粉末注射成型-粘结剂分类及优缺点

粉末注射成型-粘结剂分类及优缺点
粉末注射成型-粘结剂分类及优缺点

1.蜡基粘结剂

石蜡是固态高级烷烃的混合物,主要成分的分子式为CnH2n+2,其中n=17~35。主要组分为直链烷烃,还有少量带个别支链的烷烃和带长侧链的单环环烷烃;直链烷烃中主要是正二十二烷(C22H46)和正二十八烷(C28H58)。

石蜡又称晶形蜡,通常是白色、无味的蜡状固体,在47°C-64°C熔化,密度约0.9g/cm3,溶于汽油、二硫化碳、二甲苯、乙醚、苯、氯仿、四氯化碳、石脑油等一类非极性溶剂,不溶于水和甲醇等极性溶剂。石蜡也是很好的储热材料,其比热容为2.14–2.9J·g–1·K–1,熔化热为200–220J·g–1。

石蜡的主要性能指标是熔点、含油量和安定性。

熔点:石蜡是烃类的混合物,因此它并不像纯化合物那样具有严格的熔点。所谓石蜡的熔点、是指在规定的条件下,冷却熔化了的石蜡试样,当冷却曲线上第一次出现停滞期的温度。各种蜡制品都对石蜡要求有良好的耐温性能,即在特定温度r.不熔化或软化变形。按照使用条件、使用的地区和季节以及使用环境的差异,要求商品石蜡具有一系列不同的熔点。影响石蜡熔点的主要因素是所选用原料馏分的轻重,从较重馏分脱出的石蜡的熔点较高。此外,含油量对石蜡的熔点也有很大的影响,石蜡中含油越多,则其熔点就越低。

含油量:是指石蜡中所含低熔点烃类的量。含油量过高会影响石蜡的色度和储存的安定性,还会使它的硬度降低。所以从减压馏分中脱出的含油蜡膏,还需用发汗法或溶剂法进行脱油,以降低其含油量。但大部分石蜡制品中需要含有少量的油,这对改善制品的光泽和脱模性能是有利的。

安定性:石蜡制品在造型或涂敷过程中,长期处于热熔状态,并与空气接触,假如安定性不好,就容易氧化变质、颜色变深,甚至发出臭味。此外,使用时处于光照条件下石蜡也会变黄。因此,要求石蜡具有良好的热安定性、氧化安定性和光安定性。影响石蜡安定性的上要因素是其所含有的微量的非烃化合物和稠环芳烃。为提高石蜡的安定性,就需要对石蜡进行深度精制,以脱除这些杂质。

根据加工精制程度不同,可分为全精炼石蜡、半精炼石蜡和粗石蜡3种。每类蜡又按熔点,一般每隔2℃,分成不同的品种,如52,54,56,58等牌号。粗石蜡含油量较高,主要用于制造火柴、纤维板、篷帆布等。

全精炼石蜡是指以含油蜡为原料,经发汗或溶剂脱油,再经白土或加氢精制所得到的产品。全精炼石蜡和半精炼石蜡的主要区别是含油量的多少,全精炼石蜡含油量小于0.8%,半精炼石蜡含油量小于2.0%。

1.1普通石蜡

固体石蜡又称晶形蜡,是从原油蒸馏所得的润滑油馏分经溶剂精制、溶剂脱蜡或经蜡冷冻结晶、压榨脱蜡制得蜡膏,再经溶剂脱油、精制而得的片状或针状结晶,是碳原子数约为18~30的烃类混合物,主要组分为直链烷烃。可用于制造橡胶制品蜡纸蜡笔食品和药物组分等。

液体石蜡性状为无色透明油状液体,在日光下观察不显荧光。室温下无嗅无味,加热后略有石油臭。密度比重0.86-0.905(25℃)不溶于水、甘油、冷乙醇。溶于苯、乙醚、氯仿、二硫化碳、热乙醇。与除蓖麻油外大多数脂肪油能任意混合、樟脑、薄荷脑及大多数天然或

人造麝香均能被溶解。在塑料工业中用做润滑剂增塑剂,纺织工业中用做纤维油剂,也用作仪器机床的润滑,防腐,也是化妆品和食品工业的添加剂。

1.2蜂蜡

1.3巴西棕榈蜡

主要由酸和羟基酸的酯组成的复杂混合物,大部分是脂肪酸酯、羟基脂肪酸酯、p-甲氧基肉桂酸酯、p-羟基肉桂酸二酯,其脂肪链长度不一,以C26和C32醇最为常见。此外还含有酸、氧化多元醇、烃类、树脂样物质和水,是一种质地非常坚硬的无毒无害的纯天然蜡。溶解度:几乎不溶于水;微溶于沸腾的乙醇(95%);溶于温热的氯仿和甲苯。

巴西棕榈蜡质地非常坚硬,具有极高的光泽,极易乳化,有着良好的保油性,它最大的优点是具有其它蜡所没有的极高的光泽度和超乎寻常的硬度。

巴西棕榈蜡1号片(T-1 Flake):

食品配料:口香糖的抛光剂和上光剂、软硬豆状胶质糖果及巧克力的上光剂。牙科用料:因其具有一定的硬度而被广泛应用。

巴西棕榈蜡1号喷雾干燥粉食品级(T-1 Spray dried powder):

可用于制作糖衣丸、咖啡豆上光剂、口香糖和巧克力的包衣。

巴西棕榈蜡3号片(T-3 Flake):

地板蜡:使其具有意想不到的抛光和光亮效果。鞋油:适用于油底或水底鞋油的抛光巴西棕榈蜡是一种质地非常坚硬的无毒无害的纯天然蜡。

牌号:1颗树,3颗树

1.4微晶蜡

微晶石蜡主要是出文链烃、环烷烃和一些直链烃组成,分子量范围大约是500-1000。这是一种比较细小的晶体,溶于非极性溶剂,不溶于极性溶剂。

微晶蜡以天然原油的减压渣油为原料,经丙烷脱沥青、糠醛精制、酮苯脱油、白土补充精制及加氢补充精制冷却后成型而制得该系列产品。微晶蜡曾称提纯地蜡,一种精制的石油蜡胶,白色至浅黄色。

之所以称为“微晶蜡”,是因为在显微镜下可以明显地看出它的结晶比石蜡的结晶要小的多。石蜡的结晶态一般是尺寸较大的薄片,而微晶蜡一般是由较细的针状或粒状结晶构成。石蜡是脆性的,受力后很容易端丽甚至粉碎,而微晶蜡的硬度小,柔韧性很好,受力后容易变形,不易脆裂。石蜡中主要是具有较长的、没有支链的烷烃,而微晶蜡的主要成分是分子量较大的、带有较长碳链的环烷烃和芳香烃。产品按颜色、含油量和稠环芳烃分级,分为合格品、级品和食品级。微晶蜡为白色或浅黄色固体,其结晶微细,有较好的渗透性、附着性及韧性,且防潮、绝缘性好。石蜡熔点在38-68之间,微晶蜡在60-95℃之间按滴熔点级品分为70号、75号、80号、85号、90号共五个牌号。

1.5聚乙二醇蜡

(1)聚乙二醇系列产品可用于药剂。相对分子量较低的聚乙二醇可用作溶剂、助溶剂、o/w型乳化剂和稳定剂,用于制作水泥悬剂、乳剂、注射剂等,也用作水溶性软膏基质和栓剂基质,相对分子量高的固体蜡状聚乙二醇常用于增加低分子量液体PEG的粘度和成固性,以及外偿其他药物;对于水中不易溶解的药物,本品可作固体分散剂的载体,以达到固体分散目的,PEG4000、PEG6000是良好的包衣材料,亲水抛光材料、膜材和囊材、增塑剂、润滑剂和滴丸基质,用于制备片剂、丸剂、胶囊剂、微囊剂等。

(2)PEG4000、PEG6000在医药工业中作为赋形剂,用作栓剂、膏剂的制备;造纸工业中用作涂饰剂,增加纸张的光泽和平滑性;在橡胶工业中作为添加剂,增加橡胶制品的润滑性和塑性,减少加工过程中的动力消耗,延长橡胶制品的使用寿命。

(3)聚乙二醇系列产品可作为酯型表面活性剂的原料。

(4)PEG-200可作为有机合成的介质及有较高要求的热载体,在日用化学工业中用作保湿剂、无机盐增溶剂、粘度调节剂;在纺织工业中用作柔软剂、抗静电剂;在造纸与农药工业中用作润湿剂。

(5)PEG-400、PEG-600、PEG-800用作医药及化妆品的基质,橡胶工业与纺织工业的润滑剂和润湿剂。PEG-600在金属工业中加于电解液可增强研磨效果,增强金属表面的光泽。

(6)PEG-1000、PEG-1500在医药、纺织、化妆品工业中用作基质或润滑剂、柔软剂;在涂料工业中用作分散剂;改进树脂的水分散性、柔韧性,用量为20~30%;油墨中可提高染料的溶解能力,降低其挥发性,在蜡纸和印台油墨中尤其适用,也可在圆珠笔油墨中作调节油墨粘稠度用;在橡胶工业中作分散剂,促进硫化作用,用作炭黑充填料的分散剂。

(7)PEG-2000、PEG-3000用作金属加工铸模剂,金属拉丝、冲压或成型的润滑剂及切削液,研磨冷却润滑抛光剂、焊接剂等;在造纸工业中用作润滑剂等,也用作热熔黏合剂,以增加快速的再润湿能力。

(8)PEG-4000、PEG-6000在医药、化妆品工业生产中用作基质,起调节粘度、熔点的作用;在橡胶、金属加工工业中用作润滑剂、冷却剂,在农药、颜料工业生产中用作分散剂、乳化剂;在纺织工业中用作抗静电剂、润滑剂等。

(9)PEG8000在医药、化妆品工业生产中用作基质,起调节粘度、熔点的作用;在橡胶、金属加工工业中用作润滑剂、冷却剂,在农药、颜料工业生产中用作分散剂、乳化剂;在纺织工业中用作抗静电剂、润滑剂等。

1.6聚烯烃蜡

聚乙烯蜡(PE蜡),又称高分子蜡简称聚乙烯蜡。因其优良的耐寒性、耐热性、耐化学性和耐磨性而得到广泛的应用。正常生产中,这部分蜡作为一种添加剂可直接加到聚烯烃加工中,它可以增加产品的光泽和加工性能。作为润滑剂,其化学性质稳定、电性能良好。聚乙烯蜡与聚乙烯、聚丙烯、聚蜡酸乙烯、乙丙橡胶、丁基橡胶相溶性好。能改善聚乙烯、聚丙烯、ABS的流动性和聚甲基丙烯酸甲酯、聚碳酸酯的脱模性。对于PVC和其它的外部润滑剂相比,聚乙烯蜡具有更强的内部润滑作用。

聚乙烯蜡指分子量为1500-25000的低分子量聚乙烯或部分氧化的低分子量聚乙烯。其呈颗粒状、白色粉末、块状以及乳白色蜡状。具有优良的流动性、电性能、脱模性。

聚乙烯蜡的作用原理是这样的:聚乙烯蜡在高温中(约100-140℃)溶解于溶剂中,而在冷却至常温时析出,以微晶形式存在于涂料中,因其触变性有利于涂料的贮存,而在涂料

施工应用之后,在溶剂挥发过程中能迁移到涂膜表层,最终与涂料其他组分形成一个“蜡化”的表层。

缺点:熔点低,在热脱脂时热变形温度低,保型性差,易坍塌,需支撑材料;黏度低,不能与金属粉末产生很好的混合,易产生两相分离以及在注射成型时易发生喷射和出现焊纹,并且当石蜡冷却时,体积收缩大(11%-20%)。

典型的做法是与PP,PE,乙烯-醋酸乙烯酯(EV A)以及添加剂混合。

2.乙烯基共聚物

2.1.EVA

其产品的特点:

耐水性:密闭泡孔结构、不吸水、防潮、耐水性能良好。

耐腐蚀性:耐海水、油脂、酸、碱等化学品腐蚀,抗菌、无毒、无味、无污染。

加工性:无接头,且易于进行热压、剪裁、涂胶、贴合等加工。

防震动:回弹性和抗张力高,韧性高,具有良好的防震、缓冲性能。

保温性:隔热,保温防寒及低温性能优异,可耐严寒和曝晒。

隔音性:密闭泡孔,隔音效果好。

EV A中的醋酸乙烯的含量低于20%时,这时才可作为塑料使用。有很好的耐低温性能,分解温度较低,约为230℃左右,随着分子量的增大,EV A的软化点上升,加工性和塑件表面光泽性下降,但强度增加,冲击韧性和耐环境应力开裂性提高,EV A的耐化学药品、耐油性方面较之PE,PVC稍差,并随醋酸乙烯含量的增加,变化更加明显。

EV A树脂是乙烯-醋酸乙烯共聚物,一般醋酸乙烯(V A)含量在5%~40%。与聚乙烯相比,EV A由于在分子链中引入了醋酸乙烯单体,从而降低了高结晶度,提高了柔韧性、抗冲击性、填料相溶性和热密封性能,被广泛应用于发泡鞋料、功能性棚膜、包装膜、热熔胶、电线电缆及玩具等领域。一般来说,EV A树脂的性能主要取决于分子链上醋酸乙烯的含量。

在我国,人们根据其中醋酸乙烯含量的不同,将乙烯与醋酸乙烯共聚物分为EV A树脂、EV A橡胶和VAE乳液。醋酸乙烯含量小于40%的产品为EV A树脂;醋酸乙烯含量40%~70%的产品很柔韧;富有弹性特征,人们将这一含量范围的EV A树脂有时称为EV A橡胶;醋酸乙烯含量在70%~95%范围内通常呈乳液状态,称为V AE乳液。V AE乳液外观呈乳白色或微黄色。

2.2.EAA

乙烯丙烯酸共聚物(Ethylene Acrylic Acid 简称EAA)是一种具有热塑性和极高粘接性的聚合物,由于羧基团的存在以及氢键的作用,聚合物的结晶化被抑制,主链的线性被破坏,因此提高了EAA的透明性和韧性,降低了熔点和软化点。

当MI相同时,随着AA含量的增加,EAA的透明性、韧性、粘接性、耐环境应力开裂性会增加;相反,其刚性、湿蒸汽透射率、抗蠕变性、耐化学性会更好。当AA含量相同时,随着MI的增加,EAA的粘接性、加工性会更好;相反,其韧性、耐环境应力开裂性会

增加。

特性:

1、优异的粘接性,与EAA能粘接的材料有:铝和锡等金属及其氧化物、玻璃、纤维素、木材、皮革、玻璃纸、蛋白质、尼龙、聚氨酯、聚乙烯、三元乙丙胶等

2、韧性和屈挠性

3、易加工性

应用领域:

EAA广泛应用于包装、粉末涂层、粘合剂、热熔胶、密封材料、水性溶剂等方面,下面简要介绍:

1、包装:挤出涂覆生产饮料纸盒、牙膏管、电缆屏蔽层等,同时EAA还有抗撕裂、抗穿刺、防腐等保护作用;

2、粉末涂层:EAA粉末可以喷涂于管材、钢材、无纺布等材料表面,作为防腐材料;

3、热熔胶:高性能高MI的EAA可以生产热熔胶,用于难粘接材料;

4、水性溶剂:高AA含量高MI的EAA在适当的反应条件下能溶解于热的碱性溶液,可以配制水性粘合剂,用于服装衣料等;

5、降解环保材料:EAA与淀粉基材料共混可以生产降解塑料。

四、注意:

EAA与多种填充物、颜料、染料等有很好的相容性,但与胺、环氧化物以及金属的氢氧化物、氧化物、碳酸盐等共混或共挤时,若这些材料发生分解,将导致聚合物的交联和其他问题。

2.3.EEA

乙烯-丙烯酸乙酯(EEA)树脂是聚烯烃中韧性及柔度最大的一族。它们的范围包括从类橡胶的,适合作热熔粘合剂的低熔点产品,到类聚乙烯的,具有非同寻常的韧度和柔度的产品。这类树脂都是乙烯和丙烯酸乙酯的无规共聚物。 EEA树脂主要应用于:聚合物改性、热熔性粘合剂和密封剂、挠性软管和普通管子,层压片材、多层薄膜、注塑和挤压零件以及电线和电缆混合料。

丙烯酸乙酯部分为共聚物提供柔度和极性,通常占聚合物的15-30%(wt)含量。与乙烯-醋酸乙烯酯(EV A)相比,同为乙烯共聚物,EEA有更高的热稳定性,并属于非腐蚀性降解产品,因而能适应的加工条件范围更宽。

加工厂和再制厂常常把EEA与烯烃类聚合物或工程聚合物掺合在一起,以便生产出把两种树脂的优点结合起来的产品。

EEA树脂是在专门改装过的高压聚乙烯反应器中由自由基聚合法生产的。当丙烯酸乙酯的含量增加时,共聚物将变得更坚韧、更柔软、更有弹性。高丙烯酸乙酯含量树脂的极性,增加表面吸收油墨的能力并具有粘合性质。

与其它聚烯烃如LDPE相比较,EEA的基本使用性能有:对应力断裂、冲击、和弯曲疲劳有较强的抵抗力;较高的摩擦系数;较好的低温性能以及更低的熔点。当丙烯酸乙酯(EA)含量升高时,共聚物的上限使用温度稍有下降,透明度降低。

市场上的EEA通常是未加改性的片状树脂,但也有含大量填料的专用混合料,如阻燃混合料和用作线缆涂层的半导体材料。

EEA共聚物能与所有的烯烃聚合物相容,如:VLDPE、LDPE。LLDPE、HDPE和聚丙烯等。EEA与其它聚烯烃混配在一起,一般用来生产一种模量能达到专门要求的,又保留了所想要的EEA特性的产品。高模量聚合物如聚酰胺和聚酯,添加了EEA共聚物后,抗冲

击性能显著提高。EEA共聚物也用来生产热熔性粘合剂类产品,比乙烯共聚物有更宽的使用温度范围。EEA热熔性粘合剂有一些独特的综合性能,包括:很高的剪切破坏温度和低温韧度;以及对非极性基质有优良的粘合力。在薄膜应用领域,EEA共聚物被用作多层薄膜的连结层,并用于和其它聚合物混配以改进低温韧度和抗应力断裂性能。EEA共聚物对填料有很高的容纳量,以EEA和炭黑为原料的半导体薄膜及管材被制成微型芯片的包装材料、甘油炸药袋,以及多种医院方面的防静电用途。

3.油基粘结剂

油基粘结剂:油(oil)和聚合物(PS ,PP, PE及硬脂酸(SA))组成。两种典型油基粘结剂成分(质量百分比)

(1)oil:PP:PE:SA=44:44:6:6;(2)oil:PP:PS=1:1:1

优点:压坯强度高,溶剂脱脂和热脱脂快,保型性好,可以制造壁厚或直径较大的零部件。缺点是熔点、粘度高,装载量较低且对注射成型机磨损较大;脱脂易受残炭的影响,溶剂脱脂对环境有污染。油的加入影响生坯强度,烧结收缩大,影响产品精度和产品力学性能,不利于制造高性能产品。

4.聚醛基粘结剂

由离子表面活性剂,20%-35%聚缩醛,10%其他粘结剂组员如低密度聚乙烯(LDPE)、PP、EV A、PW、SA,0.5-2.0%润滑剂、增塑剂(蜡、聚硅酮、聚乙烯醇、线性饱和聚酯等)以及0.05%-1.0%松弛剂(聚硅酮、酰胺、脂肪酸酰胺等)。

聚甲醛很易结晶,结晶度70%以上。均聚甲醛的熔融温度为180℃左右。

缩醛树脂的热降解有四种机理。第一种是热或碱催化的链解聚;结果是释出甲醛,聚合物的端基割闭可减少这种倾向;第二种是氧进攻聚合物的无规则位萱也导致解聚,采用抗氧剂可减少这种降解机理的发生,共聚也有助于降低这种倾向;第三种机理是缩醛树脂链被酸断裂。第四种降解是当温崖超过270℃时发生热解聚,这一点很重要,它告诫操作者加工温度要保持270℃以下,以避免聚合物降解。其分子量(Mn)在20000到110000之间。

缩醛树脂具有优异的耐溶剂性,还没有找到在70℃以下可以溶解缩醛树脂的有机溶剂;但是它可以在某些溶剂中溶胀。缩醛树脂对酸、碱和氧化剂敏感。尽管C-O键是极性的.但它已被平衡,且极性比尼龙中的羰基小得多,其结果导致缩醛树脂具有相对低的吸湿性。吸附的少量湿气可能引起溶胀和尺寸变化,但不会导致聚合物水解而降解。湿气的影响比尼龙聚合物小得多。紫外线能引起聚台物的降解,可以通过加入炭黑来降低这种降解。共聚物通常具有和均聚物类似的性质,但均聚物的力学性能比共聚物稍高一些,其熔点也更高,但其热稳定性和耐碱性比共聚物差。

聚甲醛是一种没有侧链、高密度、高结晶性的线型聚合物,是没有毒的。有良好的物理、机械和化学性能,尤其是有优异的耐摩擦性能。

聚甲醛塑料的特点:

(1)POM加工前可不用干燥,最好在加工过程中进行预热(80℃左右),对产品尺寸的稳定性有好处。

(2)POM的加工温度很窄(0~215℃),在炮筒内停留时间稍长或温度超过220℃时就会分

解,产生刺激性强的甲醛气体。

(3)POM料注塑时保压压力要较大(与注射压力相近),以减少压力降。螺杆转速不能过高,残量要少。

(4)POM产品收缩率较大,易产生缩水或变形。POM比热大,模温高(80~100℃),产品脱模时很烫,需防止烫伤手指。

(5)POM宜在“中压、中速、低料温、较高模温”的条件下成型加工,精密制品成型时需用控制模温。

(6)具高机械强度和刚性。

(7)最高的疲劳强度。

(8)环境抵抗性、耐有机溶剂性佳。

(9)耐反覆冲击性强,良好的电气性质,复原性良好,具自已润滑性、耐磨性良好,尺寸安定性优。

(10)热分解时通过无支链的聚合物解聚,加热时产生均匀挥发,并且不产生结构上的变形,无残留灰分。

优点:压坯强度高,可以生产截面小于40mm的零部件,保型性好,无相分离

缺点:粘度高(比蜡基粘结剂高5-10倍),需专门设备,投资大,成本高,存在酸处理和环境污染问题。

使用这种粘结剂当装载量达到70%时,仍可快速脱脂而且不变形,适合于连续自动化生产。目前已经广泛应用于不锈钢、陶瓷、硬质合金等

均聚甲醛和共聚甲醛的部分性能对比:

均聚甲醛是以三聚甲醛或甲醛聚合而得.共聚甲醛是由二聚甲醛和二氧五环共聚合而得。

均聚甲醛分子链结构规整,结晶度高,熔点较高,为175℃左右,短期力学性能和物理

性能好,有较高的拉伸强度、弯曲强度、疲劳强度、冲击强度、刚性、表面硬度及热变形温度等。但缺点是热老化性差,成型加工温度范围窄,不易于加工等。

共聚甲醛在分子链上引入CH2CH2O,从而可阻止脱甲醛反应的进行,具有比均聚甲醛更好的耐热性、耐化学腐蚀性、流动特性及加工性,且成型加工温度范围较宽。另一方面,共聚甲醛中CH2CH2O的存在,大大降低了其分子链的结构对称性,因而其结晶度和力学性能等一般比均聚甲醛低,其熔点为165℃左右。

注射成型加工特性与对比:

(1)物料的干燥:POM吸水率不高,所以采用铝箔防潮袋包装的POM料原则上可以直接用于注射成型,但对外观要求高的制品,最好经干燥后再进行成型。因为干燥处理可提高制品的表面光泽度,减少模垢、气痕等不良现象出现。而对开封并放置一定时间的POM料,会有一定的吸湿,所以必须经干燥后再用于成型,否则会在注射成型中产生较多的模垢,或者因产生银纹而使制品的外观不良。对POM进行注射成型时,为了达到较好的制品外观和减少成型时的模垢,要求其原料的含水率不超过0.1%。较高的干燥温度虽能使树脂烘干所需的时间大为缩短,但因过高的温度易使POM制品表面氧化变黄,所以最好采用较温和的干燥条件。均聚POM可采用的干燥温度为80~90℃,干燥时间为2~4h。共聚POM可采用干燥温度为90~100℃,干燥时间为2~4h。在干燥上的区别是因为共聚甲醛的吸湿率低于均聚甲醛,且热稳定性要好,所以采用高温烘烤。

(2)注塑温度

设定适当的注塑温度主要是为了保证POM在注射成型过程中既有良好的流动性又不产生明显的热分解,以便在适当的注塑压力下顺利地充满型腔并获得具有良好外观及良好性能的制品。如果料筒温度设定过低,由于物料来不及充分熔融,不仅会出现由于流动性差,充模不满等外观方面的问题,而且也会影响其制品的力学性能。如果料筒温度过高,POM的热稳定性差,温度过高或时间过长,均会引起分解,致使制品性能下降,特别是温度超过250℃,分解速度会加快,并溢出强烈刺激眼睛的甲醛气体,严重时制品会产生气泡或变色。而且,由于POM属切敏性聚合物,熔体的流动性在熔点以上对温度变化不明显,而对剪切速率较为敏感,因此,仅靠提高POM的温度来改善其流动性的效果是有限的。在成型薄壁制品时,一般建议采用熔体流动速率较高的POM品级。均聚POM的熔融温度为175℃,由于既要考虑其熔融温度而设定较高的温度,又要尽可能防止其热分解而设定较窄的温度范围,因此可将树脂温度设定在190~200℃。共聚POM的熔融温度为165℃,由于加工窗口相对较宽,因此,在注射成型时可将树脂温度设定在180~200℃。

(3)注塑速度

无论对于均聚POM,还是共聚POM,当成型薄壁或者采用多型腔成型制品时,均应采用较快的注塑速度。这是因为,注塑成型此类制件时,要求体系有很好的流动性能。前面讲过,POM熔体属切敏性聚合物,要增加流动性能,可通过增加注塑速度来实现;同时,在上述应用场合,POM结晶冷却速度会很快,制品很容易产生表面缺陷如折皱、斑纹及熔接痕等,为此也需要提高注塑速度。而成型壁厚较大的制品时,则可以采用稍慢的注塑速度,防止由于注塑速度过快,使包裹在物料中的气体不能有效排出而产生孔洞。相对而言,均聚POM所设定的注塑速度要高于共聚POM。

(4)注塑压力与时间

注塑压力分为注射压力和保压压力两个阶段,注射压力一般要比保压压力大(至少不低于)。对于POM来讲,注射压力大,流程长度越长,为保证制件充满,需要相对较高的注射压力。而保压压力越大,POM制件的尺寸精度越高。POM的结晶度大、熔程窄,冷却硬化时往往会产生较大的体积收缩(可达2.8%),必须有足够的保压压力才能弥补尺寸缺陷。因此在POM的注射成型中,适当地增加保压压力可减少并消除POM制品出现翘曲、缩坑、

以及内部孔洞的现象。注塑压力和时间对于均聚POM和共聚POM性能的影响程度有所不同,注塑压力与保压时间对均聚POM的力学性能影响较明显,而对共聚POM的性能影响相对较小。适当延长均聚POM的保压时间,可提高制品的断裂伸长率。

5.水性粘结剂

常见的有纤维素基、固体聚合物溶液(SPS)基和聚乙二醇(PEG)水溶液。

4.1纤维素粘结剂:聚合物、溶剂(水)和分散剂。

较常用的聚合物有藻朊酸盐、CMHP(羟基、羧基、甲基、丙基)纤维素

分散剂主要用来湿润颗粒表面,在颗粒与液体分散介质之间形成链接,并粘附在颗粒表面,从而提高流动性。

4.2SPS粘结剂

主要由低相对分子质量的固态结晶化学物质组成,在加入少量聚合物。结晶化合物在受热时融化,并将聚合物溶解,在其重结晶温度下溶液变成固态。通过调整聚合物的量可以调节SPS的黏度和强度。

一般由大量的聚乙二醇和少量聚合物组成。此类两种典型的成分(质量分数为):(1)70%PEG+30%苯氧树脂;(2)70%PEG+25%PMMA+5%聚氧乙烯。

SPS粘结剂的优点可以用普通溶解(包括水)选择性溶解掉化学物质,效率较高,缩短脱脂时间,并且由于部分聚合物不溶解,脱脂时仍可保留坯块形状而不变形,具有良好的维行能力。缺点是热混合时间较长,固体装载量较低,成形时间长,脱脂时已出现局部缺陷,此外,用水脱脂对某些粉末不适合。

4.3PEG基粘结剂

一般由不同相对分子质量的PEG和聚合物(PMMA、PE、DOP等)组成。

一种典型PEG基(质量分数):8%PEG600+8%PEG1000+64%PEG1500+20%PMMA。

水溶性粘结剂优点:可以用水作溶剂。不需要有毒的有机溶剂来脱脂,不污染环境,适合于生产细长的零部件和陶瓷材料。缺点是粉末易于受潮和氧化,因此限制于非反应性粉末;坯块易变形,装载量较低;注射温度范围窄,不适合生产烧结密度很高密度很高的部件。

6.凝胶水基体系粘结剂

7.丙烯酸基粘结剂

一般由聚丙烯酸(PAA)水溶液、甘油和非反应性粘结剂(一般是水、甲基纤维素、甘油、硼酸等)组成。这种粘结剂目前应用于雾化铁粉,羰基铁粉体系。

优点是:脱脂速度快,不需要特殊的设备,可以生产厚度较大的零部件;注射温度范围宽,注射坯强度高,可以根据需要,对于如合金钢等需要粉末中添加碳的场合进行补碳,在制造过滤器、自润滑轴承上面得到应用。缺点是反应性粘结剂会产生交叉链节,并且注射坯易增碳,对大多数合金体系应谨慎使用。

8.热固性粘结剂

由热固性树脂、甘油和表面活性剂组成。

热固性树脂包括:酚醛树脂,脲醛树脂,三聚氰胺,氨基甲酸乙酯,硅有机树脂,呋喃树脂,聚酯,聚亚酰胺等。

表面活性剂包括:聚吡咯烷乙烯,脂肪酸,聚氧乙烯醇,有机钛酸酯,聚四元共聚物。

典型组成:63%-63%PVP(聚乙烯基吡咯烷酮)+5.6%-7%糖醇树脂+18%甘油+12%催化剂。

热固性粘结剂对温度稳定性好,因此可以提高注射坯尺寸精度。不适用于金属粉末注射成型技术,主要由于其很难确保物料在混炼、注射或放置时不产生任何交联。固化时间长,注射料不能重复利用,反应得到的副产物是气体,易导致产品多孔,是重金属粉末的混合和悬浮困难,热脱脂很难完全进行,残炭留量高。

9.油+蜡基多组员粘结剂

包括HDPE,PS,PW,食用花生油(OIL),SA,聚丁二烯(PB),EV A,邻苯二甲酸二丁酯(DOP)。

特点是能有效的降低体系的黏度,便于注射,采用两步脱脂法能使得脱脂时间减少,成本下降,在烧结过程中能保持坯体不变形。优点是黏度适中,注射范围宽,流变稳定性好,注射坯强度高,溶剂脱脂速度快,脱脂量达到70%以上,适合于生产壁厚较厚的零部件。

10.热塑-热固性粘结剂

混炼过程中表现热塑性,能在热塑性设备上实现均匀混合和注射充模,在脱脂高温的作用下,树脂固化,粘结剂表现出热固性特点,脱脂坯不会软化变形,从而提高制品的尺寸精度和保型性。

环氧树脂:未加入固化剂时时热塑性树脂,不会受热硬化,加入固化剂后,环氧树脂可以在常温到250%之间很宽的范围内固化,这样使他满足不同工艺要求。

金属粉末注射成型工艺讲解

新疆农业大学机械交通学院 2015-2016 学年一学期 《金属工艺学》课程论文 2015 年 12 月 班级机制136 学号220150038 姓名侯文娜 开课学院机械交通学院任课教师高泽斌成绩__________

金属粉末注射成型工艺概论 作者:侯文娜指导老师:高泽斌 摘要:金属注射成形时一种从塑料注射成形行业中引申出来的新型粉末冶金近净成型技术,这种新的粉末冶金成型方法称作金属注射成型。 关键词:金属粉末注射成型 一:金属粉末注射成型的概念和原理、 粉末冶金不仅是一种材料制造技术,而且其本身包含着材料的加工和处理,它以少无切削的特点越来越受到重视,并逐步形成了自身的材料制备工艺理论和材料性能理论的完整体系。现代粉末冶金技术不仅保持和大大发展了其原有的传统特点(如少无切削、少无偏析、均匀细晶、低耗、节能、节材、金属非金属及金属高分子复合等),而且已发展成为支取各种高性能结构材料、特种功能材料和极限条件工作材料、各种形状复异型件的有效途径。近年来,粉末冶金技术最引人注目的发展,莫过于粉末注射成型(MIN)迅速实现产业化,并取得突破性进展。 金属注射成型(Metal injection Molding),简称MIM,是传统的粉末冶金工艺与塑料成型工艺相结合的新工艺,是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,是粉末冶金和精密陶瓷成型加工领域中的新技术,利用磨具可注射成型,快速制造高密度、高精度、复杂形状的结构零件,能够快速准确的将设计思想转变为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。 其注射机理为:通过注射将金属粉末与粘结剂的混合物以一定的温度,速度和压力注入充满模腔,经冷却定型出模得到一定形状、尺寸的预制件,再脱出预制件中的粘结剂并进行烧结,可得到具有一定机械性能的制件。其成型工艺工艺流程如下:金属粉末,有机粘接剂—混料—成型—脱脂—烧结—后处理—成品。 二:金属粉末注射成型工艺流程 2.1金属粉末的选择:首先根据产品的技术要求和使用条件选择粉末的种类,然后决定粉末颗粒尺寸。金属粉末注射成型所用的粉末颗粒尺寸一般在 0.5-20μm;从理论上讲,粉末颗粒越细,比表面积也越大,颗粒之间的内聚力也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm的较粗粉末。粉末的选择要有利于混炼、注射形成、脱脂和烧结,而这往往是互相矛盾的,对于MIM的原料粉末要求很细,MIM原料粉末价格一般较高,有的升值达到传统PM 粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有超高压水雾化法、高压气体雾化法等。 2.2粘接剂;粘接剂是MIM技术的核心,在MIM中粘接剂具有增强流动性

金属粉末注射成型技术

金属粉末注射成型技术集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

金属粉末注射成型技术金属粉末注射成型技术(MetalPowderInjectionMolding,简称MIM)是将现代塑料喷射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用喷射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。 美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美

粘合剂介绍

胶粘剂的定义和历史 定义:胶粘剂又称粘合剂,简称胶(bonding agent, adhesive),是使物体与另一物体紧密连接为一体的非金属媒介材料。在两个被粘物面之间胶粘剂只占很薄的一层体积,但使用胶粘剂完成胶接施工之后,所得胶接件在机械性能和物理化学性能方面,能满足实际需要的各项要求。能有效的将物料粘结在一起。 历史:考古学证据显示粘合剂的应用历史已经超过6000多年,我们可以看到在博物馆里展出的许多物体在经 过3000多年后依然由粘合剂固定在一起。进入20世纪,人类发明了应用高分子化学和石油化学制造的“合成粘结剂”,其种类繁多,粘结力强。产量也有了飞跃发展。 胶粘剂的应用和分类 应用:电子,汽车,工业,化工,建筑业等各个领域都有用到胶粘剂。 分类:胶粘剂种类繁多,组分各异,有不同的分类方法。 1 按化学类型分类 无机胶粘剂(sauereisen的高温水泥) 有机胶粘剂:分为天然胶粘剂和合成胶粘剂 合成胶粘剂按化学成分主要分为:Epoxy, PU, Silicone, Acrylic, etc. 2 按物理形态分类 水基型:基料分散于水中形成水溶液或乳液,水挥发而固化。 溶液型:基料在可挥发溶剂中配成一定黏度的溶液,靠溶剂挥发而固化。 膏状和糊状:基料在可挥发溶剂中配成高黏度的胶粘剂,用于密封和嵌缝。 固体型:把热塑性合成树脂制成粒状或块状,加热熔融,冷却时固化。 膜状:将胶粘剂涂于基材上,呈薄膜状胶带 3 按固化方式分类 热固化:通过加热的方式使粘合剂发生聚合反应而固化,温度和时间根据不同的产品有很大区别。 湿气固化:与空气中的水汽发生聚合反应达到固化。 UV固化:光引发剂紫外光照射下,形成自由基或阳离子从而引发粘合剂的聚合反应而固化。 厌氧固化:在隔绝空气的条件下,发生自由基聚合反应,空气存在会阻碍聚合反应。 催化固化:在催化剂作用下使粘合剂发生聚合反应达到固化。 4 按工艺分类 粘合剂(Adhesive):特殊有导电胶,导热胶,芯片的粘结。 密封剂(Sealant) 灌封胶(Potting & Encapsulation) 敷形涂敷(Conformal Coating) 底部填充胶(Underfill) 顶部包封(Glob Top) 5 按受力情况 (1)结构胶(2)非结构胶 常见胶粘剂的固化机理 1 环氧树脂(Epoxy)

金属粉末注射成型技术

编订:__________________ 单位:__________________ 时间:__________________ 金属粉末注射成型技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3132-56 金属粉末注射成型技术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将现代塑料喷射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用喷射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21

粉末注射成型-粘结剂分类及优缺点

1.蜡基粘结剂 石蜡是固态高级烷烃的混合物,主要成分的分子式为CnH2n+2,其中n=17~35。主要组分为直链烷烃,还有少量带个别支链的烷烃和带长侧链的单环环烷烃;直链烷烃中主要是正二十二烷(C22H46)和正二十八烷(C28H58)。 石蜡又称晶形蜡,通常是白色、无味的蜡状固体,在47°C-64°C熔化,密度约0.9g/cm3,溶于汽油、二硫化碳、二甲苯、乙醚、苯、氯仿、四氯化碳、石脑油等一类非极性溶剂,不溶于水和甲醇等极性溶剂。石蜡也是很好的储热材料,其比热容为2.14–2.9J·g–1·K–1,熔化热为200–220J·g–1。 石蜡的主要性能指标是熔点、含油量和安定性。 熔点:石蜡是烃类的混合物,因此它并不像纯化合物那样具有严格的熔点。所谓石蜡的熔点、是指在规定的条件下,冷却熔化了的石蜡试样,当冷却曲线上第一次出现停滞期的温度。各种蜡制品都对石蜡要求有良好的耐温性能,即在特定温度r.不熔化或软化变形。按照使用条件、使用的地区和季节以及使用环境的差异,要求商品石蜡具有一系列不同的熔点。影响石蜡熔点的主要因素是所选用原料馏分的轻重,从较重馏分脱出的石蜡的熔点较高。此外,含油量对石蜡的熔点也有很大的影响,石蜡中含油越多,则其熔点就越低。 含油量:是指石蜡中所含低熔点烃类的量。含油量过高会影响石蜡的色度和储存的安定性,还会使它的硬度降低。所以从减压馏分中脱出的含油蜡膏,还需用发汗法或溶剂法进行脱油,以降低其含油量。但大部分石蜡制品中需要含有少量的油,这对改善制品的光泽和脱模性能是有利的。 安定性:石蜡制品在造型或涂敷过程中,长期处于热熔状态,并与空气接触,假如安定性不好,就容易氧化变质、颜色变深,甚至发出臭味。此外,使用时处于光照条件下石蜡也会变黄。因此,要求石蜡具有良好的热安定性、氧化安定性和光安定性。影响石蜡安定性的上要因素是其所含有的微量的非烃化合物和稠环芳烃。为提高石蜡的安定性,就需要对石蜡进行深度精制,以脱除这些杂质。 根据加工精制程度不同,可分为全精炼石蜡、半精炼石蜡和粗石蜡3种。每类蜡又按熔点,一般每隔2℃,分成不同的品种,如52,54,56,58等牌号。粗石蜡含油量较高,主要用于制造火柴、纤维板、篷帆布等。 全精炼石蜡是指以含油蜡为原料,经发汗或溶剂脱油,再经白土或加氢精制所得到的产品。全精炼石蜡和半精炼石蜡的主要区别是含油量的多少,全精炼石蜡含油量小于0.8%,半精炼石蜡含油量小于2.0%。 1.1普通石蜡 固体石蜡又称晶形蜡,是从原油蒸馏所得的润滑油馏分经溶剂精制、溶剂脱蜡或经蜡冷冻结晶、压榨脱蜡制得蜡膏,再经溶剂脱油、精制而得的片状或针状结晶,是碳原子数约为18~30的烃类混合物,主要组分为直链烷烃。可用于制造橡胶制品蜡纸蜡笔食品和药物组分等。 液体石蜡性状为无色透明油状液体,在日光下观察不显荧光。室温下无嗅无味,加热后略有石油臭。密度比重0.86-0.905(25℃)不溶于水、甘油、冷乙醇。溶于苯、乙醚、氯仿、二硫化碳、热乙醇。与除蓖麻油外大多数脂肪油能任意混合、樟脑、薄荷脑及大多数天然或

金属陶瓷粉末注射成型技术MIM

金属(陶瓷)粉末注射成型技术 (Metal Powder Injection Molding,简称MIM) 是一项新的制造技术,美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。日本未来3至5年MIM产业的市场预计达20亿美元。据不完全统计,1995年全世界MIM技术制作的销售额已突破4亿美元,预计2010年MIM 潜在市场为30亿美元。到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 中国MIM技术的研究始于1985年,由中国兵器工业五三研究所承担该课题,当时列入国家[七五]军用新材料重点预研计划,经十余年的探索,技术已基本成熟,并于1996年与上海金珠东方雪域企业有限公司合作成立了山东金珠粉末注射制造有限公司。经过几年的发展,山东金珠公司完成了MIM技术由试验室水平向产业化发展的过程,应用技术更加成熟,能够大批量生产高精尖的军用、民用产品,制品水平已接近世界同期水平,并连续三年实现产值翻番,企业的发展呈现出良好的态势。 近年来,国内努力平衡对日贸易逆差大,掌握关键性零部件的制造技术和提升制造能力,一直是政府协助业者的重要工作之一。本文对MIM技术、生产工艺过程、工艺特点、制品

MIM(金属粉末注塑成型)技术介绍

MIM(金属粉末注塑成型)技术介绍 MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。 MIM产品的特点: 1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的金属零部件; 2、MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra 0.80~1.6μm,重量范围在0.1~200g。尺寸精度高(±0.1%~±0.3%),一般无需后续加工; 3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产; 4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀; 国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。 MIM技术优势

MIM 与传统粉末冶金相对比 MIM可以制造复杂形状的产品,避免更多的二次机加工。 MIM 产品密度高、耐蚀性好、强度高、延展性好。 MIM 可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。MIM与机械加工相对比 MIM 设计可以节省材料、降低重量。 MIM 可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。 MIM通过模具一次成形复杂产品,避免多道加工工序。 MIM可以制造难以机械加工材料的复杂形状零件。 MIM 与精密铸造相对比 MIM 可以制造薄壁产品,最薄可以做到0.2mm。 MIM 产品表面粗糙度更好。 MIM更适宜制细盲孔和通孔。 MIM 大大减少了二次机加工的工作量。 MIM可以快速的大批量、低成本制造小型零件。 MIM材料范围 常用MIM材料应用领域:

各种胶黏剂的分类以及优缺点的介绍

白乳胶(其主要成分: 聚醋酸乙烯) a普通型白乳胶: 广泛用于木器、胶合板、水泥砂浆、纸张、布、皮革等的黏结。 b新型复合白乳胶: 用于木器、胶合板、水泥砂浆、纸张、布、皮革等的黏结。 优点: 可常温固化、固化速度较快、粘接强度较高,粘接层具有较好的韧性和耐久性且不易老化;安全、无毒、不燃、清洗方便;对木材、纸张和织物有很好的黏着力,胶接强度高;固化后的胶层无色透明,韧性好,不污染被粘接物。 缺点: 耐水性和耐湿性差,易在潮湿空气中吸湿;在高温下使用会产生蠕变现象,使胶接强度下降;在-5℃以下储存易冻结,使乳液受到破坏。 淀粉胶黏剂 代替水玻璃黏合工业用纸箱等。(但目前淀粉胶仍高于水玻璃胶价格。) 优点: 无毒、无味、对环境无污染。施胶方便,不需专门设备,一次性涂布量低。 缺点: 易霉变、虫蛀;黏度偏低,流动性较大,胶黏剂剂量不稳定;干燥速度较慢,大批量机械化作业有—定难度;储存稳定性较差,易凝胶;粘接性能偏低。 水玻璃(俗称泡花碱)

粘结力强、强度较高,耐酸性、耐热性好; 缺点: 耐碱性和耐水性差;具腐蚀性、强刺激性,可致人体灼伤。 酚醛树脂胶黏剂 a水溶性酚醛树脂胶黏剂(未改性): 用于胶合板制造。 b醇溶性酚醛树脂胶黏剂: 用于胶合板制造、木器的粘接修补。 c改性间苯二酚-甲醛树脂胶黏剂: 适用期约16h,对木材、尼龙有一定的粘结力,主要用于粘接木材与塑料、橡胶、金属等。 d酚醛-xx腈胶黏剂: 广泛用于汽车和飞机工业中。 优点: 胶接强度高;较好的耐热、耐老化性;耐水、耐化学介质和耐霉菌,特别是耐沸水性能;尺寸稳定性好;电绝缘性能优良。 缺点: 脆性大,剥离强度低,不适于作结构胶粘剂使用;固化时间较长,固化温度高。 脲醛树脂胶黏剂 广泛用于制造胶合板、压层板、装饰板、木结构家具和碎木板等。

金属注射成型综述要点

河南工程学院 《机械工程材料与成形工艺》考查课 专业论文 金属注射成型 学生姓名: 学院: 专业班级: 专业课程: 任课教师: 201 年月日

摘要 金属注射成形(Metal Injection Molding,简称MIM)是一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,众所周知,塑料注射成形技术低廉的价格生产各种复杂形状的制高、耐磨性好的 制品,近年来,这一想法已发展演变为最大限度地提高固体粒子的含量并且在随后的烧结过程中完全除去粘结剂并使成形坯致密化。这种新的粉末冶金成形方法称为金属注射成形。金属注射成形的基本工艺步骤是:首先是选取符合MIM要求的金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混合成均匀的喂料,经制粒后在注射成形,获得的成形坯经过脱脂处理后烧结致密化成为最终成品。 关键词:金属注射成形粘结剂脱脂烧制

一、金属粉末注射成型的发展现状及现状 1. 国外概况 金属粉末注射成型工艺技术的开拓者是美国的Parmatech公司。该公司的航天燃料专家Wiech博士于1973年发明了MIM技术。以Riverst和Wiech于70年代发明的专利为起点,开始了金属粉末注射成形技术。Parmatech于70年代末注射成型铌火箭喷嘴获得MPIF 奖。但由于该技术的独特优点和先进性,被美国列为不对外扩散技术加以保密,直到1985年才向全世界公布这一技术,而在这期间美国国内的MIM技术得以成熟并迅速发展形成产业化。该项技术向世界披露后得到世界各国政府、学术界、企业界的广泛重视,并投入了大量人力物力和财力予以开发研究。其中日本在研究上十分积极而且表现突出,许多大型株式会社参与了MIM技术的工业化推展。目前日本有四十余家企业从事MIM制品的生产,每家公司的利润都十分可观。2000年世界粉末冶金会议在日本召开,并专门设立了MIM技术论坛。继日本快速发展之后,台湾、韩国、新加坡、欧洲和南美的MIM产业也雨后春笋般的发展起来,其中德国的BASF公司以其独特的黏结剂配方成立了专门的MIM产品喂料生产线,在全世界范围内进行技术辅导和喂料的销售,获得了较大的商业利润。 德国BASF公司的Bloemacher于90年代初开发的MIM工艺成为MIM实现产业化的一个重大突破。它采用聚醛树脂作为粘结剂,并在酸性气氛中快速催化脱脂,不仅大大缩短了脱脂时间,而且这种催化脱脂能在低于粘结剂的软化温度下进行,避免了液相的生成,有利于

密封粘合剂有哪些分类

密封粘合剂可按不同方法进行分类 一、按化学成分分类 按化学成分可将密封粘合剂分为橡粘合剂型、树脂型、复合型与无机型几类。 二、按应用范围分类 1、嵌缝类 用密封粘合剂镶嵌连接处的缝隙达到密封作用,如密封腻子、液体密封垫料。 2、灌注类 把密封部件置于壳体里面,然后注入密封粘合剂,使整个部件完全浸透,待其硬化后即得封装成品,壳体不再取下,这种方法大多用于绝缘密封。 3、包封类 该法也称包粘合剂,把密封部件置于模具里,然后注入密封粘合剂,部件不必被浸透,待其硬化后部件外面形成一个保护套,再去掉模具,这种方法大多用于防震、隔热或防水等。 4、埋封类 该法也称埋置或嵌进,它是灌注与包封两种方法的结合。把一个或几个部件,或整个线路置于壳体里面,然后注入密封粘合剂填满其空隙,待其硬化后使其与外界环境隔绝以达到密封作用。灌注、包封和埋封统称灌封或封装,也有人把它称为浇铸,但不够确切。浇铸的主要着眼点是材料的结构性质如硬度、尺寸稳定性、机械强度和加工等性能,封装的主要着眼点是防潮、绝缘、耐化学腐蚀、抗冲击、粘合等性能。 5、浸渗类 易流动的粘合剂液渗入到被密封物件的微孔中以达到密封的目的,这种方法多用于设备细孔的封堵。 6、锁固类 亦称锁紧防松类,主要用于动力机械螺纹的紧固防落、防锈。 三、按强度分类 1、结构类

粘合剂层有较高的强度和承载能力,主要用于耐压密封。 2、非结构类 强度不高,承载能力较小,主要用于定位静密封或低压密封。 四、按固化特性分类 1、化学反应固化密封粘合剂 固化过程中密封粘合剂组分发生化学变化,固化时间取决于配方和固化温度。 2、非化学反应固化密封粘合剂 固化过程中没有化学变化,例如采用溶剂挥发、热熔冷固等方法固化。 五、按涂膜特性分类 1、不干性粘着型密封粘合剂 一般以合成树脂为基体,成膜后长期不固化,保持粘接性和浸润性。粘料有聚醋酸乙烯酯、有机硅树脂、聚酯树脂,聚丁二烯及聚氨酯等。 2、半干性粘弹型密封粘合剂 其介于不干性和干性密封粘合剂之间,溶剂迅速挥发后成软粘合剂膜,具有永久性的粘弹性。一般采用柔韧而富有弹性的线型合成树脂,如聚氨酯树脂、石油树脂、聚四氟乙烯树脂以及聚丙烯酸酯和液体聚硫橡粘合剂为粘料。 3、干性固化型密封粘合剂 液态粘合剂涂敷后,溶剂迅速挥发而固化,膜的粘弹性及可拆性较差。 4、干性剥离型密封粘合剂 液态粘合剂涂敷后,溶剂挥发成膜,快干并可剥离,一般以合成橡粘合剂或纤维素树脂等为粘料,如氯丁橡粘合剂、丁腈橡粘合剂、乙基纤维素和聚酰胺树脂(如醇溶性共聚尼龙)等。 5、粘接型密封粘合剂 以液状涂布密封面后固化为固状填料,其粘接强度高于非粘接型密封粘合

各种有机硅胶粘剂的优缺点

有机硅胶黏剂主要使金属和耐热的非金属材料的粘接剂,耐热橡胶或橡胶与金属的粘接剂,绝热隔音材料与钢或钛合金的粘接剂,以及压敏粘接剂等。 1、有机硅改性丙烯酸酯/无机纳米复合乳液及其制备方法 该乳液在硅丙乳液粒子中包含有纳米SiO2,TiO2,ZnO,CaCO3等无机相,采用反相乳液聚合/乳液聚合的两步聚合法制备而成。由于无机纳米粒子具有微尺寸效应,表面效应,量子效应以及填充效应和催化特性,可以有效地提高硅丙乳液涂料的力学性能,抗玷污性能,自清洁性能,抗静电性能等。由于采用了原位聚合技术,在无机纳米粒子表面进行接技聚合,增强了聚合物同无机纳米粒子之间的相互作用。与物理共混相比,不仅提高了乳液的稳定性,同时还赋予硅丙乳液优异的性能。但是能耗会相对比较高,且使用纳米技术,设备也要昂贵些,成本会相对高。 2、交联型聚硅氧烷/聚丙烯酸酯复合乳液的制备 在甲基丙烯酰氧丙基三甲氧基硅烷存在下,以交联的聚硅氧烷为种子,丙烯酸酯单体为第二单体,偶氮二异丁腈为引发剂,分别采用间歇法、溶胀法和半连续法制备了聚硅氧烷/聚丙烯酸酯复合乳液。这种聚合体系交联很好,连接性能好,原料易得及生产方法简易,设备简单。但是需要经常清洗设备,生产周期长。 3、有机硅共聚树脂高温应变胶 组分用量/g 组分用量/g 有机硅共聚树脂1 云母粉(200目)0.05 钛白粉0.65 石棉细纤维(0.2mm)0.2 氧化锌0.1 制备及固化在270℃高温下和0.5MPa压力下固化3h。 此法,原料易得及设备简单,生产周期短,本胶主要用于高温应变片粘接和合金钢、有色金属等多种材料粘接。但是生产温度高,粘度大不易搅拌及操作,。 4、本剂是以有机硅树脂为基料,添加其他的改性剂调制而成。 原材料: (1)有机硅树脂 (2)二氧化硅粉(3)氧化铝粉(4)三氧化二铬 (5)磷酸锌 (6)石棉粉 优点:(1)本粘接剂强度高,且具有优良的绝缘性、耐高低温性、耐电晕、耐水、防潮及耐化学介质等性能。 (2)本剂使用温度范围广泛,可长期用于60一500℃之间。 (3)设备简单易操作,原料易得,能耗少。 缺点:铬是一种重金属元素,污染比较严重。

金属粉末注射成型技术.

金属粉末注射成型(Metal Powder Injection Molding,简称MIM技术是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃用注射成型机注入模腔内固化成型,然后用化学或热分解的方法将成型坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,MIM具有精度高、组织均匀、性能优异、生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。 MIM技术由美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并使其得到迅速推广,特别是在八十年代中期该技术实现产业化以来,更获得了突飞猛进的发展,产量每年都以惊人速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工艺的推广应用,这些公司包括太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工-爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM产品的销售总值早已超过欧洲并直追美国。MIM技术已成为新型制造业中最为活跃的前沿技术领域,是世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 金属粉末注射成型技术是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速、准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品材质不均匀、机械性能低、薄壁成型困难、结构复杂等缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。

金属粉末注射成型设备和发展

金属粉末注射成型技术(Metal Injection Molding,简称MIM)是近年来粉末冶金学科和工业中发展最迅猛的领域,是现代先进的塑料注射成型技术和传统粉末冶金技术相结合而形成的一项新型粉末冶金近净型成形技术。 一、MIM成型技术 MIM基本丁艺过程是:将微细的金属或陶瓷粉末与有机黏结剂均匀混合成为具有流变性的物质,采用先进的注射机注入具有零件形状的模腔形成坯件,新技术脱除黏结剂并经烧结,使其高度质密成为制品,必要时还可以进行后处理。i亥技术不仅具有常规粉末冶金技术生产效率高,产品一致性好,少切削或无切削,经济高效的优点,而且克服r传统粉末冶金制品密度低,材质不均匀,力学性能低,不易成型薄壁复杂件的缺点,特别适合大批量、小型、复杂以及具有特殊要求的金属零部件的生产加工. 该工艺技术在20世纪8O年代中期实现产业化以来,已获得突飞猛进的发展,注射成型的产品已遍及计算机信息产业、汽车摩托车产业、医疗卫生器械、家用电器、仪器仪表、机械制造、化工、纺织、国防军工等领域。到目前为止,已有20多个国家和地区的几百家公司从事该工艺技术的产品开发、研制与销售工作,粉末注射成型工艺技术也因此成为新型制造业中开发最为活跃的前沿技术领域,被誉为世界粉末冶金领域中的开拓性技术,代表着粉末冶金技术发展的主方向。该工艺的主要特点如下:

(1)可成型复杂结构的零件该工艺技术利用注射机注射成型产品毛坯,保证物料充分充满模具型腔,也就保证了零件复杂结构的实现。这一点是传统机械加工和常规粉末冶金工艺技术所无法比拟的,是注射成型工艺发展的坚强基础。 (2)注射成型制品尺寸精度高,注射成型工艺可直接成型薄壁、复杂结构件,制品形状已能够达到或接近最终产品要求,产品不必进行二次加工或只少罱精加工。零件尺寸公差一般保持在±0.1%~±0.3%左右。特别对于降低难于进行机械加工的硬质合金的加工成本,减少贵重金属的加工损失尤其具有重要意义。 (3)与传统粉末压制工艺相比注射成制品微观组织均匀,密度高,性能好。 二、连续烧结设备的必要性 随着MIM技术的规模产业化,传统粉末冶金和注塑行业的通用生产设备以及各种专门的金属注射成型:工业生产设备已广泛应用于金属注射成型的产业化生产中。企业对产业生产效率和设备自动化,加工连续化程度及设备性能要求的提高促进了金属注射成型产业化进程。MIM产业的全面发展更需通过生产设备来提高企业的生产效率。正确选择和掌握MIM生产过程中的各种设备,可提高产品的质量、产量以及劳动生产率,加速产业化发展。

粉末注射成型技术的特点

粉末注射成型技术的特点 MIM作为一种制造高质量精密零件的近净成形技术,具有常规和机加工方法比拟的优势。MIM能制造许多具有复杂形状特征的零件:如各种外部切槽,外螺纹,锥形外表面,交叉通孔、盲孔,四台与键销,加强筋板,表面滚花等等,具有以上特征的零件都是无法用常规粉末冶金方法得到的。由于通过MIM制造的零件几乎不需要再进行机加工,所以减少了材料的消耗,因此在所要求生产的复杂形状零件数量高于一定值时,MIM就会比机加工方法更为经济。 MIM和精密铸造成形能力的比较 粉末注射成型的优点: 能像生产塑料制品一样,一次成形生产形状复杂的金属、陶瓷等零件部件产品成本低、光洁度好、精度高(±0.3%~±0.1%),一般无需后续加工产品强度,硬度,延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀原材料利用率高,生产自动化程度高,工序简单,可连续大批量生产无污染,生产过程为清洁工艺生产 粉末注射成型 粉末注射成型材料应用 较新MIM材料体系应用

常用MIM产品应用 几种粉末注射成型材料的基本性能 粉末注射形成技术与其他成形工艺技术比较 粉末注射成型工艺与传统批量工业与自动化零件加工、冲压、锻造、精密铸造、粉末冶金相比,具有极其明显的优势。

零件薄壁能力高中中低高 零件复杂程度高低中高低 零件设计宽容度高中中中低 批量生产能力高高中中-高高 适应材质范围高高中-高高中 供货能力高高中低高 粉末注射成型工艺流程图 适用材料及性能 材料 密度硬度拉伸强度伸长率 g/cm 3 洛氏MPa % 铁基合金 MIM-2200(烧结态) 7.65 45HRB 290 40 MIM-2200(烧结态)50HRC 380 20 MIM-2700(烧结态) 7.65 69HRB 440 26 MIM-2700(碳氮共渗)55HRC 830 9 MIM-4650(烧结态)7.55 90HRB 700 11 MIM-4650(热处理态)7.55 48HRC 1655 2 MIM-8620(烧结态)7.5 85HRB 445 20 MIM-8620(热处理态)7.5 35HRC 800-1300 5-9 不锈钢 MIM - 316L (烧结态)7.8 67HRB 520 50 MIM-304L(烧结态)7.75 60HRB 500 70

MIM金属粉末注塑成型技术介绍

MIM(金属粉末注塑成型)技术介绍 ?????MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。? MIM产品的特点:? ????1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的金属零部件;? ????2、MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra0.80~1.6μm,重量范围在0.1~200g。尺寸精度高(±0.1%~±0.3%),一般无需后续加工;?? ????3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产;? ????4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;? 国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。?

MIM与传统粉末冶金相对比? ?MIM可以制造复杂形状的产品,避免更多的二次机加工。? ?MIM产品密度高、耐蚀性好、强度高、延展性好。? ?MIM可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。? MIM与机械加工相对比? ??MIM设计可以节省材料、降低重量。 ???MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。???MIM通过模具一次成形复杂产品,避免多道加工工序。 ???MIM可以制造难以机械加工材料的复杂形状零件。? MIM与精密铸造相对比? ?MIM可以制造薄壁产品,最薄可以做到0.2mm。? ?MIM产品表面粗糙度更好。? ?MIM更适宜制细盲孔和通孔。? ?MIM大大减少了二次机加工的工作量。? ?MIM可以快速的大批量、低成本制造小型零件。? MIM材料范围 常用MIM材料应用领域:?

胶粘剂分类材料来源分天然粘合剂它取自于自然界中的物质包括

胶粘剂分类 材料来源分 ①天然粘合剂 它取自于自然界中的物质。包括淀粉、蛋白质、糊精、动物胶、虫胶、皮胶、松香等生物粘合剂;也包括沥青等矿物粘合剂。 ②人工粘合剂 这是用人工制造的物质,包括水玻璃等无机粘合剂,以及合成树脂、合成橡胶等有机粘合剂。 使用特性分 ①水溶型粘合剂 用水作溶剂的粘合剂,主要有淀粉、糊精、聚乙烯醇、羧甲基纤维素等。 ②热熔型粘合剂 通过加热使粘合剂熔化后使用,是一种固体粘合剂。一般热塑性树脂均可使用,如聚氨酯、聚苯乙烯、聚丙烯酸酯、乙烯—醋酸乙烯共聚物等。 ③溶剂型粘合剂 不溶于水而溶于某种溶剂的粘合剂。如虫胶、丁基橡胶等。 ④乳液型粘合剂 多在水中呈悬浮状,如醋酸乙烯树脂、丙烯酸树脂、氯化橡胶等。 ⑤无溶剂液体粘合剂 在常温下呈粘稠液体状,如环氧树脂等。 粘合剂是标签材料和粘结基材之间的媒介,起连结作用。按其特性可以分为永久性和可移除性两种。它有多种配方,适合不同的面材和不同的场合。粘合剂是不干胶材料技术中的最重要的成分,是标签应用技术的关键。 按原材料分 1 MS改性硅烷 改性硅烷聚合物末端为甲氧基硅烷,1975 年由美国ANGOG公司合成发现,在此基础之上,比利时诺万科技经过不断的研发创新,生产了一系列应用于建筑、工业、汽车交通、民用等的高品质密封胶和粘黏剂。 2 聚氨酯 聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。 3 硅酮

硅酮(Silicones)俗称硅油或二甲基硅油,分子式:(CH3) 3SiO(CH3)2SiOnSi(CH3)3 ,系有机硅氧化物的聚合物,是一系列不同分子量的聚二甲基硅氧烷,黏度随分子量增大而增加。 三者某些性能比较 性能MS 改性硅烷聚氨酯硅酮 不起泡10 9 5 低温下出胶10 6 10 防垂坠性10 10 10 固化速度10 7 10 存放稳定性10 7 9 抗老化性9 6 10 10 5 8 对各种基质的粘黏 性 机械性能10 10 10 耐温性9 8 10 防污性10 10 5 对水性油漆亲和性10 10 3 防渗色性8 8 3

胶粘剂国内外发展概况

胶粘剂国内外发展概况 查文海 (无锡石油化工总厂 214011) 1、概况 粘接剂是一种使物体与物体粘接成为一体的媒介。它能使金属、玻璃、陶瓷、木材、纸质、纤维、橡胶和塑料等不同材质或同一材质粘接成一体,赋予各物体有各自的应用功能,是精细化工中重要的一类。 据资料报导,粘接剂全球市场极大,1995年世界粘接剂消费量达728万吨,其中:北美地区270万吨、南美13.5万吨、欧洲279.5万吨、亚太地区135万吨、其它地区30万吨。据专家预测2000年全球耗用粘接剂将达到844.5万吨。 据另一专家所写资料数据表明我国粘接剂用量增长迅速:(表1) 预测2000年将达到200万吨以上。与上述资料所示的全球用量稍有出入。 由此可见,无论是国外还是国内,粘接剂的发展速度都是较快的,用量也是可观的。因此该行业吸引了众多的企业家,在中国竟有600多家各种各样类型的粘接剂生产厂,数量可谓世界第一。也正因为有众多的粘接剂生产厂,所以在中国粘接剂市场上竞争极其激烈。 2、粘接剂主要品种状况 粘接剂种类很多,有天然的也有合成的,有无机的也有有机的,有水溶、热熔、压敏、溶剂型------。在我国用量较大的为“三醛胶”及“氯丁胶”,常用的还有醋酸乙烯乳液、丙烯酸乳液等。这几种胶的用量占总胶量的80%左右。但环氧胶、改性丙烯酸酯、聚氨酯、有机硅等粘接剂近年来发展速度极快,大有后来居上的趋势。 三醛胶是指以尿醛、酚醛、三聚氰胺甲醛为主要原料制备而得的粘接剂,它们和醋酸乙烯乳液组成了粘接剂的主力军。1996年这几种粘接剂在国内的产量为75.8万吨。它们的主要市场是木材工业、建筑装璜、包装、纸管、胶合板和卷烟。这些胶由于生产工艺简单、使用方便、价格便宜,因而生产厂很多。大部

各种板材分类和优缺点

各种板材分类和优缺点 [导读]很多人在买板材时候经常会头疼该买一种?哪一种性价比高?哪一种板材最好?哪一种板材最便宜?本文将对各种板材进行详细分类。 每当装修的时候,要买的材料很多,就板材分类就很多,而对于我们这些不了解的该怎么办呢?只好多了解一下,到底板材有哪几种,各种都有什么优缺点,接下来神州公装网的小编将为您详细讲解。 板材分类和优缺点 板材按材质分类可分为实木板、人造板两大类;按成型分类可分为实心板、夹板、纤维板、装饰面板、防火板等等。 1、实木板 顾名思义,实木板就是采用完整的木材制成的木板材。这些板材坚固耐用、纹路自然,是装修中优中之选。但由于此类板材造价高,而且施工工艺要求高,在装修中使用反而并不多。实木板一般按照板材实质名称分类,没有统一的标准规格。目前除了地板和门扇会使用实木板外,一般我们所使用的板材都是人工加工出来的人造板。 2、夹板 夹板,也称胶合板、行内俗称细芯板。由三层或多层一毫米厚的单板或薄板胶贴热压制而成。是目前手工制作家具最为常用的材料。夹板一般分为3厘板、5厘板、9厘板、12厘板、

15厘板和18厘板六种规格(1厘即为1mm)。 3、装饰面板 装饰面板,俗称面板。是将实木板精密刨切成厚度为0.2mm左右的微薄木皮,以夹板为基材,经过胶粘工艺制做而成的具有单面装饰作用的装饰板材。它是夹板存在的特殊方式,厚度为3厘。 4、细木工板 细木工板,俗称大芯板。大芯板是由两片单板中间粘压拼接木板而成。大芯板的价格比细芯板要便宜,其竖向(以芯材走向区分)抗弯压强度差,但横向抗弯压强度较高。 5、刨花板 刨花板是用木材碎料为主要原料,再渗加胶水,添加剂经压制而成的薄型板材。按压制方法可分为挤压刨花板、平压刨花板二类。此类板材主要优点是价格极其便宜。其缺点也很明显:强度极差。一般不适宜制作较大型或者有力学要求的家私。 6、密度板(x) 密度板,也称纤维板。是以木质纤维或其他植物纤维为原料,施加脲醛树脂或其他适用的胶粘剂制成的人造板材,按其密度的不同,分为高密度板、中密度板、低密度板。密度板由于质软耐冲击,也容易再加工。在国外,密度板是制作家私的一种良好材料,但由于国家关于高度板的标准比国际的标准低数倍,所以,密度板在我国的使用质量还有待提高。 7、防火板 防火板是采用硅质材料或钙质材料为主要原料,与一定比例的纤维材料、轻质骨料、黏合剂和化学添加剂混合,经蒸压技术制成的装饰板材。是目前越来越多使用的一种新型材料,其使用不仅仅是因为防火的因素。防火板的施工对于粘贴胶水的要求比较高,质量较好的防火板价格比装饰面板也要贵。防火板的厚度一般为0.8mm、1mm和1.2mm。 8、三聚氰胺板 三聚氰胺板,全称是三聚氰胺浸渍胶膜纸饰面人造板,是一种墙面装饰材料。其制造过程是将带有不同颜色或纹理的纸放入三聚氰胺树脂胶粘剂中浸泡,然后干燥到一定固化程度,将其铺装在刨花板、中密度纤维板或硬质纤维板表面,经热压而成的装饰板

胶粘剂分类

胶粘剂 VAE乳液:是醋酸乙烯-乙烯共聚乳液的简称,是以醋酸乙烯和乙烯单体为基本原料,与其它辅料通过乳液聚合方法共聚而成的高分子乳液。乙烯与醋酸乙烯共聚物是乙烯共聚物中最重要的产品,国外一般将其统称为EVA。但是在我国,人们根据其中醋酸乙烯含量的不同,将乙烯与醋酸乙烯共聚物分为EVA树脂、EVA橡胶和VAE乳液。醋酸乙烯含量小于40%的产品为EVA树脂;醋酸乙烯含量40%~70%的产品很柔韧;富有弹性特征,人们将这一含量范围的EVA树脂有时称为EVA橡胶;醋酸乙烯含量在70%~95%范围内通常呈乳液状态,称为VAE乳液。VAE乳液外观呈乳白色或微黄色。VAE乳液主要用于胶粘剂、涂料、水泥改性剂和纸加工,具有许多优良的性能。1、VAE乳液具有永久的柔韧性。2、VAE乳液具有较好的耐酸碱性。3、VAE 乳液能够耐紫外线老化。4、V A E乳液具有良好的混容性。5、VAE乳液具有良好的成膜性。6、VAE乳液具有良好的粘接性。它对纤维、木材、纸张、塑料薄膜、铝箔、水泥、陶瓷等制品有很好的粘合作用。根据VAE乳液聚合物的防水性划分,可分为通用和防水用两类。通用类产品牌号的VAE聚合物钢性好,补粘强度高,但耐水性差;防水用产品牌号的VAE聚合物挠性好,耐水性好,但粘接强度低。根据VAE应用性能、共聚物组成和共聚第三单体类型,VAE乳液可分为粘品和纺品两大类。粘品型VAE多用作通用型胶粘剂,纺品型胶粘剂则多用作纺织纤维的胶粘剂,但两者之间并没有绝对界限。VAE乳液用途1、VAE乳液被广泛用于胶粘剂的基料。2、VAE乳液可以用作涂料的基料。3、VAE乳液可用于纸加工。4、VAE乳液可用于水泥改性剂,水泥是建筑工程中应用最广泛的材料之一。 聚丙烯酸酯(PAE)乳液:(NBS共聚体)水泥砂浆又称:丙乳砂浆,是丙烯酸酯共聚乳液改性的聚合物水泥砂浆(简称:NBS丙乳水泥砂浆),NBS丙乳是一种水泥基高分子聚合物的水分散体,加入水泥砂浆后也称为聚合物水泥砂浆。该砂浆具有优异的粘结、抗裂、抗冻、防渗、防腐、抗氯离子渗透、耐老化和耐蚀性能,适用于海洋、水闸、瀑布、港口工程、公路、桥梁、冶金、化工、工业地坪与民用建筑等钢结构和钢筋混凝土结构的防渗、防腐护面和修补工程。 聚氨酯(PU)胶粘剂:是指在分子链中含有氨基甲酸酯基团(-NHCOO-)或异氰酸酯基(-NCO)的胶粘剂。聚氨酯胶粘剂分为多异氰酸酯和聚氨酯两大类。多异氰酸酯分子链中含有异氰基(-NCO)和氨基甲酸酯基(-NH-COO-),故聚氨酯胶粘剂表现出高度的活性与极性。与含有活泼氢的基材,如泡沫、塑料、木材、皮革、织物、纸张、陶瓷等多孔材料,以及金属、玻璃、橡胶、塑料等表面光洁的材料都有优良的化学粘接力。用途1、汽车2、木材3、鞋用场、4、包装5、建筑6、油墨7、书籍装订8、铁路建设9、聚氨酯胶粘剂由于其优异的粘接特性,在航天器材的粘接、文物保护与修复、军工产业、文具用品、医疗卫生等方面发挥越来越重要的作用。 热熔胶:是一种可塑性的粘合剂,在一定温度范围内其物理状态随温度改变而改变,而化学特性不变,其无毒无味,属环保型化学产品。热熔胶粘合是利用热熔胶机通过热力把热熔胶熔解,熔胶后的胶成为一种液体,通过热熔胶机的热熔胶管和热熔胶枪,送到被粘合物表面,热熔胶冷却后即完成了粘合。EVA热熔胶是一种不需溶剂、不含水分100%的固体可熔性

相关文档
最新文档