这样在量子点中,激子的运动完全量子 化了,只能取分立的束缚能态。激子通过不同的方式复合,从而导致发光现象。原理示意图,如图所示,激子的复合途径主要有三种形式。 (1)电子和空穴直接复合 ,产生激子态发光。由于量子尺寸效应的作用 ,所产生的发射光的波长随着颗粒尺寸的减小而蓝移。 (2)通过表面缺陷态间接复合发光。在纳米颗粒的表面存在着许多悬挂键,从而形成了许多表面缺陷态。当半导体量子点材料受光的激发后,光生载流子以极快的速度受限于表面缺 陷态而产生表面态发光。量子点的表面越完整,表面对载流子的捕获能力就越弱,从而使得表面态的发光就越弱。 (3)通过杂质能级复合发光。杂质能级发光是由于表面分子与外界分子发生化学反应生 成其它杂质,这些杂质很容易俘获导带中的电子形成杂质能级发光。 以上三种情况的发光是相互竞争的。如果量子点的表面存在着许多缺陷,对电子和空穴的俘获能力很强,电子和空穴一旦产生就被俘获,使得它们直接复合的几率很小,从而使得激子态的发光就很弱,甚至可以观察不到,而只有表面缺陷态的发光。 为了消除由于表面缺陷引起的缺陷态发光而得到激子态的发光,常常设法制备表面完整 的量子点或者通过对量子点的表面进行修饰来减少其表面缺陷,从而使电子和空穴能够有效 地直接复合发光。

量子点的制备及特性分析

班级:物理1201班 姓名:吴为伟 学号:20121800121 时间:2014年7月1日 ——量子点的制备及特性分析 大学物理实验报告

课题意义: 量子点是一种准零维半导体纳米晶体,其三个维度的尺寸都在几到几十纳米,外观恰似一极小的点状物,其内部电子在各方向的运动都受到限制,可以产生类似于原子的分立能级。量子点具有量子尺寸效应、量子限域效应以及表面效应等特殊效应。量子尺寸效应是指半导体量子点的带隙相对于体材料发生蓝移,并且随着量子点尺寸的减小,蓝移量增大,在光学性质方面引起吸收和发射光谱的蓝移现象:而且,相对于体材料,量子点还具有吸收和发光效率高的优点。量子点的这些有益光学特性使其在生物荧光标记、太阳能电池、发光二极管、激光器、探测器、量子计算机等新型光电子器件方面都具有非常重要的应用前景,成为各国科研人员研究的热点,并在多个学科中引起很大的反响。 实验目的: 本课题实验要求通过有机液相法制备CdS量子点、以及对其吸收和荧光光谱的测量,了解量子点的生长过程、吸收和荧光光谱基本原理和特点,以及量子尺寸效应的基础知识。 实验器材: 实验仪器:量子点制备设备一套、分析天平、离心机、吸收谱仪和荧光谱仪等。 化学试剂:硫粉(S)、氧化镉(CdO)、油酸(OA)、十八碳烯(ODE)、甲醇、正己烷、高纯氩气(Ar)等。 实验原理: 有机液相法 即以有机溶液为介质,以具有某些特殊性质的无机物和有机物作为反应原料,在适当的化学反应条件下合成纳米晶材料的方法。通常这些反应物、中间产物、生成物都是对水、空气敏感,在水溶液中不能稳定存在。最常用的方式是在无水无氧条件下的有机溶剂中进行的化学反应。通过改变反应温度、时间、反应物浓度、配体种类、含量等参数,可以制备出具有不同尺寸的纳米晶体。该方法制备的纳米晶体在尺寸和形貌上通常具有很好的单分散性,纳米晶质量高;而且,由于反应是在有机介质中进行,生成的纳米晶在有机溶剂中具有良好的分散性,非常有利于实际应用。 液相法生长纳米晶一般包括三个阶段:成核过程、生长过程和熟化过程。当溶质的量高于溶解度时,溶液过饱和,晶体就会从液体中析出,形成晶核,这就是成核过程。晶核的数量和成核速度是由溶液的过饱和度决定的。溶质从饱和溶液中运输到晶体表面,并按照晶体的结构重排,这就是生长过程。该过程主要是

量子点发光材料综述

量子点发光材料综述 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为A m=S V =4πR2 4 3 πR3 =3 R ,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

半导体量子点及其应用概述_李世国答辩

科技信息2011年第29期 SCIENCE&TECHNOLOGY INFORMATION 0引言 近年来半导体材料科学主要朝两个方向发展:一方面是不断探索扩展新的半导体材料,即所谓材料工程;另一方面是逐步从高维到低维深入研究己知半导体材料体系,这就是能带工程。半导体量子点就是通过改变其尺寸实现能级的改变,达到应用的目的,这就是半导体量子点能带工程。半导体量子点是由少量原子组成的准零维纳米量子结构,原子数目通常在几个到几百个之间,三个维度的尺寸都小于100纳米。载流子在量子点的三个维度上运动受尺寸效应限制,量子效应非常显著。在量子点中,由于量子限制效应作用,其载流子的能级类似原子有不连续的能级结构,所以量子点又叫人造原子。由于特殊能级结构,使得量子点表现出独特的物理性质,如量子尺寸效应、量子遂穿效应、库仑阻塞效应、表面量子效应、量子干涉效应、多体相关和非线性光学效应等,它对于基础物理研究和新型电子和光电器件都有很重要的意义,量子点材料生长和器件应用研究一直是科学界的热点之一[1]。 1量子点制备方法 目前对量子点的制备有很多方法,主要有外延技术生长法、溶胶-凝胶法(Sol-gel 和化学腐蚀法等,下面简单介绍这几种制备方法: 1.1外延技术法 外延技术法制备半导体量子点,主要是利用当前先进的分子束外延(MBE、金属有机物分子束外延(MOCVD和化学束外延(CBE等技术通过自组装生长机理,在特定的生长条件下,在晶格失配的半导体衬底上通过异质外延来实现半导体量子点的生长,在异质外延外延中,当外延材料的生长达到一定厚度后,为了释放外延材料晶格失配产生的应力能,外延材料就会形成半导体量子点,其大小跟材料的晶格失配度、外延过程中的条件控制有很大的关系,外延技术这是目前获得高质量半导体量子点比较普遍的方法,缺点是对半导体量子点的生长都是在高真空或超高真空下进行,使得材料生长成本非常高。1.2胶体法

碳量子点的合成、性质及其应用

文章编号:1001G9731(2015)09G09012G07 碳量子点的合成二性质及其应用? 李一婷1,唐吉龙1,方一芳1,2,房一丹1,方一铉1,楚学影1,李金华1, 王一菲1,王晓华1,魏志鹏1 (1.长春理工大学理学院,高功率半导体激光国家重点实验室,长春130022; 2.南昌大学材料所,南昌330047) 摘一要:一碳量子点(C Q D s,CGd o t s o r C D s)是一种新型的碳纳米材料,尺寸在10n m以下,具有良好的水溶性二化学惰性二低毒性二易于功能化和抗光漂白性二光稳定性等优异性能,是碳纳米家族中的一颗闪亮的明星.自从2006年[1]报道了碳量子点(C Q D s)明亮多彩的发光现象后,世界各地的研究小组开始对C Q D s进行了深入的研究.最近几年的研究报道了各种方法制备的C Q D s在生物医学二光催化二光电子二传感等领域中都有重要的应用价值.这篇综述主要总结了关于C Q D s 的最近的发展,介绍了C Q D s的合成方法二表面修饰二掺杂二发光机理二光电性质以及在生物医学二光催化二光电子二传感等领域的应用. 关键词:一碳量子点;光致发光;生物成像;光催化 中图分类号:一T B34;O469文献标识码:A D O I:10.3969/j.i s s n.1001G9731.2015.09.003 1一引一言 碳量子点是一种新型的碳纳米材料,尺寸在10n m以下,是X u等[2]在2004年首次发现的一种未知的荧光碳纳米材料.普通的碳是一种黑色物质,通常被认为发光弱,水溶性弱,然而碳量子点却具有良好的水溶性和明亮的荧光,被称为碳纳米光.过去几年里,在C Q D s的合成二性质二应用等方面都取得了巨大的进步.与传统的半导体量子点和有机染料相比,发光C Q D s具有高水溶性二强化学稳定性二易于功能化二抗光漂白性以及优异的生物特性,良好的生物相容性,在生物医学(生物成像二生物传感二药物传输等)有潜在的应用前景.同时,C Q D s具有优良的光电性质,既可以作为电子给体又可以作为电子受体,这使得它在光电子二催化和传感等领域有广泛的应用价值. 本文主要阐述了近几年在C Q D s领域中的新发展,主要包括C Q D s的合成方法二光学性质二发光机理和在生物医学二光催化二光电子二传感等领域的应用.2一碳量子点的合成二掺杂及纳米混合物 过去的十年,各种制备碳量子点的方法被提出来,这些方法大致分为 自上而下(T o pGd o w n) 和 自下而上(B o t t o mGu p) ,如图1所示.在C Q D s的合成过程中,可以对C Q D s掺杂,制备其纳米混合物. 图1一碳量子点的合成二掺杂及其纳米混合物的示意图 F i g1S c h e m a t i c i l l u s t r a t i o no fC Q D s p r e p a r a t i o nv i a t o pGd o w n a n d b o t t o mGu p a p p r o a c h e sa n d i t s d o p i n g a n dn a n oGh y b r i d 2.1一合成方法 2.1.1一化学烧蚀法 化学烧蚀法是利用强氧化性酸将碳化材料氧化分解成碳量子点.M a o等[3]将收集到的蜡烛燃烧残渣置于5m o l/L H N O3溶液中回流,冷却后,进行离心二渗析二电泳等,得到具有不同发光性质的碳量子点.T i a n 等[4]收集天然气燃烧的残渣,在浓硝酸中回流,调节溶液p H值为中性,除去杂质后,得到粒径不同的碳量子点.这种方法的优点是原材料选择广泛,但是反应条件苛刻,反应过程激烈,碳量子点纯化步骤繁琐,制得的碳量子点粒径难以控制. 2.1.2一电化学氧化法 电化学氧化法用各种体相碳材料作为前驱体来制备碳量子点的一种强大而有效的方法.Z h o u等[5]首先报道了用电化学法合成碳纳米量子点,当电介质溶 2109 02015年第9期(46)卷 ?基金项目:国家自然科学基金资助项目(61076039,61204065,61205193,61307045);高等学校博士学科点专项科研基金资助项目(20112216120005);吉林省科技发展计划资助项目(20121816,201201116);高功率半导体激光国家重点实验室基 金资助项目(9140C310101120C031115) 收到初稿日期:2014G08G10收到修改稿日期:2014G10G20通讯作者:方一芳,唐吉龙,EGm a i l:j l_t a n g c u s t@163.c o m 作者简介:李一婷一(1990-),女,山西朔州人,在读硕士,师承王晓华教授,从事纳米半导体材料研究.

量子点的制备方法综述及展望

量子点的制备方法综述及展望 1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。英语论文。 量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点” 。1998 年 , Alivisatos和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。硕士网为你提供计算机硕士论文。 量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。 本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。 2.在有机体系中制备在有机相中制备量子点主要采用有机金属法,有机金属法是在高沸点的有机溶剂中利用前躯体热解制备量子点的方法,即将有机金属前躯体溶液注射进250~300℃的配体溶液中,前躯体在高温条件下迅速热解并成核,晶核缓慢生长成为纳米晶粒。通过配体的吸附作用阻滞晶核生长,并稳定存在于溶剂中。配体所采用的前躯体主要为烷基金属(如二甲基隔)和烷基非金属(如二-三甲基硅烷基硒)化合物,主配体为三辛基氧化膦(TOPO),溶剂兼次配体为三辛基膦(TOP)。这种方法制备量子点,具有可制备量子点的种类多、改进纳米颗粒性能的方法多及所量子点的量子产率高等优点,其粒径分布可用多种手段控制,因而成为目前制备量子点的主要方法。 2.1 单核量子点的制备1993 年,Murray 等采用有机金属试剂作为反应前驱物,在高温有机溶剂中通过调节反应温度,合成了量子产率约为10%、单分散(± 5%)的CdSe 量子点。他们采用TOPO 作为有机配位溶剂,用Cd(CH3)2 和TOP-Se 作为反应前驱物,依次将其注入到剧烈搅拌 的350℃TOPO 溶液中,在短时间内生成大量的CdSe 纳米颗粒晶核,然后迅速降温至240℃以阻止CdSe 纳米颗粒继续成核,随后升温 到260~280℃并维持一段时间,根据其吸收光谱监测晶体的生长,当晶体生长到所需要的尺寸时,将反应液冷却至60℃。加入丁醇防止TOPO 凝固,随后加入过量的甲醇,由于CdSe 纳米颗粒不溶于甲醇,通过离心便可得到CdSe 纳米颗粒。通过改变温度,可以将粒径控制在2.4~13nm 之间,且表面的TOPO 可以用吡啶、呋喃等代替。此后,Peng 等又通过进一步优化工艺条件 ,将两组体积不同,配比一定的Cd (CH3) 2、 Se、TOP 的混合溶液先后快速注入高温 TOPO 中的方法制得了棒状的 CdSe量子点,从而扩展了该合成方法对量子点纳米晶粒形状的控制。利用这种方法合成的量子点受到杂质和晶格缺陷的影响,因此量子产率较低。由于Te 更容易被氧化,所以制备高质量的CdTe 要比制备CdSe,CdS 难得多。2001 年,Dmitri.V 等用DDA(十二胺)代替TOPO作反应溶剂合成高质量的CdTe 量子点,量子产率可达65%,且窄的发射光谱覆盖红色和绿色

量子点总结

量子点总结

1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年 , Alivisatos 和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发

射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。

量子点的制备方法

量子点的制备方法综述及展望 来源:https://www.360docs.net/doc/ad3830255.html, 1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。中国硕士论文网提供大量免费英语论文。 量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年 , Alivisatos和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。硕士网为你提供计算机硕士论文。 量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。 本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。 2.在有机体系中制备在有机相中制备量子点主要采用有机金属法,有机金属法是在高沸点的有机溶剂中利用前躯体热解制备量子点的方法,即将有机金属前躯体溶液注射进250~300℃的配体溶液中,前躯体在高温条件下迅速热解并成核,晶核缓慢生长成为纳米晶粒。通过配体的吸附作用阻滞晶核生长,并稳定存在于溶剂中。配体所采用的前躯体主要为烷基金属(如二甲基隔)和烷基非金属(如二-三甲基硅烷基硒)化合物,主配体为三辛基氧化膦(TOPO),溶剂兼次配体为三辛基膦(TOP)。这种方法制备量子点,具有

碳量子点应用简介

碳量子点与各种金属量子点类似,碳量子点在光照的情况下可以发出明亮的光。它在包括改进生物传感器、医学成像设备和微小的发光二极管的很广的领域中都有应用前景。这项研究将发表在6月7日的《Journal of the American Chemical Society》杂志上。 1碳量子点简介 相对于金属量子点而言,碳量子点无毒,对环境的危害小,造价也更便宜。由它制成的传感器可以用来探测爆炸物和炭疽热等生化战剂。克莱蒙森大学化学博士孙亚平说:“碳不是半导体,发光碳纳米粒子不管是从理论角度还是从应用角度看都是非常有意思的。它代表着发光纳米粒子研究的一个新的平台。” 最近几年,量子点的研究非常活跃,尤其是关于它在生物和医学中的应用。量子点一般是从铅、镉和硅的混合物中提取出来的,但是这些材料一般有毒,对环境也有危害。所以科学家们开始在一些良性化合物中提取量子点。 因为碳纳米粒子具有很大的表面积,所以长期以来科学家们一直认为这种纳米粒子相比宏观碳,具有非常奇特的化学和物理性质。孙亚平和同事从石墨中提取出碳纳米粒子,并且证明这些粒子表面覆盖一种特殊的聚合物后,在光照下可以发出非常明亮的光,就像是微小的光球一样。科学家们认为这种光致发光现象可能是由于碳量子点表面的空洞可以储存能量造成的。而金属量子点的发光机制则稍微有些不同。 量子点一般是从铅、镉和硅的混合物中提取出来的,但这些量子点一般有毒,对环境也有很大的危害。所以科学家们寻求在一些良性的化合物中提取量子点。相对金属量子点而言,碳量子点无毒害作用,对环境的危害很小,制备成本低廉。它的研究代表了发光纳米粒子研究进入了一个新的阶段。 2制备和应用 目前制备碳量子点的方法很少,报道的制备具有荧光性质的碳量子点的方法有: (l)高温高压切除法 利用激光从石墨粉表面切下碳纳米粒子,将其与有机聚合物混合后,即获得直径小于5nm且具有光致发光特性的碳量子点。 (2)蜡烛燃烧法 通过收集和酸处理蜡烛灰,得到表面具有羧基和羟基的亲水性碳量子点,直径约1nm。 (3)电化学扫描法 在乙腈和四丁基高氯酸铵支持电解质中,通过电化学循环伏安扫描,使四丁基高氯酸铵进入碳纳米管间隙,从碳纳米管的缺陷处剥落下碳量子点(直径约2.8 nm)。相对前两种方法,电化学法更易实现大规模快速生产。

量子点的制备实验报告

量子点的制备实验报告 篇一:碳量子点的制备及性能表征 “大学生创新性实验计划”立项申请表 申请级别:□国家□北京市■学校项目名称:碳量子点的制备及性能表征负责人:所在学院:联系电话:电子邮件:填表时间: XX-10-26 北京理工大学教务处制表 大学生创新性实验计划 注意事项 1. 2. 3. 填写申请级别时,将“□”替换为“■”,或手写打“√”;项目负责人应为本科生,鼓励跨年级、跨学科组成项目组;项目成员(含负责人)不超过5人,成员中至少有一名非四年级的学生,每名学生原则上不允许同时参加多个项目; 4. 申报国家级、北京市级项目应明确指导教师,指导教师应具备中级以上职称,每位指导教师同时指导的项目原则上不能超过两项; 5. 经费预算严格按照通知要求进行申请,最终以专家委员会批准的额度执行; 6.

项目周期统一为一年。 负责人情况 项目基本信息 -1- -2- -3- 篇二:量子点总结 1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年 , Alivisatos和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志

半导体量子点发光

半导体量子点发光 一、半导体量子点的定义 当半导体的三维尺寸都小于或接近其相应物质体相材料激子的玻尔半径(约5.3nm)时,称为半导体量子点。 二、半导体量子点的原理 在光照下,半导体中的电子吸收一定能量的光子而被激发,处于激发态的电子向较低能级跃迁,以光福射的形式释放出能量。大多数情况下,半导体的光学跃迁发生在带边,也就是说光学跃迁通常发生在价带顶和导带底附近。半导体的能带结构可以用图的简化模型来表示。如图所示,直接带隙是指价带顶的能量位置和导带底的能量位置同处于一个K空间,间接带隙是指价带顶位置与导带底位置的K空间位置不同。电子从高能级向低能级跃迁,伴随着发射光子,这是半导体的发光现象。

对于半导体量子点,电子吸收光子而发生跃迁,电子越过禁带跃迁入空的导带,而在原来的价带中留下一个空穴,形成电子空穴对(即激子),由于量子点在三维度上对激子施加量子限制,激子只能在三维势垒限定的势盒中运动,这样在量子点中,激子的运动完全量子化了,只能取分立的束缚能态。激子通过不同的方式复合,从而导致发光现象。原理示意图,如图所示,激子的复合途径主要有三种形式。 (1)电子和空穴直接复合,产生激子态发光。由于量子尺寸效应的作用,所产生的发射光的波长随着颗粒尺寸的减小而蓝移。 (2)通过表面缺陷态间接复合发光。在纳米颗粒的表面存在着许多悬挂键,从而形成了许多表面缺陷态。当半导体量子点材料受光的激发后,光生载流子以极快的速度受限于表面缺陷态而产生表面态发光。量子点的表面越完整,表面对载流子的捕获能力就越弱,从而使得表面态的发光就越弱。 (3)通过杂质能级复合发光。杂质能级发光是由于表面分子与外界分子发生化学反应生成其它杂质,这些杂质很容易俘获导带中的电子形成杂质能级发光。 以上三种情况的发光是相互竞争的。如果量子点的表面存在着许多缺陷,对电子和空穴的俘获能力很强,电子和空穴一旦产生就被俘获,使得它们直接复合的几率很小,从而使得激子态的发光就很弱,甚至可以观察不到,而只有表面缺陷态的发光。 为了消除由于表面缺陷引起的缺陷态发光而得到激子态的发光,常常设法制备表面完整的量子点或者通过对量子点的表面进行修饰来减少其表面缺陷,从而使电子和空穴能够有效地直接复合发光。

碳量子点的制备与应用

Journal of Advances in Physical Chemistry 物理化学进展, 2017, 6(3), 128-136 Published Online August 2017 in Hans. https://www.360docs.net/doc/ad3830255.html,/journal/japc https://https://www.360docs.net/doc/ad3830255.html,/10.12677/japc.2017.63016 文章引用: 叶明富, 陈丙才, 方超, 吴延红, 陈国昌, 孔祥荣. 碳量子点的制备与应用[J]. 物理化学进展, 2017, 6(3): Synthesis and Applications of Carbon Quantum Dots Mingfu Ye 1*, Bingcai Chen 1, Chao Fang 1, Yanhong Wu 2, Guochang Chen 1, Xiangrong Kong 3 1School of Chemistry and Chemical Engineering, Hexian Development Institute of Chemical Industry, Anhui University of Technology, Maanshan Anhui 2Shandong Huayu University of Technology, Dezhou Shandong 3Beijing Building Materials Sciences Research Academy, Beijing Received: Jul. 10th , 2017; accepted: Jul. 23rd , 2017; published: Jul. 26th , 2017 Abstract Carbon quantum dots (CQDs), a novel class of carbon nanomaterials, have received wide attention due to their strong quantum confinement effect and stable photoluminescence property. This ar- ticle reviews the different synthetic methodologies to achieve good performance of CQDs. At the same time, the applications of CQDs are also reviewed in the article. Keywords Carbon Quantum Dots, Nanomaterials, Preparation Methods, Applications 碳量子点的制备与应用 叶明富1*,陈丙才1,方 超1,吴延红2,陈国昌1,孔祥荣3 1 安徽工业大学和县化工产业发展研究院化学与化工学院,安徽 马鞍山 2山东华宇工学院,山东 德州 3北京建筑材料科学研究总院有限公司,北京 收稿日期:2017年7月10日;录用日期:2017年7月23日;发布日期:2017年7月26日 摘 要 碳量子点(Carbon quantum dots, CQDs)是一种新型的碳纳米材料,因其强的量子限域效应和稳定的荧*通讯作者。

量子点制备方法的研究进展

第29卷,第11期红外l文章编号:1672-8785(2008)11?0001—07 量子点制备方法的研究进展 王忆锋 (昆明物理研究所,云南昆明650223) 摘要:量子点以其类似于原子的性质近年来受到很大关注.通过Stranski—Krastanow (SK)生长模式外延自组织生长的量子点具有诸多有利于红外应用的性质,例如工作温 度较高、信噪比较大、暗电流较低、波段较宽以及垂直入射光响应等。对于新型红外探 测器的研发而言,它们是一类很有潜力的候选者.本文主要对近期国外文献报道的量 子点制备方法的部分研究进展做了总结和评述. 关键词:量子点;量子点红外光子探测器;红外探测器;制备方法 中图分类号:0471.1文献标识码:A DevelopmentStatusofQuantumDotFabricationTechniques WANGYi.feng (KunmingInstituteofPhysics,Kunming650223,China) Abstract:Quantumdotshaveattractedconsiderableinterestfortheiratomic-likepropertiesinrecent years.Thequantumdotsgrownbyepitaxialself-assemblyvia Stranski—Krastanowgrowthmodehavemanyfavorablepropertiesforinfraredapplication,suchashigheroperationaltemperature,increased signal-to-noiseratio,reduceddarkcurrent,widerspectralrangeandsensitivitytonormalincidentr扣 diation.Theyarepotentialcandidatesfordevelopinganewclassofinfrareddetectors.Someofthe latestpublisheddevelopmentsinthefabricationtechniquesofquantumdotsabroadaresummarizedand reviewedinthispaper. Keywords:quantumdot;quantum-dotinfraredphotodetector;infrareddetector;fabricationtechnique 1引言 量子点又称为半导体纳米晶体,其体积小于相应半导体玻尔半径所定义的体积.量子点红外光子探测器(QDIP)具有垂直入射光响应、暗电流低,光电导增益大、响应率和探测率高等优点,已成功应用于单元探测器、焦平面器件等各种结构中.量子点的制备是QDIP发展的基础.本文主要介绍近年来国外在与红外有关的量子点制备研究方面的进展。 2胶体量子点 胶体量子点由化学反应合成,典型地是通过某种有机金属反应路径,不需要超高压设备或者有毒气体.对于Ⅱ一Ⅵ族半导体,其量子点的制备过程是,将反应物分子迅速注入热溶剂中,使其发生成核和生长过程。如图1所示,溶剂中所含的有机分子(配体,ligand)阻止成核中心变大,并在成核粒子表面生成一层包裹,从而形成胶体量子点。 胶体量子点悬浮在有机溶剂中,可以通过旋涂(spincoating)等方式定型在各种衬底上,不需要考虑晶格匹配的问题.反应化学物的浓度、 收稿日期?2008--05--08 作者简介?王忆锋(1963——),男,湖南零陵人,高级7-程师,目前主要从事器件仿真研究.

量子点在生物医学领域的应用

基金项目:吉林省科学技术厅资助项目(NO.20082123)*通讯作者 文章编号:1007-4287(2009)06-0847-03 量子点在生物医学领域的应用 王雅丽,张玉成,张桂珍* (吉林大学中日联谊医院中心实验室,吉林长春130033) 生命科学的高速发展离不开新技术新方法的应用。近些年来,量子点在生物医学领域的应用已经成为人们广泛关注的研究热点之一,量子点在体内外成像,靶向标记特异组织和细胞等方面均取得了新的进展。相对于传统的荧光染料分子而言,量子点具有其独特的特性及优点。本文对近年来量子点在生物医学领域的诸多应用及进展做一综述。1 量子点基本组成结构及光学特性 1.1 量子点概念 量子点(Quantum Dots,QDs),也称半导体纳米晶(Nanocrystals,NCs),它是由 族元素或! ?族元素组成的小于100nm 的半导体纳米微晶体,当这些半导体纳米微晶体的直径小于激子的波尔直径(<10nm)时,这些半导体纳米微晶体由于受到量子尺寸效应和介电限域效应的影响,从而表现出独特的光学特征[1-3]。 1.2 量子点的光学特性及优点 QDs 与传统的有机荧光染料相比,其光学特性有: 1.2.1 QDs 的激发光波长(e xcitation wave lengths)范围宽且连续分布,其荧光可以被波长小于其量子限域峰的任意光源所激发,而其发射波长(emission wa ve lengths)的范围窄且呈对称分布[4,5] ,可检测到的光谱范围内同时使用多个探针,而发射光谱不出现交叠。 1.2.2 QDs 的发光特征具有严格的量子尺寸效应,通过改变量子点粒径大小可获得从紫外到近红外范围内任意点的光谱[6],这样仅用一种波长的激发光源便可激发多种荧光,进行多元荧光检测。1.2.3 QDs 的抗光漂白能力强,光漂白作用是指由光激发引起发光物分解而导致的荧光强度降低的现象 [7] 。有机荧光染料的光漂白速率很快,而QDs 的 光漂白作用则远远小得多。 1.2.4 QDs 的荧光寿命长[8] ,典型的有机荧光染料的荧光寿命仅为几纳秒,这与很多生物样本的自发 荧光衰减的时间相当。而QDs 的荧光寿命可持续长达数十纳秒,这使得当光激发数纳秒以后,大多数自发荧光背景已经衰减,而QDs 荧光仍然存在,此时即可获得无背景干扰的荧光信号。2 量子点的修饰 直接制备的QDs 很难与生物大分子发生作用,所以制备好的QDs 需要对其表面进行修饰来提高它的光学特性以及它与生物大分子连接的能力。Nie 等[9]利用巯基乙酸修饰QDs,游离的羧基不仅使QDs 的水溶性增强,还可以与生物大分子结合。3 量子点与生物大分子偶联 生物分子通过与QDs 结合后才能用于生物医学,结合的方式主要有直接结合、共价偶联、静电吸附、间接偶联[10,11]。直接结合是指量子点表面基团和生物分子表面基团直接作用后将生物分子连接到量子点上的方式,这种连接方式难度较大,一般不易采用。共价偶联是利用量子点表面修饰的羧基,通过酶促交联剂EDC 的作用,与生物分子表面的氨基进行共价偶联,这种偶联方式得到的偶联复合物稳定,但偶联过程比较复杂。静电吸附是通过静电力进行偶联[12],通常先把一活性基团连在QDs 上,同时用另一活性基团修饰生物大分子,利用两活性基团的静电作用力即可将QDs 与目标分子结合,这种偶联方式得到的偶联复合物不是足够稳定,但偶联过程比较简单快捷。间接偶联是指通过其它亲和系统来将量子点与生物分子结合在一起的方法,常用的亲和系统包括生物素 链亲和素、生物素 卵白素[13,14]亲和系统,这些亲和系统能起到很好的桥梁作用,将生物分子连接到量子点上面。4 量子点在生物分析中的应用4.1 量子点在细胞成像中的应用 量子点已成功地应用于细胞的不同组分、蛋白以及亚细胞结构的标记,其基本原理是当量子点与特异性抗体交联后,量子点 抗体复合物就会与细胞内的不同细胞器或骨架系统结合,在受到光激发后发出特定波长的荧光。Wu 等[7]采用荧光免疫法, # 847#中国实验诊断学 2009年6月 第13卷 第6期

相关文档
最新文档