气象雷达新技术及其应用02121010朱潇杰资料

气象雷达新技术及其应用02121010朱潇杰资料
气象雷达新技术及其应用02121010朱潇杰资料

新技术讲座大作业

班级:021211

学号:02121010

姓名:朱潇杰

气象雷达新技术及其应用

摘要:气象雷达近几十年来呈高速发展的态势, 受到世界上大多数国家和包括世界气,象组织在内的气象、水文和相关学科的国,际气象组织的高度重视。特别是多普勒天,气雷达技术的应用,使获取更多的大气运,动状态信息成为可能, 极大地提高了各国,气象和水文部门对极端灾害性天气的监测,和预报能力, 已成为世界各国构建业务雷达网之首选。本文首先阐述了国外发达国家气象雷,达的发展现状,然后分别简要介绍双(多)基,地天气雷达、双线偏振雷达、相控阵天气雷,达、激光天气雷达、风廓线雷达等新型雷达,探测大气的原理及其在气象中的应用。

关键词:气象雷达;民航安全;应用

一、气象雷达发展现状

气象雷达属于雷达领域中的一个重要分支,其发展至今大致经历了从模拟、数字到以美国NEXRAD为代表的新一代气象雷达三个发展阶段,目前已广泛应用于天气预报以及农业、水文、林业、交通、能源、海洋、航空、航天、国防、建筑、旅游、医疗等领域的专业气象服务。随着气象雷达探测技术的改进和应用范围的扩大,气象雷达在民航安全中的应用引起了民航界和相关学术界的广泛重视.现代气象雷达系统除了能监测雷雨等灾害天气外, 还可以对严重影响民航安全的风切变、湍流和鸟类危险目标进行有效探测和预警,为降低进近机场区域

低空风变、飞机尾流和鸟击事件风险做出巨大贡献,对保障飞机飞行的安全性、经济性和舒适性具有重要意义。

二、气象雷达新技术

(一)双线偏振雷达

为了识别降水目标、区分不同的降水类型,人们采用多参数雷达进行天气研究,其中双偏振雷达是人们常采用的技术之一,它是根据不同的降水粒子对入射电磁波极化散射特性不同对降水类型进行识别和分类的。双线偏振天气雷达能交替发射和接收水平和垂直的线偏振波,与常规天气雷达相比,除能测量水平反射率因子ZH外,还可以测量差分反射率ZDR、比差分传播相移KDP、相关系数ρHV(0)、退偏振比LDR等,从而了解降水粒子的形状、相态、粒子谱分布、以及粒子的空间取向等,在提高定量测量降水精度、识别冰雹并确定冰雹的大小、区分冬季降水类型、识别风暴中的闪电活动、确定飞机结冰条件等方面具有广泛的应用。双线偏振天气雷达对云雨时空变化的连续观测,可明显提高对水成物形成的微物理过程的理解,提高降水强度的估测精度,改善雷达测量单点和流域的降水强度和降水总量的效果。(二)双(多)基地雷达

双(多)基地雷达主要针对常见的单基地雷达而言的。单基地雷达一般是收发同址,即接收站和发射站位于同一个地方,而双(多)基地雷达则是收发异址,具有一(多)个发射站和一(多)个接收站,以离散的形式配置。从布置的位置方面来看, 可分为地发/地收,空发/地收,地发/空收等几种形式,多基地雷达还具有一发多收,多发多收等形式。而双(多)基

地天气雷达系统一般采用地发/地收,由一部常规的多普勒天气雷达与一个或多个没有发射系统和天线伺服系统、布置在远处的双基地接收站组成。

由于双(多)基地雷达使用两个或两个以上的分离基地( 其中包括有源和无源基地),因此多个接收站可以从不同的角度对同一个天气目标进行观测,在发射机所发射的电磁波照射下,雨滴散射的电磁波能量及所产生的多普勒频移同时被发射站(主站)及接收站(子站)接收到,利用多普勒技术可获得完整的三维矢量风场。双(多)基地天气雷达系统还可直接测量得到反射率、垂直风、涡流等,利用这些参数应用大气热力学原理可进一步反演出相关的气压与温度。

(三)相控阵天气雷达

相控阵多普勒天气雷达,主要优势是可以提高获取资料的时间分辨率、进一步提高探测能力。一般雷达均基于机械扫描体制,这种扫描方法一般在6min内完成14层的扫描,对于快速变化的中小尺度天气过程如冰雹、龙卷、微下击暴流、风切变等过程, 用这种传统的方法很难同时满足高时空分辨探测天气过程三维结构和发展演变的需求。相控阵天气雷达快速而精确地转换波束的能力使该雷达能够在1min 内完成全空域的扫描,同时获取大量的气象信息。所采用的阵列天线是由大量相同的辐射单元组成的孔径,每个单元在相位和幅度上是独立控制的,能得到精确可预测的辐射方向图和波束指向。若干个固态发射机通过功分网络将能量分配到每个天线单元, 移相网络又控制每个天线单元的初相位,通过大量独立的天线单元将能量辐射出去并在

空间进行功率合成。接收时,各天线单元将接收到的目标回波信号进行相位相加进入接收机。回波信号经接收机放大、滤波后进入信号处理机进行多种模式的信号处理。对信号处理机提取的气象数据进行二次处理得到气象预报需要的气象要素资料。

(四)激光天气雷达

激光雷达对大气的探测,主要是通过分析由激光器发射的激光与大气中的折射率不均匀层以及遇到气溶胶等大气粒子后,产生的后向散射(回波信号)而得到的大气一些物理参数,如风速、大气温度、大气密度等。根据激光与大气作用方式和探测目的的不同, 演变出多种不同类型的激光雷达。米(Mie)散射激光雷达可连续地探测大气边界层中气溶胶粒子的光学特性以及气溶胶粒子和大气边界层高度的时空分布。差分吸收(DIAL)激光雷达可探测大气边界层中污染气体,如NO2、SO2、O3等含量的时空分布。拉曼(Raman)激光雷达根据同时接收到的水汽和氮气分子对激光后向散射信号的比值,就可以计算出水汽混合比,探测边界层中水汽含量的时空分布。

(五)风廓线雷达

大气中存在着各种不同尺度随时间变化的湍流,它们能引起折射指数的不规则变化,对无线电波产生散射作用。风廓线雷达向天空发射无线电波,接收到的回波是由于大气湍流对电磁波的散射而产生的。通过对回波的处理和分析就可以获得湍流大气的多普勒系数和强度系数,从而反演出湍流强度、运动方向和运动速度随高度的分布。大气湍流是随风传播的,因此,如果获得了大气湍流的多普勒速度和方向,

同时也就获得了风的速度和方向。

风廓线雷达上加装无线电探声系统(RASS)后,可以测量大气层的有效温度。RASS雷达系统通常由4个声源组成,分布在风廓线雷达天线阵的每一边并垂直向上发射声波。由于声速与大气温度有很好的对应关系,所以可以通过风廓线雷达测得的声速来得到有效温度廓线,进而连续地估算出湿度廓线,风廓线雷达主要用于探测风、温、湿的垂直廓线,相当于无线电探空仪的探测效果,但时间分辨率要高得多,可以小到大约3min;高度分辨率也高得多,可以达到每层50m左右,且几乎是垂直探测的,探测高度从近地面到18km范围内。

六)星载测雨雷达TRMM/PR

星载天气雷达可能性研究可以追溯到1960年代,但直到1997年TRMM(TropicalRainfall Measuring Mission)卫星发射,第一部测雨雷达雷达才被安装在卫星上。目前TRMM卫星上的测雨雷达(PR)由日本NASDA(National Space and DevelopmentAgency)公司制造。发射频率13.796GHz,采用相控阵天线,波长约2cm,观测范围从地表到15km。TRMM/PR雷达可以提供三维降水结构,定量测量陆地与洋面降水量,通过所提供的降水分布的测量资料,提高TRMM中微波图象的精度等。TRMM卫星上还载有闪电成像传感器何被动微波图像仪等,应用这些仪器得到的资料,可对各种天气现象,尤其是对发生在资料稀少的热带海洋等热带地区的天气进行更为深入的研究。

(七)机载雷达

从1980年代开始,陆续有多种载有不同波长何探测能力的机载多普勒

雷达系统投入使用,近年来机载雷达技术的发展进步,大大提高了获取风和微物理学信息的能力。如机载双波束多普勒雷达,即在一部雷达上有两个天线,分别装在飞机的前部与后部,产生前向与后向两个波束,同一粒子运动速度V可以得到两个径向速度Vr1、Vr2,这样可以反演出雷暴云中的二维流场。另一个进步是与地面雷达相结合的双站接收天气技术,与多部雷达相比,前者易使用更易于布署和运转,且高效。机载天气雷达优点的是探测范围机动灵活,可以近距离靠近降水目标,提高空间分辨率,不存在地物阻挡降水目标及远处地曲造成盲区,主要用于研究地面雷达网不能覆盖或海洋上的中尺度天气现象。如Chen-KuYu等利用机载多普勒雷达在台湾东南沿海对一发展种的中尺度对流系统进行观测时,捕捉到一个长生命期中尺度气旋发展初期特征,气旋的水平直径由地表约40km,扩大到对流层中层的70km,形成一个明显的斜槽,并一直与对流性降水紧密相联。

三、气象雷达在民航安全中的应用

(一)微波雷达风切变探测

早在20世纪80年代初,研究人员就积极尝试应用微波多普勒气象雷达进行风切变探测研究80年代末到90年代初,FAA在观测大量风切变的基础上开发了终端多普勒气象雷达(TDWR)系统[7,8].该系统采用5cm波长055!窄波束在机场探测风切变和沿着飞机起降路线上的强降雨,并给出下列标准:当估计空速变化量在10m/s至15m/s时,发送切变警报;大于15m/s时则发送微暴警报. 此外系统数据还将共享于FAA的廊道综合气象服务系统( CIWS) 和综合终端气象服务系统

(ITWS),以便空管人员管理.TDWR是地基风切变探测的典型系统,目前已成功应用于美国45个主要机场。

在机载风切变探测方面,由于机载微波多普勒雷达可与现代机载数字彩色气象雷达兼容,使造价降低,且对飞机无改装要求, 因此很适合于机载前视式风切变探测.但是实际探测中,地杂波是主要的干扰因素,尤其飞机进近阶段,抑制地杂波干扰、克服雨衰减和检测低反射率的风切变微弱信号是三大技术难点.其中,适于风切变探测的雷达信号处理方法有脉冲对法、快速傅里叶变化法、自适应滤波法、频谱模式分析法等。

(二)激光雷达风切变探测

测风激光雷达系统是从20世纪70年代开始发展起来的,最初的测风激光雷达系统一般采用连续CO2激光器和相干检测方法.90年代后,非相干检测固体激光测风系统得到了迅速发展.目前,国际具有代表性的风切变激光雷达探测系统为美国Lockheed Martine公司为美国国防部、NASA和FAA等政府部门研制的相干多普勒激光雷达Wind Tracer 系统

(三)气象雷达湍流探测

对气象雷达而言,湍流是指微粒速度偏差较大的气象目标[15],这里的速度偏差可理解为速度的范围或频谱,频谱越宽,湍流越大.一直以来,湍流对于飞机尤其是民航飞机的安全造成极大威胁.本节将主要对民航飞机经常遭遇的大气湍流和飞机尾流探测方法作一介绍。

(1)大气湍流探测

大气湍流[4]由大气快速不规则运动引起,属于气象学概念,通常表现为气流运动急速多变,方向变化不定。

早期气象雷达并不能直接测量大气湍流,通常用间接判别的方法,将大气湍流和降雨量、无规律的回波形状和急剧升降的雨梯度联系起来判断是否存在,但实际中湍流并不一定会伴随上述特征出现,尚存很多缺陷。

20世纪80年代,多普勒技术广泛应用于气象雷达.多普勒湍流检测是一种从频域提取湍流目标信息的相参检测技术。该技术基于多普勒原理,当雷达波束照射到湍流区域时,湍流目标形成雷达回波, 由于湍流急速多变的运动特性,所形成的是一个偏离雷达发射频率且频谱宽度较宽的多普勒频移,与一般降雨区回波存在明显差别, 从而根据这一特性来探测并且直接显示出湍流区域,大大保障飞行安全。

通常根据湍流区域是否含有降雨雨滴,可把大气湍流分为湿性湍流和晴空湍流.目前,只有湿性湍流能被多普勒气象雷达有效探测, 而晴空湍流很难用肉眼和普通气象雷达探测,激光多普勒雷达技术是目前主要的探测手段。近几十年来,国内外学者对晴空湍流的诊断预报法进行了大量研究,综合利用雷达、卫星资料,结合先进的数值模式产品和湍流数值模拟研究将是晴空湍流探测预测方法的主要发展趋势。(2)飞机尾流探测

飞机尾流是湍流的一种形式,它是指飞行器经过后引起的空气不规则运动,会导致跟进的后机出现机身抖动、下沉、飞行状态改变甚至发动机停车等现象,严重危及飞行安全.目前为避免飞机尾流影响, 民航

空中交通管理规定了安全尾流间隔标准以确保飞行安全,但民航事业的快速发展迫切需求尾流安全间隔能进一步缩小来有效增加机场跑道容量。

目前监测和预警飞机尾流的主要研究方法为,在测量尾流特性数据基础上,分析尾流的形成机理和消散特性,通过拟合的尾流消散和遭遇模型来有效预测尾流.地基或机载脉冲激光雷达是适于尾流特性测量的主要探测设备,其中Wind Tracer已在纽约、伦敦、法国Charles deGaulle 和德国Frankfurt国际机场得到广泛应用,尾流探测效果显著.此外,利用尾流声学性质,应用声传感手段也是一种有效测量方法,如Lock heed Martine公司开发SOCRATES系统。

(3)气象雷达鸟情探测

鸟击是指航空器起降或飞行过程中与鸟类、蝙蝠等飞行物相撞的事件.自航空器问世以来,鸟击事件就对飞行安全存在严重威胁.ICAO将鸟击灾害定义A类航空灾难,鸟击危害已上升为我国民航的重大安全隐患。

利用雷达识别鸟类目标,建立鸟击预警模型,有针对性地驱散和避开鸟群,是降低鸟击危害的有效途径。由于鸟类的直径在几厘米到几十厘米,为获得鸟类目标较稳定的RCS量值,探鸟雷达的工作波段通常选择为鸟类尺寸相当的SKa波段,因此应用气象雷达进行鸟类活动探测有着一定的理论可行性。

早在20世纪60年代到70年代,科研人员就积极尝试应用气象雷达进行鸟类活动观测。经过几十年的发展,目前国外已基本形成相对成熟

的气象雷达探鸟系统,其中具有代表性的是美国鸟击危害咨询系统(AHAS)。

该系统基于151部新型多普勒气象雷达WSR-88D组成的气象雷达网, 实现对美国48个州的候鸟迁徙情况进行有效监测和预报.其最高输出功率750kW,工作频率2.7-3.0GHz(S段),采用口径9m的抛物面天线,波束宽度0.96,脉冲宽度从1.57us到4.5-5.0us可调,覆盖范围达124海里,可探测到大气中鸟类、蝙蝠和昆虫等生物目标。系统每10分钟更新一次全美鸟情信息,并通过互联网发布,为鸟击防范和鸟类学研究发挥重要作用。

气象雷达适于探测较广区域(10-60km)的鸟情分布,但由于其造价高、信息更新速度慢、不易操作等原因,并不适合机场区域鸟情探测.目前已经开发出的典型“机场雷达探鸟系统”有DeTect公司的Merlin和Sicom Systems公司的Accipiter。北京航空航天大学与中国民用航空总局航空安全技术中心合作,在国内率先搭建了“机场雷达探鸟实验系统”,对机场区域内的鸟情探测技术进行了深入研究。利用该实验系统进行了广泛的理论和实验研究,验证了雷达探鸟的可行性,积累了大量探鸟雷达图像并形成了供研究的样本库。飞鸟目标检测与跟踪算法是该系统的核心,包括背景差分、杂波抑制、量测信息提取、目标跟踪和数据叠加五个步骤,将鸟情信息从复杂的雷达图像中提取出来,生成便于观测的融合图像。“机场雷达探鸟系统”研究将为我国全国范围内新一代气象雷达探鸟网的组建奠定了理论和工程基础。

因此,加强气象雷达技术研究,使其可以进行空天地一体化的联网

综合探测,实现对地面或建筑障碍物、鸟击危害、风切变、湍流等民航安全威胁要素的一体化探测预警,最终实现低空防撞综合处理智能一体化,将成为我国气象雷达在民航安全应用中的重要发展趋势。

A320系列飞机气象雷达系统

A320系列飞机气象雷达系统介绍及机组操作建议 概述:机载气象雷达系统(WXR)用于在飞行中实时地探测飞机前方航路上的危险气象区域,以选择安全的航路,保障飞行的舒适和安全。机载气象雷达系统可以探测飞机前方的降水、湍流情况,也可以探测飞机前下方的地形情况。在显示器上用不同的颜色来表示降水的密度和地形情况。新型的气象雷达系统还具有预测风切变(PWS)功能,可以探测飞机前方风切变情况,使飞机在起飞、着陆阶段更安全。本文主要针对我公司A320系列飞机机载气象雷达系统的组成、工作原理、显示特点及我公司A320系列飞机气象雷达的种类和机组操作建议进行了介绍。 一、机载气象雷达系统的组成 机载气象雷达系统的基本组成由:雷达收发机、雷达天线、显示器、控制面板和波导系统等,如图1-1所示:

雷达收发机:用来产生发射射频脉冲信号和接收并处理射频回波信号,提供气象、湍流和地形等显示数据,探测风切变事件并向机组发送警告和告诫信息。 雷达天线:用来产生高3.6°、宽3.4°的波束并接收回波信号。天线的稳定性受惯性基准组件(IRU)的俯仰和横滚数据控制。 显示器:对于A319/A320/A321飞机来说,气象雷达数据都显示在ND上。 控制面板:用于选择气象雷达的工作方式,控制天线的俯仰角度和稳定性,对接收机灵敏度进行控制。 波导系统:波导管作为收发机和天线之间射频信号桥梁通道。 二、气象雷达对目标的探测 机载气象雷达主要用来探测飞机前方航路上的气象目标和其他目标的存在以及分布状况,并

将所探测目标的轮廓、雷雨区的强度、方位和距离等显示在显示器上。它是利用电磁波经天线辐射后遇到障碍物被反射回来的原理,目标的导电系数越高,反射面越大,则回波越强。要清楚气象雷达如何工作的关键在于了解雷雨的反射率。一般来说,雷雨的反射率被划分成三个部分:雷雨的下三分之一由于温度在冰点之上,所以全部由小雨滴组成,这部分是雷雨中对雷达波能量反射最强的部分。中间部分由过度冷却的水和冰晶组成,由于冰晶是不良的雷达波反射体,所以这部分的反射率开始减小了。雷雨的上部完全由冰晶组成,所以在雷达上几乎不可见。另外,正在形成的雷雨在其上部可能会形成拱形的紊流波,如图2-1所示:

气象资料分析与应用系统设计与实现

2012年12月 内蒙古科技与经济 December 2012 第24期总第274期 Inner M o ngo lia Science T echnolo gy &Economy N o .24T o tal N o .274 气象资料分析与应用系统设计与实现 康 利,张 立,温建伟,于溥天,杜 宇 (内蒙古自治区气象信息中心,内蒙古呼和浩特 010051) 摘 要:以内蒙古自治区地面观测台站的常规资料、自动站资料、区域加密观测资料中的温度、降水量等气象要素信息为数据源,进行任意一种资料或多种资料间相同要素数据的补充叠加,实现等值线绘制、着色、图形缩放和拖动、查看数据等功能,为用户提供方便的绘制、浏览、查询地区任意时间段内等值线分析图和要素信息对比分析图等服务。 关键词:B/S 架构;等值线;F lex 技术;气象资料;气象信息网络 中图分类号:T P 311.52(226) 文献标识码:B 文章编号:1007—6921(2012)24—0052—03 随着现代科学技术与管理技术的提高、生产信息的多元化和复杂化,使得信息的处理、管理和应用也越来越重要,人类进入21世纪后,信息化水平高低成为衡量一个地区的现代化水平,一个国家的综合国力的重要指标。 近年来,由于国家和部门内部的重视,使得全区气象信息网络以及气象观测、探测系统的建设得到了飞速发展,各种气象信息资料不断丰富,为气象科研、业务以及服务人员开展各方面工作奠定了信息基础。尤其是近几年随着全国开展的气象科学数据共享、风能资源数据库等项目的建设,推动了历史气象资料信息化建设的步伐。 为了更好地共享气象信息资源,避免在信息分析、应用方面的重复建设,使全区各级业务人员更加便捷地使用内蒙古自治区气象资料信息资源,同时提供符合实际业务应用需求的分析工具,最大程度地降低资料分析处理的工作强度,提高信息利用价值,通过综合利用计算机网络、数据库、图形图像绘制处理以及网站建设等先进的计算机技术,建立内蒙古自治区的《气象资料分析与应用系统》,为各级预报、科研、决策服务以及业务管理人员提供统一的气象要素分析平台,解决目前内蒙古自治区气象信息服务缺乏多种自动分析手段和便捷信息服务平台的问题,为气象系统各业务部门进一步的信息综合分析及决策应用提供支撑。1 系统总体设计1.1 系统整体结构 系统整体采用B/S(Brow ser/Server)架构设计,数据源为文件存储管理系统以及数据库系统存储的各类气象资料,应用依托于区局现有网络环境,用户通过WWW 浏览器访问系统,系统在服务器端响应用户各种查询、浏览、数据分析应用需求,将查询、分析结果和形成产品提供给用户(Bro wser)端(见图1所示) 。 图1 系统整体结构 系统采用模块化设计,包括基础数据服务模块和数据分析应用模块,基础数据服务模块用来实现用户直接浏览和下载资料的应用需求,数据分析应用模块由等值线绘制模块、气象要素对比分析模块和实时资料分析模块组成,用来综合利用实时和历史气象资料,实现用户对气象资料较为复杂的分析应用需求。 1.2 系统核心技术创新点 1.2.1 利用优化的插值算法绘制等值线。等值线法又称等量线法,是用一组等值线来表示连续面状分布的制图现象数量特征渐变的方法。每两条等值线之间的数量差额多为常数,可通过等值线的疏密程度来判断现象的数量变化趋势。等值线法往往与分层设色的表示手段配合使用,即采用改变颜色深浅、冷暖和阴暗来表示现象的数值变化趋势,使图面更清晰、易读。等值线法除用于表示空间现象数量的连续而逐渐变化的特征外,还可表示现象随时间的变化,现象的重复性(频度)等。因为等值线具有上述特点,因此它被广泛地应用在气象降水以及温度要素变化分析过程中。 系统通过优化的插值算法,利用新型的曲线生成模型,绘制符合气象部门需求的较为直观地体现气象要素分布情况的等值线图形。 系统在现有的矩形算法和三角算法的基础上,结合最新的三维图像绘制技术,针对特定区域已知的、离散的、不规则的气象空间数据进行整体分析优化,利用离散数据来估计规定点上的非观测数据,进行“空间插值”,实现有限数据资源的气象空间数据的筛选整合,然后利用新型的曲线生成模型,最终实现了把空间分布不规则和有限的点数据转换成指定区域的规则的网格化数据分布模型,绘制符合气象部分需要的较为直观的体现气象要素分布情况的等值线图形。 1. 2.2 Fl ex 技术的应用。F lex 是一种的presentat ion server (展现服务),它是java w eb cont ainer 或者.net server 的一个应用,根据.x ml 文件(纯粹的x ml 描述文件和act ionscript )产生相应得.sw f 文件,传送到客户端,由客户端的f lash player 或者shockw ave pl ay er 解释执行,给用户以丰富的客户体验。 系统应用Adobe 公司的F lex 技术,通过客户端(Flash)对后台历史数据进行访问,通过结合图形方式更好的展示数据,丰富了数据显示形式,实现了对 28

气象雷达之演讲稿解读

气象雷达之演讲稿 老师好,同学们好,我们小组的课题是气象雷达的现状。下面我们将从四个方面阐述我们小组对气象雷达现状的认识。 在这之前要说一说气象雷达的概况。气象雷达是专门用于大气探测的雷达,属于主动式微波大气遥感设备,气象雷达主要用来探测气象状况以及变化趋势,如风、雨、云等,是用于警戒和预报中、小尺度天气系统(如台风和暴雨云系)的主要探测工具之一。 下面进入第一个模块,气象雷达的分类及作用。 测云雷达是用来探测未形成降水的云层高度、厚度以及云内物理特性的雷达。其常用的波长为1.25厘米或0.86厘米。主要用来探测云顶、云底的高度。如空中出现多层云时,还能测出各层的高度。 毫米波测云雷达就是其中的一种,它通常用于识别云的相态,主要用于机场、港口、气象、大气物理研究等部门进行的非降水云和弱降水云探测,可以提供云底高度、云顶高度及云厚等信息,判别云的属性、晕的相态及云滴谱分布等。 然而测云雷达只能探测云比较少的高层云和中层云。对于含水量较大的低层云,如积雨云、冰雹等,测云雷达的波束难以穿透,因而只能用测雨雷达探测。 测雨雷达又称天气雷达,是利用雨滴、云状滴、冰晶、雪花等对电磁波的散射作用来探测大气中的降水或云中大滴的浓度、分布、移动和演变,了解天气系统的结构和特征。测雨雷达能探测台风、局部地区强风暴、冰雹、暴雨和强对流云体等,并能监视天气的变化。据不完全的资料分析.世界上的测雨雷达发展至今,已有上千部之多。而其中以美国英国、日本、法国的发展最为迅速,不仅装备本国,而且出口到世界上的许多国家。 多普勒天气雷达是现如今应用最广泛的测雨雷达。多普勒天气雷达是以多普勒效应为原理测量云和降水粒子等相对于雷达的径向运动速度(叫作多普勒速度)的雷达。它为大气探测;水平风场的结构;垂直气流的结构;某些降水云中粒子直径的分布;特别是比较准确地辨认与龙卷、冰雹、地面危险风等现象相一致的“中气旋”的存在,研究湍流的基本特性和大范围的平均流初提供了前所未有的机会。 多普勒天气雷达包括脉冲多普勒天气雷达和双线偏振多普勒天气雷达。 为了识别降水目标、区分不同的降水类型,人们采用多参数雷达进行天气研究,其中双偏振雷达是人们常采用的技术之一, 它是根据不同的降水粒子对入射电磁波极化散射特性不同对降水类型进行识别和分类的。双线偏振天气雷达对云雨时空变化的连续观测,可明显提高对水成物形成的微物理过程的理解,提高降水强度的估测精度, 改善雷达测量单点和流域的降水强度和降水总量的效果。脉冲多普勒天气雷达是大气探测和天气预报的有力工具,它不仅能够探测云高、云厚、云底高、云内含水量、云中流场径向分量及风暴中的气流和湍流的活动区,而且对300KM的中尺度风暴、强的风切变、冰雹、龙卷、大风等灾害性天气具有实时监测和报警能力。可以广泛应用于机场、部队、油田、林场、盐场、农场、海洋等专业气象台及地区、县、市气象台站并能够在灾害天气预报、气象导航、防灾减灾,农业增产以及辅助军事作业等方面发挥重要作用。 脉冲雷达原理:以一特定频率发射高频能量脉冲时,在同一距离门内接收的不同径向速度目标回波有不同的多普勒频移

气象雷达新技术及其应用02121010朱潇杰

新技术讲座大作业 班级:021211 学号:02121010 姓名:朱潇杰

气象雷达新技术及其应用 摘要:气象雷达近几十年来呈高速发展的态势, 受到世界上大多数国家和包括世界气,象组织在内的气象、水文和相关学科的国,际气象组织的高度重视。特别是多普勒天,气雷达技术的应用,使获取更多的大气运,动状态信息成为可能, 极大地提高了各国,气象和水文部门对极端灾害性天气的监测,和预报能力, 已成为世界各国构建业务雷达网之首选。本文首先阐述了国外发达国家气象雷,达的发展现状,然后分别简要介绍双(多)基,地天气雷达、双线偏振雷达、相控阵天气雷,达、激光天气雷达、风廓线雷达等新型雷达,探测大气的原理及其在气象中的应用。 关键词:气象雷达;民航安全;应用 一、气象雷达发展现状 气象雷达属于雷达领域中的一个重要分支,其发展至今大致经历了从模拟、数字到以美国NEXRAD为代表的新一代气象雷达三个发展阶段,目前已广泛应用于天气预报以及农业、水文、林业、交通、能源、海洋、航空、航天、国防、建筑、旅游、医疗等领域的专业气象服务。随着气象雷达探测技术的改进和应用范围的扩大,气象雷达在民航安全中的应用引起了民航界和相关学术界的广泛重视.现代气象雷达系统除了能监测雷雨等灾害天气外, 还可以对严重影响民航安全的风切变、湍流和鸟类危险目标进行有效探测和预警,为降低进近机场区域

低空风变、飞机尾流和鸟击事件风险做出巨大贡献,对保障飞机飞行的安全性、经济性和舒适性具有重要意义。 二、气象雷达新技术 (一)双线偏振雷达 为了识别降水目标、区分不同的降水类型,人们采用多参数雷达进行天气研究,其中双偏振雷达是人们常采用的技术之一,它是根据不同的降水粒子对入射电磁波极化散射特性不同对降水类型进行识别和分类的。双线偏振天气雷达能交替发射和接收水平和垂直的线偏振波,与常规天气雷达相比,除能测量水平反射率因子ZH外,还可以测量差分反射率ZDR、比差分传播相移KDP、相关系数ρHV(0)、退偏振比LDR等,从而了解降水粒子的形状、相态、粒子谱分布、以及粒子的空间取向等,在提高定量测量降水精度、识别冰雹并确定冰雹的大小、区分冬季降水类型、识别风暴中的闪电活动、确定飞机结冰条件等方面具有广泛的应用。双线偏振天气雷达对云雨时空变化的连续观测,可明显提高对水成物形成的微物理过程的理解,提高降水强度的估测精度,改善雷达测量单点和流域的降水强度和降水总量的效果。(二)双(多)基地雷达 双(多)基地雷达主要针对常见的单基地雷达而言的。单基地雷达一般是收发同址,即接收站和发射站位于同一个地方,而双(多)基地雷达则是收发异址,具有一(多)个发射站和一(多)个接收站,以离散的形式配置。从布置的位置方面来看, 可分为地发/地收,空发/地收,地发/空收等几种形式,多基地雷达还具有一发多收,多发多收等形式。而双(多)基

雷达介绍资料中文版

概述 介绍 Rockwell Collions WXR-2100型多扫描气象雷达在气象信息的处理和提炼方法上有革命性的突破,多扫描气象雷达是一种全自动雷达,它可以在不需要飞行员输入扫描角度和进行增益设置的情况下,不管在什么时候,不管飞机的姿态如何,对所有范围内重要的气象信息进行无杂波的显示。当多扫描气象雷达工作在自动模式的时候,每个飞行员将会获得一般只有有经验的雷达操作员才能获得的气象信息,而飞行员只需进行简单的标准化航空公司飞行员培训。多扫描气象雷达有效的减少了飞行员的工作负担,并增强了天气的探测能力,增加了机组及旅客的安全性。 多扫描雷达工作的关键在于雷达对雷雨底部反射部分的探测,然后通过先进的数字信号处理技术对地面杂波进行抑制。为了对短、中、长距离范围内的气象进行更好的探测,多扫描气象雷达也集成了多雷达扫描功能,对扫描角度进行预设。因此,在不同的飞行阶段,不同的探测距离,它的气象探测结果都十分出色。真320海里探测和Qverflight Protection功能是多扫描气象雷达众多新特征中的两个。多扫描气象雷达因为使用先进的运算法则来消除地面杂波,这使它能够跨越雷达视野的限制,为飞行员提供真正意义上的320海里气象资料。Overflight Protection功能使机组人员能够躲开雷雨顶部渗透,这是如今导致飞机颠簸的主要原因之一。Overflight Protection功能将那些对飞机造成威胁的任何雷雨信息保持在雷达显示屏上,直到它不在对飞机造成威胁为止。 系统描述 重要的运行特点 全自动工作:多扫描气象雷达设计工作在全自动模式,飞行员只需输入探测范围,而不需要输入扫描角度和进行增益设置。 理想的无杂波显示:Rockwell Collions第三代地面杂波抑制算法能减少约98%的地面杂波,这使它能理想的无杂波显示有威胁的气象信息。 在不同探测范围和飞行高度情况下良好的气象探测能力:多扫描气象雷达将从不同扫描角度获得的气象数据储存在存储器中,当飞行员选择了所要求的显示范围,不同角度的扫描信息将会从存储器中取出并一起显示。通过多角度的扫描,可以获得近距离和远距离的气象信息,这使得不管飞机的姿态如何,不管何种探测范围,显示屏上所呈现的都是一幅最优化的气象图。 决策气象:多扫描气象雷达能够提供真正意义上的320海里决策气象信息。 Gain Plus:Gain Plus包括以下功能: 传统的加减增益控制:多扫描气象雷达允许机组人员在人工或自动工作模式的时候进行增加或减小增益。 基于温度的增益控制:在高海拔的巡航高度,由于低的雷雨雷达反射率,将会基于温度对雷雨增益进行补偿。 路径衰减补偿和警报(PAC Alert):对距飞机80海里范围内的干扰性气象造成的衰减进行补偿,当补偿超过限制,一个黄色的PAC Alert杆将显示以提醒飞行员注意雷达阴影区。Overflight Protection:Overflight Protection功能减少了在高海拔巡航高度时疏漏雷雨顶部渗漏的可能性。多扫描气象雷达向下扫描波束的信息和它的信息存储能力将发挥作用,可以防止在飞机完全穿越有威胁的雷雨区之前,雷雨区图象在显示屏上消失。 海洋气候反射率补偿:多扫描气象雷达能对海洋雷雨反射率的减小进行增益补偿,以便在

新一代天气雷达观测规定(第二版)

新一代天气雷达观测规定 (第二版) 综合观测司 二○一八年十二月

第一章总则 第一条本规定是在《新一代天气雷达观测规定》(见气测函〔2005〕81号)基础上,为适应新一代天气雷达业务发展,进一步加强对新一代天气雷达业务的管理,依据《中华人民共和国气象法》和《气象设施和气象探测环境保护条例》修订而成。 第二条新一代天气雷达是指中国气象局布网的S波段、C波段多普勒天气雷达,其主要观测目的是监测和预警灾害性天气,特别是热带气旋、暴雨、冰雹、雷雨大风、龙卷、雪暴以及其它天气系统中的中小尺度结构等。 第三条新一代天气雷达观测业务是气象观测业务的重要组成部分,主要包括数据采集、处理、存储、传输、质控、整编、归档和雷达系统的维护维修、定标及气象探测环境保护等内容。 第二章岗位要求与职责 第四条新一代天气雷达观测人员应具备相关专业大专及以上学历或中级及以上技术职称,了解雷达基本结构和原理,掌握雷达维护维修、定标及回波分析等技能。 第五条新一代天气雷达观测人员主要职责: (一)按照本规定开展观测工作,确保重大灾害性天气观测无遗漏和资料的可靠性、完整性、及时性及真实性。 (二)填写、保管各种电子和纸质记录、表簿及技术档案。

(三)执行雷达运行、监控和其他有关规章制度。 (四)负责雷达系统运行保障、工作模式选择、雷达系统适配参数和元数据参数管理、软件维护。 (五)负责雷达系统定标,以及雷达系统和附属设备的维护、保养与检修,保证雷达系统和附属设备稳定运行。 (六)负责雷达观测资料的整编、刻录(拷贝)、归档、存贮、可靠性检查。 第三章探测环境与保护 第六条雷达站址环境及相关要求如下: (一)在雷达主要探测方向,包括重点服务地区和重要天气过程的主要来向,其遮挡物对雷达电磁波的遮挡仰角不应大于0.5?,其他方向的遮挡仰角不应大于1?,孤立遮挡方位角不应大于1?,且总的遮挡方位角不应大于5?,邻近雷达能覆盖该遮挡区域的则可适当降低要求。 (二)雷达站周边不能有影响雷达工作的电磁干扰,一旦出现干扰,相关管理部门应及时向当地无线电管理委员会提出申请,协调解决。 (三)建站时应绘制四周遮挡角分布图,以及距测站上空1千米高度和海拔3千米、6千米高度的等射束高度图,观测环境发生变化时应重新绘制遮挡角分布图、等射束高度图,并上报上级业务主管部门。 (四)应采用2000国家大地坐标系和1985国家高程基准,确定雷达天线馈源的经度、纬度、海拔高度,并作为雷达位臵报上级业务主管部门。经、纬度误差应小于1秒,海

国外气象雷达发展动向与趋势

国外气象雷达发展动向与趋势 [2005-1-10 9:17:56] 气象雷达是大气监测的重要手段,在突发性、灾害性的监测、预报和警报中具有极为重要的作用。目,全球设有1000多个天气雷达站,分布在世界各地。气象雷达技术的发展大体分3个阶段,第一阶段为20世纪40年代末到60年代;第二阶段20世纪70年代到80年代;第三阶段从20世纪90年代开始。近20年气象雷达最突出的发展是,气象多普勒雷达在大气遥感探测和研究中的应用,如探测降水云内和晴空大气中水平风场和垂直风场,降水滴谱和大气湍流等。 一、发展动向 1.美国、日本、德国、印度尼西亚等国家参加的国 际赤道观测站计划,旨在对影响气候变化的赤道上空大气进行探测。该计划除在印度尼西亚斯马特拉岛设站外还计划在非洲、南美设站。 2.欧盟为了促进雷达观测资料在各国之间交换,扩大受益面,加强了各国之间的合作。重点研究雷达探测降水和雷达资料国际网络,促进了天气雷达的发展。未来几年欧洲天气雷达仍然以发展C波段多 普勒雷达为主,双PRF技术可能用脉冲压缩技术来代替。 3.美国联邦航空局在纽约已成功地研制成一部风切变告警雷达。该雷达是一部多普勒C波段雷达,可以全自动探测和告警显示机场周围的恶劣天气,防止风切变造成的危害和微爆现象。 4.日本开发了一种直径仅1米的小型雷达,其性能与机场等使用的大型气象雷达相当。这种小型雷达使用了适合在低空进行观测的3000兆赫的电磁波。观测几乎是实时的,时间仅需约1分钟。由于体积 小,能安装在汽车和小型船舶上,可预测1平方公里小范围内的天气现象。 5.美国宇航局的兰利研究中心在宇宙飞船“发现号”上安装激光雷达,进行激光雷达系统从太空观测大气。这一研究将使空间遥感技术进入一个新的时代,有可能找到至今仍使气候模式研究人员感到困 惑的许多问题的答案。观测的数据包括云、对流层和平流层的气溶胶、行星边界层的特征、地面以上625英里平流层的空气密度和温度以及一系列的地面特征。 二、发展趋势 1.尽管近年来电子计算机技术飞跃发展,加快了科技成果向业务转化的速度,但由于技术和经费等方面的原因,在2020年之前各国气象部门采用更新一代的天气雷达投入业务应用的可能性很小。今后20年间,天气雷达技术的发展将集中在以下几个方面: (1)当今大气科学的发展重点是更长时间尺度的气象研究和更短空间尺度的中小尺度气象学研究和应用,多普勒天气雷达是天气雷达发展的方向和趋势。今后将一步发展多普勒天气雷达技术,扩展探测功能。目前,多普勒天气雷达主要用于对与降水伴随的灾害性天气的监测和短时预报,而对于晴空探测、特别是获取晴空风场信息,将是多普勒天气雷达功能扩展的下一个目标。据估算,采用相干累加技术有可能使雷达获取晴空风场的能力提高15—21dB。多普勒天气雷达对下击暴流、微下击暴流有很好的监测能力,但由于这类恶劣天气现象生命史极短,仅一两分钟,最多不超过10分钟,改变现行多普勒天气雷达扫描取样的体制,可行的最简单的是在天线垂直波束上采用相控技术,形成多波束,这样雷达仅做方位角一周的扫描便可以获取低层大气中三维立体的风场数据信息,可以迅速而准确地监测和预警下击暴流或微下击暴流。 (2)快速扫描技术将应用于天气雷达。现有的天气雷达是利用天线扫描的方法完成立体扫描的,一个体积扫描约需要5—10分钟,这对下击暴流等小尺度现象的探测就显得慢了。为此,在水平方向旋

新一代天气雷达系统功能规格需求书(C波段)..

新一代天气雷达系统功能规格需求书 (C波段) 中国气象局 二〇一〇年八月

修订说明 为指导和规范新一代天气雷达建设和技术升级工作,统一组网新一代天气雷达技术状态,进一步提高雷达系统运行保障能力,更好地满足气象业务应用和发展需求,根据天气雷达技术发展状况,中国气象局组织对1997年发布的《新一代天气雷达系统功能规格需求书》进行了修订完善。 主要修订了新一代天气雷达系统的部分性能参数,增加了雷达保障和培训方面的内容,同时对雷达的自动在线标定、易维护性、保障维护时效、故障定位诊断、随机文件和仪表、机内状态监控、厂家的保障培训职责等提出了明确要求。 修订工作由中国气象局综合观测司组织,中国气象局气象探测中心牵头承担,高玉春、潘新民、黄晓、柴秀梅、陈大任、周红根、高克伟、陈玉宝、蒋小平、徐俊领、雷茂生等同志参加了修订,张培昌、葛润生、张沛源、王顺生、李柏、李建明、苏德斌、李建国、张建云、蒋斌、陈晓辉、陆建兵等专家进行了指导。

目录 1. 前言 2. 新一代天气雷达(C波段)系统总体性能规格需求 3. 雷达子系统功能规格需求 4. 雷达信号处理机功能规格需求 5. 数据处理与显示子系统功能规格需求 6. 雷达输出产品功能规格需求 7. 系统检测、标校功能规格需求 8. 系统与外部通信联接的性能规格需求 9. 保障性需求 10. 培训需求 11. 系统性能评估

1 前言 1.1 《气象事业发展纲要(1991-2020年)》明确指出,“2000年前将大力发展新一代天气雷达,加速多普勒天气雷达软硬件和应用技术的研究,建立新一代天气雷达的业务试验基地;2020年前将进一步加强新一代天气雷达、多参数天气雷达和激光雷达等的研制,发展具有通信功能的气象卫星、新一代天气雷达及其他地基遥测遥感手段,进一步发展、完善中尺度气象监测网和气候监测网”。发展新一代天气雷达,并投入气象业务使用,是气象事业发展的需要。 1.2 《我国新一代天气雷达发展规划(1994-2010)》明确指出,“新一代天气雷达应该是一个能够定量估算回波强度、径向速度、谱宽和降水物相态等信息的全相干系统。主要选用S和C两种波段,选取全相干体制。新一代天气雷达的主要定量探测和测量对象,包括降水、热带气旋、雷暴、中尺度气旋、湍流、龙卷、冰雹、冻雨、冻结层、融化层等,并具备一定的晴空回波的探测能力”。 1.3按照《新一代天气雷达建设增补站点布局方案》对建立培训、研发和保障体系的要求,根据《气象事业发展纲要(1991-2020年)》、《我国新一代天气雷达发展规划》、《新一代天气雷达建设增补站点布局方案》,对《中国新一代天气雷达(CINRAD)性能要求》进行了修订,它对新一代天气雷达系统基本结构、各子系统的性能等提出了要求。 1.4 为保证新一代天气雷达性能进一步满足气象业务发展的需要,更好地在灾害性天气监测、预警中发挥作用,修订了《新一代天气雷达系统功能规格需求书》。修订后的《新一代天气雷达系统功能规格需求书》分S波段、C波段两种,分别作为S波段和C波段新一代天气雷达系统设计生产、考核、验收的基本依据。 2 新一代天气雷达(C波段)系统总体性能规格需求 2.1 对台风、暴雨、飑线、冰雹、龙卷等灾害性天气的有效监测和预警是新一代天气雷达系统的重要任务。上述灾害性天气的空间尺度分布跨度较大,从台风的

气候应用的定义 内容和现状

气候应用的定义内容和现状 气候应用是应用气候学中的基本理论和信息解决国民经济各行业遇到的具体的气候问题,应用气候学则是运用气候学中的基本理论和信息解决国民经济各行业遇到的具体气候问题的 一门实用性科学。应用气候学将气候学知识结合人类活动的特点与需要,分析对其有利与不 利的气候影响指标,提出适应措施,甚至做出区划,以供规划、布局时参考的一系列边缘性 学科。 世界气象组织气象学和气候学专门应用委员会主席M.K.Thomas先生在1980年将应用气候学的内容概括为5个部分:粮食(农业和渔业)、水(水资源和水灾)、健康(人类生物 气象、人类舒适、污染、旅游和休养)、能源(化石燃料、再生资源)、工业和商业(建筑 与结构、交通、森林、运输、服务)。就我国国情而言,气候应用为经济建设服务主要体现 在制订规划、气候资源调查、工程设计、气候评价、生产管理等5个方面。 为了适应工农业发展的需要,我国开展了大量的应用气候研究工作,如全国农业气候区划、全国建筑气候区划、全国电力通讯网气候区划、全国太阳能风能资源分析和区划、全国 道路气候区划、全国各流域区划等工作,也开展了桥涵孔径设计的暴雨强度公式及其气候系 数的研究、全国各流域可能最大暴雨的研究、城市规划与气候研究、工厂总体布局与大气污 染扩散的研究、常见疾病与气候关系的研究等工作,这些成就在国民经济建设和国防建设中 起到了很大的作用。 1 气候可行性论证 气候可行性论证是指对气候条件密切相关的规划和建设项目进行气候适宜性、风险性以 及可能受局地气候产生影响的分析、评估活动[1]。对与气候条件密切相关的城市规划、重大工程开展气候可行性论证,进行气候适宜性、灾害风险性分析,旨在充分考虑有利气候条件,并在规定的水平上抵御气象灾害风险,尽可能减小潜在的损失。 城市规划或建设项目缺少气候可行性论证可能导致:(1)无法合理利用有利的气候条件;(2)无法准确进行工程气象设计参数推算;(3)无法准确评估项目所在地的气象灾害风险 以及可能对建设项目所带来的负面影响。气候可行性论证的技术总目标是科学的、合理的防 灾和投资。简而言之,气候可行性论证旨在指定安全系数的条件下,为规划和建设项目算好 经济账,既要保障安全又要尽量节约资金。 2 气候背景分析 按照项目要求分析参考气象站的观测数据,包括蒸发、相对湿度、日照、风向风速、降水、气温等气象要素。分析影响本区域的强影响天气系统,如副热带高压、锋面和飑线等发 生持续时间、移动速度和方向的范围、季节性发生频率。 3 工程气象参数推算 风压、最大风速、最大降水、最高(低)气温等重现期推算。所用气象资料应是从参考 气象站建站至项目论证的当年为止。如果参考气象站的资料不能代表项目所在地的实况,应 在项目所在地建立临时气象观测站进行短期气象观测,以确定推算要素两地之间的差异,并 用统计方法进行修正。 4 气候与人居环境 由于城市的发展,城市数目日益增多,城市建筑面积不断扩大,据《2003年世界发展报告》估计,到21世纪中叶,世界的2/3的人口将居住在城市。人类活动能力的迅速增强改变了气候,正确认识城市气候特征,科学系统地研究气候与城市规划和建筑的关系,对城市节 能降耗、完善功能布局、理性选址、走可持续发展之路有着不同寻常的意义。气候与城市建 筑之间相互影响和相互作用。气候对城市规划和建筑的影响涉及城市规划及建筑的各个领域。不同地区气候条件下,城市建设时需要考虑城市建筑群体布局、建筑设计、建筑通风降温等 方面,甚至在建筑单体上还要考虑、建筑的朝向、空间的组织、建筑结构的形式等方面。另 一方面,城市是一个建筑林立,生态环境已经次生人工化的环境,城市建设逐步扩大、建筑

《新一代天气雷达观测规定》

新一代天气雷达观测规定 中国气象局 二○○五年五月

第一章总则 第一条为加强对新一代天气雷达观测业务的管理,根据《气象法》及《全国气象事业发展规划》(2001-2015)、《全国新一代天气雷达发展规划》(1994-2010),并考虑到新一代天气雷达功能及特点,制定本规定。 第二条新一代天气雷达是指中国气象局布网的CINRAD雷达系列的多普勒天气雷达,S波段多普勒天气雷达有CINRAD/SA、CINRAD/SB、CINRAD/SC等;C波段多普勒天气雷达有CINRAD/CB、CINRAD/CC、CINRAD/CD 和CINRAD/CCJ等。 第三条新一代天气雷达观测是气象业务观测的重要组成部分,新一代天气雷达观测业务包括雷达开机、数据采集、处理、存储、传输、整编、归档,编制各种雷达观测报表,观测环境的保护,雷达参数测量和标校,雷达系统的维护和检修等内容,本规定是新一代天气雷达观测业务的基本准则,适用于新一代天气雷达气象业务观测。 第四条新一代天气雷达观测的主要目的是监测和预警灾害性天气。探测重点是热带气旋、暴雨、冰雹、雷雨大风、龙卷、雪暴、沙尘暴以及其它天气系统中的中小尺度结构等。 第五条从事新一代天气雷达业务工作的人员应具备相关专业大专及以上学历或中级及以上技术职称。 第六条从事新一代天气雷达业务工作人员的主要职

责包括: (一)严守工作岗位,严格按照本规定开展观测工作,认真分析雷达回波及其演变,做好重要天气的监测和预警,确保重大灾害性天气观测无遗漏和资料的可靠性、完整性及真实性; (二) 认真填写、妥善保管各种观测记录、统计表簿和各类技术档案; (三) 严格执行值班制度、交接班制度、雷达标校制度和其他有关规章制度,检查各种安全设施; (四)负责系统运行管理、工作模式选择、雷达系统适配参数设置、系统软件维护; (五)负责雷达系统和网络设备的维护、保养与检修,监视雷达工作状态,发现异常及时处理、报告。 第二章观测环境 第七条雷达站址环境应当符合下列要求: (一)雷达站址周围无高大建筑物、高大树木、山脉等遮挡。在雷达主要探测方向上(天气系统的主要来向)的遮挡物对天线的遮挡仰角不应大于0.5?,其他方向的遮挡角一般不大于1?; (二)雷达天线所在位置以经度、纬度、海拔高度表示,经纬度定位精度应小于3秒,海拨高度测量误差应小于5米; (三)建站时应绘制四周遮挡角分布图,以及距测站1千

气象数据的“大数据应用”浅析

气象数据的“大数据应用”浅析 2014-03-24 17:03:19 作者:国家气象总局沈文海来源:CIO时代网 摘要:气象数据在“大数据应用”浪潮中亟待解决的信息技术问题,是海量气象结构化数据的高效应用。这是气象数据能否参与“大数据应用”的技术基础和前提。 关键词:气象数据大数据 1、引言 据统计,2011年全球的数据规模为1.8ZB,这些信息将填满575亿个32GB的ipad,以这些ipad做砖石,足可以垒建起两座中国的万里长城。而到2013 年,仅中国当年产生的数据总量就已超过0.8ZB,2倍于2012年,相当于2009年全球的数据总量。预计到2020年,中国产生的数据总量将是2013年的10倍,超过8.5ZB.【1】而届时全球的数据总量预计将达到40ZB,如果将这些数据全部刻录成蓝光光盘,则这些光盘的总重量相当于424艘满载荷的尼米兹航空母舰。 数据量暴增的速度令人瞠目结舌,我们的确已进入“大数据时代”. 很快地,“地理大数据”、“水利大数据”、“环境大数据”、“金融大数据”、“互联网大数据”乃至“气象大数据”等名词陆续出现在有关媒体上。“大数据”逐渐成为近来人们谈论最多、思考最多的技术话题之一。一些人憧憬于“大数据”可能带来的十分珍稀的高价值信息和珍贵商机,也有许多人困惑于目前所知“大数据”的应用范式,以此研判着可能给本行业带来的变化和新的业务契机--气象部门也是如此。 做为抛砖引玉,笔者拟就如下问题提出自己的看法: (1)气象数据是否具备“大数据”的核心特征? (2)业界公认的“大数据应用”的主要形态是什么? (3)“大数据时代”背景下气象数据应用中新的价值领域在何处?需要首先具备哪些必要条件? (4)气象信息技术领域当务之急需要解决的关键技术问题。 2、大数据的现实以及气象数据的体量构成 2.1 大数据的行业分布 就数据量而言,中国的大数据近期具有如下行业分布特征: (1)互联网公司 目前国内的互联网公司,拥有总计约2EB的数据,而其中的互联网三巨头BAT(百度、阿里巴巴、腾讯)占有了其中的3/4(约1.5EB)。 (2)电信、金融、保险、电力、石化系统

气象多普勒雷达cinradpup操作手册

CINRAD PUP 操作手册 北京敏视达雷达有限公司 2000年4 月

目录 第一章概述 (4) CINRAD PUP的定义 (4) CINRAD PUP的功能 (4) CINRAD PUP的操作主界面 (4) 视窗 (4) 菜单 (7) 工具栏 (9) 状态栏 (10) 第二章产品的请求和控制 (11) 产品请求 (11) 一次性产品请求 (One time product) (11) 日常产品集请求 ( Routine product set ) (13) 天气警报请求 ( Alert ) (14) 产品接收 (15) 产品队列 (16) 产品保存 (16) 产品分发 (17) 第三章参数定义和说明 (19) 参数定义及说明 (19) 弱回波区(WER)产品仰角切面 (23) 第四章产品显示和图象控制 (25) 产品显示 (25) 检索产品 (25) 队列产品 (27) 用户产品集 (28) 重显产品 (29) 自动显示产品 (30) 动画显示 (31) 放大显示和重置中心 (33) 区分数据级 (34) 过滤功能 (34) 合并功能 (35) 闪烁功能 (35) 图象灰化功能 (35) 颜色恢复功能 (35) 迭加显示 (36) 光标位置 (37) 光标连接 (37) 地图 (38) 产品打印 (40) 保存图象 (40) 隐藏产品 (40) 第五章 CINRAD PUP 控制 (41) 连接 (41) 断接 (41) 重新启动 (41) 关机 (41)

第六章雷达状态和警报 (42) 6.1雷达系统状态监测 (42) 通讯状态监测 (44) 性能监测 (44) RPG可用产品 (44) 天气警报 (45) 第七章编辑功能 (46) 编辑工具 (46) 编辑状态 (46) Annotation —产品注释的编辑 (47) Cross Section —剖面位置的编辑 (48) Alert Area —报警区的定义 (48) Maps —地图的编辑 (49) 编辑功能的退出 (49) 第八章适配数据 (50) 日常产品集 (50) 警报 (51) 地图 (52) 迭加 (53) 彩色表 (53) 雷达站 (54) 定义专用符号 (56) 第九章帮助 (57) 帮助主题 (57) 按内容检索 (57) 按关键字查找 (58) 关于帮助 (59) 第十章视窗控制 (60) 最大化视窗 (60) 平铺全部视窗 (60) 关闭全部视窗 (60) 附录1雷达产品名、产品号中英文对照表 (61) 附录2 CINRAD PUP 系统配置 (62)

机载气象雷达天线控制系统

龙源期刊网 https://www.360docs.net/doc/ad536112.html, 机载气象雷达天线控制系统 作者:方智觅 来源:《科技视界》2015年第34期 【摘要】机载气象雷达天线控制系统是机载气象雷达的重要组成部分,用来控制天线的 运动,是飞机进行气象目标和地形探测的前提。机载气象雷达天线控制系统是自动控制技术在雷达中具体应用的产物,它涉及多方面的技术知识。 【关键词】天线控制;步进电机;光电脉冲发生器 随着航空技术的不断发展,人们对飞机的要求也越来越高,这促进了雷达技术的不断发展。机载气象雷达是雷达的一种,民用机载气象雷达的应用与发展则为飞行的安全性提供了可靠的保障。目前,具有风切变预警功能的机载气象雷达在民航飞机上的重要作用不可低估,已成为民航飞机必不可或缺的重要电子设备。机载气象雷达除了可以探测航路上的危险气象区域外,还可以用于观察地形并实现其他一些功能。现代机载气象雷达可实现的功能有以下几个方面: (1)探测航路前方扇形区域中的降雨区、冰雹区等气象区域; (2)探测夹带着雨粒的湍流区域; (3)观察飞机前下方的地形; (4)发现航路上的山峰等障碍物; (5)显示由其他系统输入的文字或图形信息; (6)用作雷达导航信标。 气象雷达天线是一种方向性很强的X波段微波天线。气象雷达发射机与接收机通过收发 转换开关通过天线实现雷达信号的辐射与回波信号的接收。在发射脉冲持续期内,气象雷达天线将发射机所产生的射频脉冲信号会聚成能量高度集中的雷达波束辐射到空中,在脉冲间隙期内(接收期内),目标所形成的反射回波由天线接收,输送给雷达接收机。 为了探测飞机前方广阔的扇形区域中的气象目标或观测飞机前方广阔的扇形区域中的气象目标或观测飞机前下方的地形,天线在辐射和接收雷达信号的同时,进行着往返的方位扫掠运动。与此同时,天线还必须根据飞机俯仰姿态和倾斜姿态的实时变化,自动地进行相对于飞机机身平面的俯仰修正运动,以保持天线扫掠平面的稳定。此外,还可在一定范围内对天线进行俯仰调节。为了实现雷达系统对天线运动及姿态的控制,天线组中除了用以辐射雷达信号的天

气象雷达原理与系统

1、测定目标的角坐标, 其中包括目标的方位角和仰角。雷达测角的物理基础是电波在均匀介质中传播的直线性和雷达天线的方向性。方向图的主要技术指标是半功率波束宽度θ0.5以及副瓣电平。在角度测量时θ0.5的值表征了角度分辨能力并直接影响测角精度, 副瓣电平则主要影响雷达的抗干扰性能。 2、振幅法测角可分为最大信号法和等信号法两大类。最大信号法测角的优点:1、简单;2、用天线方向图的最大值方向测角,此时回波最强,故信噪比最大,有利于检测发现目标。缺点:1、直接测量时测角精度不很高,约为波速半功率宽度的20%左右;2、不能判别目标偏离波速轴线的方向,故不能自动测角。 3、雷达发射机两种基本形式:单级振荡式发射机:只由一级大功率振荡器产生发射信号,主振放大式发射机:先由高稳固体微波源产生,再经级联的放大电路,形成满足功率要求的发射信号。 单级振荡式发射机的性能特点:简单、经济、轻便;质量技术指标低;产生简单发射波形;主振放大式发射机的性能特点:复杂、昂贵、笨重;质量技术指标高;产生各种复杂发射波形;二者共性:都需要脉冲调制器为其提供大功率的脉冲波。 4、超外差式雷达接收机的主要质量指标:①灵敏度:表示接收机接收微弱信号的能力。灵敏度用接收机最小可检测信号功率(Simin)来表示。制约接收机灵敏度的主要因素是接收机噪声。要提高灵敏度,必须减少噪声电平,同时还应使接收机有足够的增益。②接收机的工作频带宽度:表示接收机的瞬时工作频率范围,频带宽度越宽,选择性越差③动态范围:表示接收机能够正常工作所容许的输入信号强度变化的范围,使接收机开始出现过载时的输入功率Simax 与最小可检测信号功率Simin 之。过载:当输入信号太强时,接收机将发生饱和而失去放大作用。④中频的选择与滤波特性。中频的滤波特性是减少接收机噪声的关键。 ⑤工作稳定性(指环境条件和电源电压发生变化时,接收机的性能受影响的程度。希望影响越小越好)和频率稳定度⑥抗干扰能力:抗有源和无源干扰的能力。⑦微电子化和模块化结构:模块化结构的程度,微电子化程度,减少体积、重量、耗电、成本、技术实现难度。⑧放大量:放大量表示接收机放大信号的能力,接收机必须有足够的放大量,才能使十分微弱的回波信号具有足够的幅度来处理与显示。⑨、保真度:用来表示接收机输出信号波形与输入波形(高频包络)的相似程度。⑩噪声、噪声系数与灵敏度 5、如何提高接收机灵敏度:①降低总噪声系数F0,通常采用高增益、低噪声高放;②接收机中频放大器采用匹配滤波器,以便得到白噪声背景下输出最大信号噪声比;③识别系数M 与所要求的检测质量、天线波瓣宽度、扫描速度、雷达脉冲重复频率及检测方法等因素均有关系。在保证整机性能的前提下,尽量减小M的数值。 6、为提高雷达系统的灵敏度,须尽量减小分辨信号功率S min这就需要:(1)尽可能减小接收机的噪声系数或有效噪声温度(2)尽可能减小天线噪声温度(3)接收机选用最佳带宽 B opt(4)在满足系统性能要求下,尽量减小识别因子M,经常通过脉冲积累的方式减小M 7、混频器作用:将高频信号与本振电压进行混频并取出其差频,使信号在中频上进行放大。 8、雷达系统为了获得大的信噪比一是要尽量减少接收机内部的噪声,二是要增大发射功率。当一个线性的传递函数为信号函数的共轭时,其信噪比将达到最大,这个线性系统叫匹配滤波器。 9、正交鉴相是同时提取信号幅度和相位信息的有效方法。模拟(数字)正交鉴相又称零中频处理。所谓零中频是指因相干振荡器的频率与中频信号的中心频率相等(不考虑多普勒转移),使其差频为零。零中频处理既保持了处理时的全部信息,同时又在视频实现,因而得到了广泛应用。 10、数字正交鉴相三种方法:数字混频低通滤波法、数字插值法、Hilbert变换法 11、应用广泛的频率源:直接合成频率源、间接合成频率源、直接数字合成频率源 12、天线作用:测角、波束扫描和目标跟踪、测高。 13、雷达天线的基本参量:(1)辐射方向图(包括波束宽度、副瓣电平)(2)增益(有效孔

20140410155620_课件B737NG气象雷达

浅谈B737NG气象雷达使用 一、一般介绍 我们公司执管的B737NG机型装有一套机载气象雷达,其基本组件为收发组、显示器、天线、控制面板。包括一部天线,一部收发机,一个或两个雷达控制盒(正副驾驶可以分别控制)。 收发机主要用于发射无线电脉冲,处理无线电回波,探测风切变并向机组发送警告和警戒信息,提供气象雷达数据显示,记录和显示故障状态及检测结果,在显示组件上生成图形。因为信号在传输过程中有衰减,所以在内部有补偿电路,保证远距离的气象目标和近距离目标在显示器上有同样的强度显示(如果目标条件相同)。 气象雷达系统可以提供气象条件、颠簸区域、风切变、地形图显示、地面杂波抑制、TFR(转换)等显示方式。雷达还具有穿透补偿功能,可以穿过降雨,更精确的看到降雨后面的风暴。此外,它也可以提供预测风切变的音响警告。 气象雷达数据显示在导航显示屏上,只有在扩展进近、扩展VOR、中央MAP、扩展MAP模式显示气象雷达数据或地形数据和风切变警告。如果EFIS控制面板上的TERR(地形)被选定或有来自EGPWS(增强型近地警告系统)的地形注意/地形越障警告时,EGPWS地形数据显示在导航显示屏上;如果TERR未被选定,且没有EGPWS警告,则只有气象雷达数据显示在导航显示屏上。当多种警告存在时,近地警告系统将自动确定警告呼叫的优先级,使

高一级警告出现在导航显示屏上,警告声音优先顺序如下:风切变(GPWS)、预测风切变(PWS)、GPWS 警告、TCAS 警告。 B737NG机型气象雷达使用的天线是平板式天线,其可生成高3.6度,宽3.4度的波束。天线稳定范围正负40度,扫描范围正负90度,天线稳定性是由收发机从大气数据惯性基准组件获得俯仰和横滚数据来控制的。 气象雷达系统控制面板包括左右EFIS控制面板、气象雷达控制面板。控制面板向收发机提供发射模式、仰角控制、增益控制、开/关气象雷达等功能。自动模式的控制面板,左右可以分别控制显示,这并不是说就存在两部天线和收发机,而是采用了分时扫描显示的办法。模式选择器有以下位置:TEST---开始收发机自检并在导航显示屏上显示检测结果;WX---收发机在导航显示屏上显示气象数据;WX/TRUB(WX-T)---收发机在导航显示屏上显示气象和颠簸数据;MAP---收发机在导航显示屏上显示地形特征;GC---地面杂波抑制,按下后无抑制功能,松开后自动恢复;TFR---转换显示,例如按下左边的TFR 把右边的模式,俯仰,增益转到左边ND 显示;仰角控制调节天线仰角在正负15度。增益控制调节收发机回波增益,在自动位,增益由收发机设定到校准水平。 气象雷达系统选择正常工作方式时只能有一个警戒信息显示在导航显示屏上,同时有多个警戒信息时,只有最高优先级的信息被显示。可能显示的提醒信息和显示有:WEAK:校准故

相关文档
最新文档