天线方位角 俯仰角以及指向计算

天线方位角 俯仰角以及指向计算
天线方位角 俯仰角以及指向计算

创新实验课作业报告

姓名: 王紫潇苗成国

学号:1121830101 1121830106专业:飞行器环境与生命保障工程

课题一双轴驱动机构转角到天线波束空间指向

课题意义:随着科学技术的迅猛发展,特别是航天科技成果不断向军事、商业领域的转化,航天科技得到了极大的发展,航天器机构朝着高精度、高可靠性的方向发展。因此对航天机构的可靠性、精度、寿命等要求越来越高,对航天器机构精度的要求显得愈发突出,无论是航天器自身的工作,还是航天器在轨服务都对其精度有着严格的要求。航天器中的外伸指向机构通常指的是星载天线机构,星载天线是航天器对地通信的主要设备,肩负着对地通信的主要任务,同时随着卫星导航的广泛应用,星载天线就愈发的重要起来,而其指向精度的要求就愈发的突出,指向精度不足,将会导致通信信号质量下降,卫星导航精度下降等结果。民用方面移动通信和车载导航等,军用方面舰船导航、精确打击等这些都对星载天线的指向精度有着极高的依赖性。

因此,星载天线的指向精度是非常重要的。要保证星载天线的指向精度,首先就是要确保星载天线驱动机构在地指向精度分析的正确性,只有这样才能对接下来的在轨指向精度分析和指向误差补偿进行分析.星载天线驱动机构的末端位姿误差主要来源于机构的结构参数误差和热变形误差,这些误差是驱动机构指向误差最原始的根源,由于受实际生产加工装配能力和空间环境的限制,这些引起末端指向误差的零部件结构参数误差是必须进行合理控制的,引起结构参数变化的热影响因素是必须加以考虑的,只有这样才能使在轨天线驱动机构指向精度动态分析和误差补偿都得到较理想的结果。纵观整个星载天线驱动机构末端位姿误差的分析,提出源于结构参数误差和热变形误差引起的星载天线驱动机构末端位姿误差的研究是必要的。

发展现状:星载天线最初大多是以固定形式与卫星本体相连的,仅仅通过增大天

线波束宽度和覆盖面积来提高其工作范围,对其精度要求不是很高,但是随着航天科技的不断发展和市场需求的不断变化,这就要求,星载天线要具备一定的自由度,因此促使了星载天线双轴驱动机构的发展。星载天线双轴驱动机构能够实现对卫星天线的二自由度驱动,是空间环境下驱动天线运动的专用外伸执行机构。卫星天线的二自由度运动能够满足对地通信、星间通信、卫星导航定位、以及对目标的实时观测跟踪,在满足这些需求的同时也要保证其精度的提高,随着需求的不断提高,精度已经成为衡量星载天线双轴驱动机构性能的一个重要指标,同时也是系统设计与实现的一个难点。综上所述可以看出,星载天线双轴驱动机构是驱动卫星天线系统进行准确空间定位的核心部分。

与此同时,我国对星载天线驱动机构的研究、生产制造技术进行了一定时间的学习积累,也成功的应用到了一些卫星上,具有一定的自主能力。自 2000 年后,我国在发射的卫星中,有很多采用了自主研发的天线驱动机构。相应的研究单位也蓬勃发展,航天科技集团、上海航天局等相关单位对星载天线驱动机构的研究已经取得了很大的成就和进展。特别是伴随着我国自主导航系统—北斗导航系统的不断发展,以及空间实验室和“嫦娥计划"的不断深入。星载天线双轴驱动机构得到了极大地发展。即便如此,我们跟国外还是有一定差距的,目前国内与国外的差距主要在双轴驱动机构精度、使用寿命、可靠性方面,因此还是需要进行深入研究,提高其精度、使用寿命、可靠性。

那么,我们小组也秉承着对航天事业的极大热忱开始对天线指向问题进行研

究,首先我们对天线的方位角和 俯仰角进行了理论的推导。 关键词:方位角 俯仰角 双轴定位 天线指向 一.天线方位角与俯仰角的计算公式推导:

假定已知某时刻卫星在惯性空间的位置、速度以及天线指向点的位置信息.设卫星位置矢量为

(,,)

i xi yi zi P P P P =,卫星速度矢量为

(,,)

i xi yi zi V V V V =,指向点的

地理经纬度分别为B 、L 。根据已知的卫星位置与速度矢量计算天线坐标系各坐标轴在惯性空间的方向矢量,计算公式: (1)

(,,)(,,),,)(,,)T T

a xi yi zi ax ay az T T

a zi yi xi ax ay az a a a

X V V V X X X Z P P P Z Z Z Y Z X ===

---===

根据指向点的相关参数计算指向点在惯性空间的位置坐标(S:,S,,S:),首

先计算指向点在地固坐标系中的坐标,计算公式为: (2)

2()cos cos ()cos cos [(1)]sin 1298.257

xc yc zc S N H B L S N H B L S N e H B N e =+=+=-+==

(3)将地固坐标系中的坐标转换到惯性坐标系中

cos sin 0cos sin sin cos 0sin cos 001z xe ze ye y ye ze ye x ze ze S GST GST S S GST S GST S GST GST S S GST S GST S S S --???????? ? ? ? ?==+ ? ? ? ? ? ? ? ????????? (4) 式中GST 是当时的格林尼治恒星时角;R是地球赤道平均半径.

由图3得:

Sa i T S P =-

于是有:

(5)

z y x Sa z zi Sa y yi Sa x xi

T S P T S P T S P =-=-=-

(6)计算俯仰角'β

'

2cos x y z Sa ax Sa ay Sa ax Sa a

Sa a txa

ax ay T Z T Z T Z T Z T Z R Z Z β++==

+

(7)计算天线方位角'

α

'

'sin sin cos sin x y z x y z Sa Sa ax Sa ay Sa az

Ya Tta Sa ax Sa ay Sa az

Xa r

T Y T Y T Y r R T Y T X T Y r R αααα

++=++=

式中 Sa R =;

ya

r 是向量a Y 的长度,

xa

r 是向量a X 的

长度。

(8)按照星本体3—1—2顺序定义姿态角,设ψ、θ、φ分别是偏航、俯仰和滚动角。在考虑轨道运动的基础上,进一步考虑卫星姿态变化时最终的天线方向角计算公式如下:

考虑偏航角时的天线方向角

ψα,ψ

β。

''ψψββααψ==-

(9)偏航和滚动角变化时天线方向角

ψφβ,

ψφ

α

arccos(sin sin sin cos cos )

cos sin sin sin cos arctan(

)

sin cos ψψψφψψψψ

ψφψψ

βφβαφβφβαφβαβα??=-++=

(10)偏航、滚动和俯仰角变化时天线方向角β,α

arccos(sin sin cos cos cos )sin sin arctan(

)

cos sin cos sin cos ψφθ?φψφφψ?φψφ

ψφθ?φψφφψ

ββθβαθββαααθβαθβ==+==-

如图4所示,已知指向点L 、B 、H,根据某一时刻卫星位置矢量和速度矢量,以及卫星的姿态角ψ、θ、φ,下面顺序计算就可得到天线的方向角 1)用公式(1)~(7)计算考虑卫星轨道变化时的天线方向角'α、'β;

2)进一步考虑卫星姿态,用公式(8)~(10)计算最终的天线方向角α、β;

二.双轴定位点波束指向问题

1。 天线波束指向计算

已知双轴定位机构转角求反射线的空间指向比较容易, 而根据反射线的空间指向计算机构转角则可以归结为一个非线性方程求解问题, 无法得到方程的解析解, 只能通过数值方法得到数值近似解。

取如图1 所示坐标系, A XYZ - 为焦点坐标系,b b b B X Y Z - 为定位机构转动坐标系,c c c C X Y Z -为抛物面反射中心固联坐标系, 图中h 为初始时天线反射中心在焦点坐标系A XYZ -下到yz 平面的高度,B c 为入射线A C 与yz 平面的夹角, f 为反射抛物面的焦距。则在A XYZ - 坐标系下, 反射抛物面

方程为:

224()x y f z f +=+,B 的坐标为:

2sin()20cos()()24c c L h

h L f f ββ??+ ? ?

?

?--- ???

Ka 点波束天线双轴定位原理示意图

1. 1 从定位机构转角计算波束指向

若双轴定位机构转角大小为绕b Y 轴的转A 角,绕b X 轴的旋转角B , 空间任意点在坐标系c c c C X Y Z -与A XYZ - 的变换可以通过方向余旋矩阵及平移向量来描述:

432114()U D D D U T T =++其中,在这个式子中各个物理量的定义如下: U - 空间任意点在A XYZ - 的坐标; U4 - 空间任意点在c c c C X Y Z - 的坐标; T1 - 从点A 到点B 的平移向量 ; T4 - 从点B 到点C 的平移向量 ;

Di — 旋转变换矩阵( i = 1, 2, 3)

[]

214112233[sin(),0,cos()()]422

00cos()0sin()22010

sin()0cos()221

000cos sin 0sin cos cos 0sin 010sin 0cos T

T

y x y B B

h T L h L f f T L B B D D B B D D D D ββββαααα=--+-=-??

---?

???==??

--????????==??

??-??-??

??==??

??-??

[]

400T

T L = 为馈源焦点在天线焦点坐标系下的坐标, 则代入上式

( 3) , 得到原焦点在c c C X Y Z -坐标系下的坐标U4 , 相应的反射线CD 的单

c c C X Y Z

- 下的分量形式为:

[]44

44

4

T

c x y z U R U --=

该单位矢量在A XYZ - 坐标下的分量可表示为: ??

[][]3

2

1T

T

a Ra

Ra

Ra c

R x y z D D D R ==

应用上述方法只能完成从机构转角到天线波束指向的计算, 而从天线波束指向计算所需的机构转角则存在一定困难, 一般均通过预先编制计算机构转角与波束指向角的对应关系表的方案来解决此问题. 1.2波束指向计算定位机构转角

据几何光学原理可知, 如图2 所示的直线BC 、CD 、BA 、CA 共面, 设反射线CD 的反向延长线与BA 交于E 点。

设平面图形中的夹角如图2 所示, 则向量BA 已知, 向量C D的单位向量已知,

1cos()BA CD BA CD

θ=

由平面三角几何有:

122θθθ+=

1sin(2)

sin()sin()ba ba bc

l l l θθπθθ--==

上式是单变量H 的非线性超越函数, 可变形为:

从波束指向角反解机构转角示意图 Fig. 2 Calculation of the rotate angle by beam pointing

1()sin()sin(2)0bc ba f l l θθθθ=--=

上述非线性方程可由非线性方程的数值解法求得, 这样将从指向角到定位机构转角的双变量变换转化为以H为单变量的非线性方程求根问题, 可以证明方程

( 15) 在[ 0, 45)范围内有唯一根。从而点E (E x ,E y ,E z

) 、点C ( c x ,c

y , c z ) 的坐标可由三角形的正弦定理通过下式求:

1sin()

sin()

be bc

l l θθ=

3sin()sin()ec bc

l l θθ= be

BA E B l BA

=+ ec

CD C E l CD

=+

从而得到在坐标系A - xyz 下描述的向量BC 为: A BC C B =-

而BC 在天线面坐标系c c c C x y z - 下可描述为[]00T

bc l , 因而有:

()

[]3

2100T

T

A

bc D D l D BC =

因而有:

1sin cos sin cos cos bc A bc bc l l D BC

l ααβαβ??

??-=??

????

通过上式即可求得双轴机构所需转角( α, β) 。

课题二 地球同步轨道卫星理想轨道计算模型

这部分我们分两部分进行,第一部分是卫星的发射阶段,第二阶段是在轨运行

阶段.

一.发射阶段

发射地球同步定点卫星必须采用多次变轨的发射轨道。一般,发射轨道可分为两种类型,一是有停泊轨道的发射轨道,其中又可分为停泊轨道和转移轨道共平面和不共平面两种;另一是无停泊轨道的发射轨道.

有停泊轨道的发射轨道可分为五部分:

(l)上升段(第一动力飞行段,其任务是从地面起飞使飞行器进入停泊轨道);(2)停泊轨道(自由滑行段,其作用是调整飞行器的位置,以保证后面的转移轨道的

主轴位于赤道平面);

(3)近地点变轨段(第二动力飞行段,其任务是起加速作用,使飞行器从停泊轨道进

入转移轨道的近地点),

(4)转移轨道(自由滑行段,其作用是调整飞行器的位置,以保证后面的远地点变轨

进入所需的地球同步定点轨道);

(5)远地点变轨段(第三动力飞行段,其任务是在转移轨道的远地点起加速和改变轨道平面的作用,使飞行器从转移轨道进入地球同步定点轨道)。

有停泊轨道的发射轨道适用于中纬度或高纬度地区发射地球同步定点卫星。 无停泊轨道由三部分组成:

(1)上升段(第一动力飞行段,其任务是从地面起飞使飞行器进入转移轨道), (2)转移轨道; (3)远地点变轨段

经查阅资料可知卫星发射的经纬高度对火箭入轨有影响,具体关系式如下:

t t l V V V V V τω

=+?+-

V 为发射轨道的速度需求量;V τ为转移轨道的入轨速度;t V ?为转移轨道到地球

同步定点轨道的变轨速度;t V ?为由于重力、大气阻力等因素引起的速度损失;V ω为地球旋转产生的牵连速度。还有公式:

V T E ?=+

式中

()

s at T V V =-为发射点纬度对转移轨道到地球同步

定点轨道的变轨速度的影响;0(1cos )E r B ω=-为发射点纬度对牵连速度的影响。

s V 为地球同步轨道速度;at V 为转移轨道远地点速度;发射点纬度0B ;r 为发射点地心矢径.

二.在轨运行阶段

由于地球同步卫星具有高空静止的特性,因此,在卫星领域中备受关注,占有

重要地位。但其发射具有一定难度,特别是当发射点远离赤道时,发射过程颇为烦琐,需经多次变轨始能进入地球同步轨道定点位置。故其轨道计算尤为重要,因此,我们小组决定将对地球同步卫星的发射、变轨、定点以及轨道参数的计算作一概要阐述。

地球同步卫星及其轨道在万有引力作用下,如果把地球与人造卫星,化为两个质点作为二体问题来考虑,那么,人造卫星的轨道方程和运行速度可表述如下。

221cos 21

()

(1)()s P r e f

v r a P a e G m m Gm μμ=

+=-=-=+=

式中 r——卫星沿轨道运行的向径变量 v-—卫星沿轨道运行的速度变量

P——圆锥曲线参变量;抛物线轨道半通径 a-—椭圆轨道半长径;双曲线轨道半主径

e-—圆锥曲线离心率 f-—真近点角

L-—开普勒常数,L=398603km3/s2

G ——万有引力常数,G=6.67×10—20km 3/kg ·s2 m ——地球质量,m=5.976×1024kg

ms ——卫星质量,与地球质量m 相比可忽略

式是表示一组以地球中心为焦点的圆锥曲线族,它可以给出四种轨道,即圆、椭圆、抛物线和双曲线。卫星在运行中究竟取何种轨道,这取决于卫星发射高度、末速度和入轨方向。(2)式表述的运行速度v 是表示卫星在轨道上的运行速度而不是地面发射速度.地球同步卫星是在赤道上空绕地球运行的角速度等于地球自转角速度的卫星。因此,卫星相对地球而言,是在赤道上空静止不动的,故又称地球静止卫星或赤道同步卫星。地球同步卫星的轨道是在赤道上空与赤道面重合的圆轨道,称为地球同步轨道,也称地球静止轨道或赤道同步轨道。 对圆轨道可有r=a=R+H,故(2)式可改写为

2v R H μ

=

+,根据定义

()v R H ω=+,2T π

?=,

可以得出:H R =,对于地球同步卫星来说e T T =, 式中 ?——卫星沿轨道运行的角速度

H ——卫星地面发射高度 T —-卫星运行周期

e

T ——地球自转周期,Te=23.93447h

R ——地球平均半径,R=6367km

今将已知数据代入上述几式之中,则得地球同步卫星的参数如下:

5563673580027.2910/23.9346060

7.2910(636735800) 3.074/23.93447es es es es H km

rad s

V km s

T h

π

ω--====???=??+==

式中 es H ——地球同步卫星的高度

es ω——地球同步卫星的角速度

es

V ——地球同步卫星的运行速度,也称静止轨道速度

es T ——地球同步卫星的运行周期

由上述计算可知,地球同步卫星属高轨卫星,其视野开阔,覆盖面大,适于高空气象观测和全球通信,故可用作气象卫星和通信卫星。

坐标方位角计算

=(PI()*(1 - SIGN(B3-$B$1) / 2) - ATAN((A3-$A$1) /(B3-$B$1)))*180/PI() Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。 度分秒格式: =INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/PI()) &"-"& INT( ((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180 /PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3-$b$1)))*180/ PI()))*60)&"-"&INT( (((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3- $b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) /(B3- $b$1)))*180/PI()))*60-INT(((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) / (B3-$b$1)))*180/PI()-INT((PI()*(1 - SIGN(B3-$b$1) / 2) - ATAN((A3-$a$1) / (B3-$b$1)))*180/PI()))*60))*600)/10 其中:A1,B1中存放测站坐标,a3,b3放终点坐标。 上面的计算出来的是度分秒格式,也就是字符串格式,不能用来计算,只是用来看的哟! 下面这个简单一点: =INT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI())*10000+INT(((PI()*(1-S IGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI()-INT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4) /(C6-C4)))*180/PI()))*60)*100+(((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI()-I NT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*180/PI()))-(INT(((PI()*(1-SIGN(C6-C4)/ 2)-ATAN((B6-B4)/(C6-C4)))*180/PI()-INT((PI()*(1-SIGN(C6-C4)/2)-ATAN((B6-B4)/(C6-C4)))*1 80/PI()))*60))/60)*3600 Excel 中求方位角公式:a1,b1放起始点坐标 a3,b3放终点坐标。 求距离公式: =Round(SQRT(POWER((A3-$A$1),2)+POWER((B3-$B$1),2)),3)

坐标方位角计算

二 计算坐标与坐标方位角的基本公式 控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。 一、坐标正算和坐标反算公式 1.坐标正算 根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。 如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为 AB A B AB A B y y y x x x ?+=?+= } (5—1) 式中 AB x ? 、AB y ?——坐标增量。 由图5—5可知 AB AB AB AB AB AB S y S x ααsin cos =?=? } (5—2) 式中 AB S ——水平边长; AB α——坐标方位角。 将式(5-2)代入式(5-1),则有 AB AB A B AB AB A B S y y S x x ααsin cos +=+= }

(5—3) 当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。 从图5—5可以看出AB x ?是边长AB S 在x 轴上的投影长度, AB y ?是边长AB S 在 y 轴上的投影长度,边长是有向线段,是在 实地由A 量到B 得到的正值。而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。

104373_坐标方位角计算公式

坐标方位角计算公式(通用) 用极坐标法放样必须计算出测站点(仪器点)到放样点得距离和方位角,才能进行放样。 原计算公式为: S12=sqr( (x2-x1)2+(y2-y1)2)= sqr(△x221+△y221) A12=arcsin((y2-y1)/S12) S12为测站点1至放样点2的距离; A12为测站点1至放样点2的坐标方位角。 x1,y1为测站点坐标; x2,y2为放样点坐标。 按公式A12=arcsin((y2-y1)/S12)计算出的方位角都要进行象限判断后加常数才是真正的方位角。 新计算公式为: A12=arccos(△x21/S12)*sgn(△y21)+360° 式中sgn()为取符号函数,改公式只需加上条件(A12>360°, A12= A12-360°)就可以计算出坐标方位角,不需要进行象限判断。 我的这个公式要更好一些,计算结果就是正确结果: SGN是正负号的函数。括号内的数字大于零SGN()就是+号,反之就是-号。

===================================函数开始=================================== 'jiaodu10(x,splitStr)函数将60进制度转换为10进制度格式.x为度数,splitStr为分隔符号,'如x为43%67%367,则splitStr为"%",参数要用双引号括起来,jiaodu10("x","%") Function jiaodu10(x,splitStr) If InStr(1,x,splitStr) Then Dim s s=Split(x,splitStr) jiaodu10=s(0)+s(1)/60+s(2)/3600 Else jiaodu10="错误" End If End Function '-------------------------------------------------------------------------------- 'jiaodu60(x,splitStr)函数将10进制度转换为60进制度格式,splitStr分隔表示 'x为数字,可以不用双引号括起来,参数splitStr要用双引号括起来iaodu10(12.31313,"-") Function jiaodu60(x,splitStr) Dim fen,miao Fen =Round((fen-Int(fen))*60,0) If miao >= 60 Then miao = miao-60 fen = fen+1 End If jiaodu60=Int(x) & splitStr & Int(fen) & splitStr & miao End Function '-------------------------------------------------------------------------------- 'juli(待算点纵坐标x,待算点横坐标y,测站点纵坐标m,测站点纵坐标n)用于计算距离。 Function juli(x,y,m,n) juli=Math.Spr((x-m)^2+(y-n)^2) End Function '-------------------------------------------------------------------------------- 'jiaodu(x,y,m,n)计算角度 Function jiaodu(x,y,m,n) Dim dx,dy,a,jdu10 dx=x-m dy=y-m a=Math.Abs(Math.Atn(dy/dx) * 180 / 3.14159265) jdu10=0 If (dx > 0) Then If (dy > 0) Then jdu10 = a Else jdu10 = 360-a End If Else If (dy > 0) Then jdu10 = 180-a

卫星通信基础知识(六)卫星天线的方位 仰角 极化角

卫星通信基础知识(六)卫星天线的方位仰角极化角 要进行卫星接收,关键点是卫星接收天线的定位,它包括:天线的方位角、仰角和馈源的极化角这三大参数。 1、方位角 从地球的北极到南极的等分线称为经线(0-180度),把地球分为东方西方,偏东的经线称为东经,偏西方的经线称为西经。从地球的东到西的等分线称纬线(0-90度),把地球分为南北半球,以赤道为界(赤道的纬度为0),北半球的纬线称北纬,南半球的纬线称南纬。我国处于北半球的东方,约在东经75-135度,北纬18-55度之间。所有的广播电视卫星都分布在地球赤道上空35786.6公里的高空同步轨道的不同经度上,平时我们惯称多少度的卫星,这个度指的是地球的经线。卫星在地球上的投影称为星下点,它是位于赤道上,经度与卫星经度相同的地方。如亚太6号卫星的星下点是位于赤道上的东经134度的位置。我们在寻星时,如果你所在的地方(北半球)的经度大于星下点的经度,那么天线的方位角必定时正南(以正南为基准)偏西,反过来,如果你所在的位置的经度小于星下点的经度,那么天线的方位角是正南偏东。卫星天线的方位角计算公式是: A=arctg{tg(ψs-ψg)/sinθ}----------(1) 公式(1)中的ψg是接收站经度,ψs为卫星的经度,θ为接收站的纬度。图1是卫星的方位角示意图。方位角的调整方法很简单,首先用指南针找到正南方,天线方向正对正南方,如果计算的角度A是负值,则天线向正南偏西转动A度,如果A是正值,则天线向正南偏东方向转动A度。即可完成方位角的调整。2、仰角仰角是接收站所在地的地平面水平线于天线中心线所形成的角度, 如图2所示。仰角的计算公式是: .-----------------⑵仰角的调整最好是用量角器加上一个垂针作成的仰角调整专用工具进行调整。方位角和仰角的调整顺序是,先调整好仰角,在调整方位角。3、极化角国内或区域卫星一般都是线极化,线极化分为水平极化(以E‖表示)和垂直极化(以E⊥表示)。地面接收天线极化的定义是以卫星接收点的地平面为基准,天线馈源(或极化器)矩形波导口窄边平行于地平面,则电场矢量平行于地平面,定义为水平极化;反之馈源矩形波导口窄边垂直于地平面定义为垂直极化如图3所示。

公路测量计算公式

计算公式 一、 方位角的计算公式 二、 平曲线转角点偏角计算公式 三、 平曲线直缓、缓直点的坐标计算公式 四、 平曲线上任意点的坐标计算公式 五、 竖曲线上点的高程计算公式 六、 超高计算公式 七、 地基承载力计算公式 八、 标准差计算公式 一、 方位角的计算公式 1. 字母所代表的意义: x 1:QD 的X 坐标 y 1:QD 的Y 坐标 x 2:ZD 的X 坐标 y 2:ZD 的Y 坐标 S :QD ~ZD 的距离 α:QD ~ZD 的方位角 2. 计算公式: ()()212212y y x x S -+-=

1)当y 2- y 1>0,x 2- x 1>0时:1 21 2x x y y arctg --=α 2)当y 2- y 1<0,x 2- x 1>0时:1 21 2360x x y y arctg --+?=α 3)当x 2- x 1<0时:1 21 2180x x y y arctg --+?=α 二、 平曲线转角点偏角计算公式 1. 字母所代表的意义: α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角 2. 计算公式: β=α2-α1(负值为左偏、正值为右偏) 三、 平曲线直缓、缓直点的坐标计算公式 1. 字母所代表的意义: U :JD 的X 坐标 V :JD 的Y 坐标 A :方位角(ZH ~JD ) T :曲线的切线长,23 22402224R L L D tg R L R T s s s -+??? ? ??+= D :JD 偏角,左偏为-、右偏为+

2. 计算公式: 直缓(直圆)点的国家坐标:X′=U+Tcos(A+180°) Y′=V+Tsin(A+180°) 缓直(圆直)点的国家坐标:X″=U+Tcos(A+D) Y″=V+Tsin(A+D) 四、 平曲线上任意点的坐标计算公式 1. 字母所代表的意义: P :所求点的桩号 B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1 C :J D 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标 T :曲线的切线长,23 22402224R L L D tg R L R T s s s -+??? ? ??+= I=C-T :直缓桩号 J=I+L :缓圆桩号 s L DR J H -+ =180 π:圆缓桩号

如何调试卫星天线角度介绍

如何调试卫星天线角度介绍 1、卫星转发器 卫星转发器,是这样的设备,接收地面发射站发来的14GHz或6GHz的微弱的上行电视信号,经频率变换(一次变频、二次变频)为不同的下行频率12GHz或4GHz,再由技术处理放大到一定功率向地球发射,有卫星电视接收设备接收。每一路音视频和数据通道都是由一个卫星转发器进行接收处理然后再传输,每一个转发器所处理的信号都有一个中心频率及一个特定的带宽,目前卫星转发器主要使用L、S、C、Ku和Ka频段。 2、水平极化、垂直极化 极化通常是指与电波传播方向垂直的平面内,瞬时电场矢量的方向。在极化波中,以地平线为准,当极化方向与地面平行时,称为水平极化。当极化方向与地面垂直时,称为垂直极化。 3、卫星天线 卫星天线的作用是收集由卫星传来的微弱信号,并尽可能去除杂讯。大多数天线通常是抛物面状的,也有一些多焦点天线是由球面和抛物面组合而成。卫星信号通过抛物面天线的反射后集中到它的焦点处。 4、馈源 馈源的主要功能是将天线收集的信号聚集送给高频头(LNB),馈源在

接收系统中的作用是非常重要的。 馈源的种类 锥形馈源 环形馈源 圆锥馈源 梯状馈源 6、LNB高频头 高频头(Low Noise Block)即下行解频器,其功能是将由馈源传送的卫星经过放大和下变频,把Ku或C波段信号变成L波段,经同轴电缆传送给卫星接收机。 调试过程 由于一般用户都没有场强仪等专用设备,因此本文将介绍的是如何使用指南针、量角器等常用设备寻星。 器材准备:卫星天线、高频头(馈源一体化)、卫星接收机、电视机、指南针、量角器以及连接线若干。 计算寻星所需参数 对于固定式天线系统,需要根据天线所在地的经纬度及所要接收卫星的经度计算出天线的方位角和仰角,并以此角度调整天线使其对准相应的卫星。

天线方位角俯仰角以及指向计算

创新实验课作业报告 姓名:王紫潇苗成国 学号:1121830101 1121830106 专业:飞行器环境与生命保障工程 课题意义:随着科学技术的迅猛发展,特别是航天科技成果不断向军事、商业领域的转化,航天科技得到了极大的发展,航天器机构朝着高精度、高可靠性的方向发展。因此对航天机构的可靠性、精度、寿命等要求越来越高,对航天器机构精度的要求显得愈发突出,无论是航天器自身的工作,还是航天器在轨服务都对其精度有着严格的要求。航天器中的外伸指向机构通常指的是星载天线机构,星载天线是航天器对地通信的主要设备,肩负着对地通信的主要任务,同时随着卫星导航的广泛应用,星载天线就愈发的重要起来,而其指向精度的要求就愈发的突出,指向精度不足,将会导致通信信号质量下降,卫星导航精度下降等结果。民用方面移动通信和车载导航等,军用方面舰船导航、精确打击等这些都对星载天线的指向精度有着极高的依赖性。 因此,星载天线的指向精度是非常重要的。要保证星载天线的指向精度,

课题一双轴驱动机构转角到天线波束空间指向 首先就是要确保星载天线驱动机构在地指向精度分析的正确性,只有这样才能对接下来的在轨指向精度分析和指向误差补偿进行分析。星载天线驱动机构的末端位姿误差主要来源于机构的结构参数误差和热变形误差,这些误差是驱动机构指向误差最原始的根源,由于受实际生产加工装配能力和空间环境的限制,这些引起末端指向误差的零部件结构参数误差是必须进行合理控制的,引起结构参数变 化的热影响因素是必须加以考虑的,只有这样才能使在轨天线驱动机构指向精度动态分析和误差补偿都得到较理想的结果。纵观整个星载天线驱动机构末端位姿误差的分析,提出源于结构参数误差和热变形误差引起的星载天线驱动机构末端位姿误差的研究是必要的。 发展现状:星载天线最初大多是以固定形式与卫星本体相连的,仅仅通过增大天线波束宽度和覆盖面积来提高其工作范围,对其精度要求不是很高,但是随着航天科技的不断发展和市场需求的不断变化,这就要求,星载天线要具备一定的自由度,因此促使了星载天线双轴驱动机构的发展。星载天线双轴驱动机构能够实现对卫星天线的二自由度驱动,是空间环境下驱动天线运动的专用外伸执行机构。卫星天线的二自由度运动能够满足对地通信、星间通信、卫星导航定位、以及对目标的实时观测跟踪,在满足这些需求的同时也要保证其精度的提高,随着需求的不断提高,精度已经成为衡量星载天线双轴驱动机构性能的一个重要指标,同时也是系统设计与实现的一个难点。综上所述可以看出,星载天线双轴驱动机构是驱动卫星天线系统进行准确空间定位的核心部分。 与此同时,我国对星载天线驱动机构的研究、生产制造技术进行了一定时间的学习积累,也成功的应用到了一些卫星上,具有一定的自主能力。自2000年后,我国在发射的卫星中,有很多采用了自主研发的天线驱动机构。相应的研究单位也蓬勃发展,航天科技集团、上海航天局等相关单位对星载天线驱动机构的研究已经取得了很大的成就和进展。特别是伴随着我国自主导航系统一北斗导航系统的不断发展,以及空间实验室和“嫦娥计划”的不断深入。星载天线双轴驱动机构得到了极大地发展。即便如此,我们跟国外还是有一定差距的,目前国内与国外的差距主要在双轴驱动机构精度、使用寿命、可靠性方面,因此还是需要进行深入研究,提高其精度、使用寿命、可靠性。 那么,我们小组也秉承着对航天事业的极大热忱开始对天线指向问题进行研

坐标方位角计算实例

坐标方位角计算实例 在市政工程施工测量过程中,经常会遇到根据已知导线控制点,利用经纬仪、钢尺测设待定点的实际问题,解决此类问题往往需要计算坐标方位角或点位坐标,根据工作中实践体会将计算方法总结如下: 1 根据已知控制点计算坐标方位角,测设放样点平面位置(极坐标法) 首先明确方位角的概念,方位角是指从直线起点的标准方向北端开始,顺时针量到直线的夹角,以坐标纵轴作为标准方向的称为坐标方位角(以下简称方位角)。测量上选用的平面直角坐标系,规定纵坐标轴为x轴,横坐标轴为y轴,象限名称按顺时针方向排列(图1),即第Ⅰ象限x>0 y>0;第Ⅱ象限x<0 y>0;第Ⅲ象限x<0 y<0;第Ⅳ象限x>0 y<0,或许对于测量坐标系与数学坐标系的x、y 轴位置不同,象限规定不同,觉得难理解,其实能注意到测量上的平面直角坐标系与数学上的平面直角坐标系只是规定不同,x轴与y轴互换,象限的顺序与相反,因为轴向与象限顺序同时都改变,只要真正理解了方位角的定义,测量坐标系的实质与数学上的坐标系是一致的,因此数学中的公式可以直接应用到测量计算中。 1.1 按给定的坐标数据计算方位角αBA、αBP ΔxBA=xA-xB=+123.461m ΔyBA=yA-yB=+91.508m 由于ΔxBA>0,ΔyBA>0 可知αBA位于第Ⅰ象限,即 αBA=arctg =36°32'43.64" ΔxBP=xP-xB=-37.819m ΔyBP=yP-yB=+9.048m 由于ΔxBP<0,ΔyBP>0 可知αBP位于第Ⅱ象限, αBP=180o-α=180o-arctg=180o-13o27'17.33"=166°32'42.67" 此外,当Δx<0,Δy<0;位于第Ⅲ象限,方位角=180°+ arctg 当Δx>0,Δy<0;位于第Ⅳ象限,方位角=360°+ arctg 1.2 计算放样数据∠PBA、DBP ∠PBA=αBP-αBA=129°59'59.03" 1.3 测设时,把经纬仪安置在B点,瞄准A点,按顺时针方向测设∠PBA,得到BP方向,沿此方向测设水平距离DBP,就得到P点的平面位置。 2 当受地形限制不便于量距时,可采用角度交会法测设放样点平面位置 上例中,当BP间量距受限时,通过计算测设∠PAB、∠PBA来定P点

卫星接收站接收天线方位角

卫星接收站接收天线方位角、仰角、极化角的计算公式 1、卫星接收天线的方位角:ξ ? sin 1tg tg A z -= (1) 2、卫星接收天线的仰角:? ξφξ2 2 1 cos cos 115127.0cos cos --=-tg EL (2) 3、极化角:ξ ? ?ξξ?ξ?αtg tg a tg a a tg P sin )cos cos (1cos cos 2sin 1 21 -?-?+--=-- (3) 其中接收点的纬度为ξ ,接收点的经度为R φ,同步卫星的经度为S φ ,相对经度为S R φφ?-=。 同时当0>?,表示卫星在接收点的西南方向上,当0=?时表示卫星在接收地点的正南方向,当0<?时表示卫星在接收点的东南方向上。 通常地球的半径为6738km ,同步卫星的高度为35786km ,当以地球半径为单位长度,同步卫星轨道的相对半径a 为: 6018 .6)6378 35786(1=+=a 公式(1)中:正南?=0z A ,正西为?=90z A ,正东为?-=90z A 。 通常接收天线方位角用下式比表示: 180sin 1 +=-ξ ? tg tg A z (4) 此时方位角以正北方向为基准。 广州从化市广播电视台所在的地理位置为:东经113.58度,北纬23.56度。 如果没有指南针,可以通过自己的影子判断自己影子先找出东西方向,然后再确定南北方向,上午影子向西,下午影子向东。 卫星仰角和极化如图1和图2所示。

从化市广播电视台接收天线方位参数如表一所示。表一从化接收卫星节目天线方位参数表

中星6B卫星(东经11.5度)节目接收技术参数

测量常用计算公式.

测量常用计算公式 一、 方位角的计算公式 二、 平曲线转角点偏角计算公式 三、 平曲线直缓、缓直点的坐标计算公式 四、 平曲线上任意点的坐标计算公式 五、 竖曲线上点的高程计算公式 六、 超高计算公式 七、 地基承载力计算公式 八、 标准差计算公式 一、 方位角的计算公式 1. 字母所代表的意义: x 1:QD 的X 坐标 y 1:QD 的Y 坐标 x 2:ZD 的X 坐标 y 2:ZD 的Y 坐标 S :QD ~ZD 的距离 α:QD ~ZD 的方位角 2. 计算公式: ()()212212y y x x S -+-=

1)当y 2- y 1>0,x 2- x 1>0时:1 21 2x x y y arctg --=α 2)当y 2- y 1<0,x 2- x 1>0时:1 21 2360x x y y arctg --+?=α 3)当x 2- x 1<0时:1 21 2180x x y y arctg --+?=α 二、 平曲线转角点偏角计算公式 1. 字母所代表的意义: α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角 2. 计算公式: β=α2-α1(负值为左偏、正值为右偏) 三、 平曲线直缓、缓直点的坐标计算公式 1. 字母所代表的意义: U :JD 的X 坐标 V :JD 的Y 坐标 A :方位角(ZH ~JD ) T :曲线的切线长,23 22402224R L L D tg R L R T s s s -+??? ? ??+= D :JD 偏角,左偏为-、右偏为+

2. 计算公式: 直缓(直圆)点的国家坐标:X ′=U+Tcos(A+180°) Y ′=V+Tsin(A+180°) 缓直(圆直)点的国家坐标:X ″=U+Tcos(A+D) Y ″=V+Tsin(A+D) 四、 平曲线上任意点的坐标计算公式 1. 字母所代表的意义: P :所求点的桩号 B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1 C :J D 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标 T :曲线的切线长,23 22402224R L L D tg R L R T s s s -+??? ? ??+= I=C -T :直缓桩号 J=I+L :缓圆桩号 s L DR J H -+ =180 π:圆缓桩号

计算坐标与坐标方位角的基本公式

二 计算坐标与坐标方位角的基本公式 控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。 一、坐标正算和坐标反算公式 1.坐标正算 根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。 如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和 AB α,则待定点B 的坐标为 AB A B AB A B y y y x x x ?+=?+= } (5—1) 式中 AB x ? 、AB y ?——坐标增量。 由图5—5可知 AB AB AB AB AB AB S y S x ααsin cos =?=? } (5—2) 式中 AB S ——水平边长; AB α——坐标方位角。 将式(5-2)代入式(5-1),则有 AB AB A B AB AB A B S y y S x x ααsin cos +=+= } (5—3) 当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。 从图5—5可以看出AB x ?是边长AB S 在x 轴上的投影长度,AB y ?是边长AB S 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。从式(5—2)知,由于

万能方位角计算公式

先计算出坐标增量: dX=Xb-Xa dY=Yb-Ya dY=dY+1E-10 为了使除数不为零而加一个很小的数 方位角计算万能公式:Az=pi * (1-Sgn(dY)/2)-Atn(dX / dY)单位为弧度 Az=Az * 180 /pi 单位为度 此公式计算无需判断象限,只需在值小于0时加上360即可! 其中,sgn()为求符号函数,若dX<0时其值为-1,dX>0时为1,dX=0时为0。使用此公式不用判断所在象限,直接将坐标增量代入即可求出方位角值,在用计算器编程时若没有SGN()函数可自行判断并用一个变量代替! VBA代码: '方位角计算函数 Azimuth() 'Sx为起点X,Sy为起点Y 'Ex为终点X,Ey为终点Y 'Style指明返回值格式 'Style=-1为弧度格式 'Style=0为“DD MM SS”格式 'Style=1为“DD-MM-SS”格式 'Style=2为“DD°MMˊSS""”格式 'Style=其它值时返回十进制度值 Function Azimuth(Sx As Double, Sy As Double, Ex As Double, Ey As Double, Style As Integer) Dim DltX As Double, DltY As Double, A_tmp As Double, Pi As Double Pi = Atn(1) * 4 '定义PI值 DltX = Ex - Sx DltY = Ey - Sy + 1E-20 A_tmp = Pi * (1 - Sgn(DltY) / 2) - Atn(DltX / DltY) '计算方位角 A_tmp = A_tmp * 180 / Pi '转换为360进制角度 Azimuth = Deg2DMS(A_tmp, Style) End Function '转换角度为度分秒 'Style=-1为弧度格式 'Style=0为“DD MM SS”格式

工程测量计算坐标

知道方位角和距离怎么计算坐标 设原点坐标为(x,y),那么计算坐标(x1,y1)为 x1=x+s·cosθ y1=y+s·sinθ 其中θ为方位角,s为距离 CAD里计算方位角和距离 CAD默认的世界坐标系跟测量上用的坐标系是不同的。世界坐标系中的X即测量坐标系中的Y,世界坐标系中的Y即测量坐标系中的X。 不知道你是不是要编程的方法或源程序?下面是在CAD下的常用操作方法: 用命令id可以查看点的XYZ坐标 例如: 命令: '_id 指定点: X = 517.0964 Y = 431.1433 Z = 0.0000 命令: ID 指定点: X = 879.0322 Y = 267.6949 Z = 0.0000 用命令dist(快捷命令di)即可知道两点间的角度和距离 例如: 命令: '_dist 指定第一点: 指定第二点: 距离 = 397.1308,XY 平面中的倾角 = 335d41'46.7",与 XY 平面的夹角 = 0d0'0.0" X 增量 = 361.9358, Y 增量 = -163.4483, Z 增量 = 0.0000 其中的“XY 平面中的倾角= 335d41'46.7”是世界坐标系内的平面夹角,用450度减去这个值335d41'46.7"即是坐标方位角114°18′13.3〃。 你可以用计算器验算一下,点1、X = 431.1433,Y = 517.0964;点2、X = 267.6949,Y = 879.0322的坐标方位角和距离值是不是114°18′13.3〃和397.131m。 已知两坐标点求方位角和距离的计算公式 如点A(X1,Y1 ) 点B(X2,Y2) A到B的方位角为:Tan(Y2-Y1)/(X2-X1)其中(X2-X1)>0时加360°,(X2-X1)<0时加180° 而距离就是((X2-X1)平方+(Y2-Y1)平方)最后开方得到的值即为A到B距离 方位角坐标计算公式

天线方位角计算公式

天线方位角计算公式 公式中:A--方位角 α--接收点的地理纬度 β-- 接收点经度与星下点经度之差 注:通常计算结果正南为零度,正数为正南偏西;负数为正南偏东。 天线仰角计算公式 F公式中:B---仰角,其它字母表示同前; F偏馈天线都有一个偏馈角,不同厂家、不同规格的天线偏馈角有所不同,一般都在产品说明书标明。成都新星和华达天线的偏馈角都是22.3度。 F偏馈天线的实际仰角等于计算仰角值-偏馈角值 F正馈天线无偏馈角,其实际仰角即等于计算出的仰角值。 旗县方位角(度)仰角(度) F乌海市-5.78 43.91 F阿拉善左旗-7.60 44.80 F阿拉善右旗-13.80 43.83 F额济纳旗-14.07 40.66 F乌兰浩特市15.79 35.87 F突泉县15.30 36.72 F科右中旗15.35 36.93 F科右前旗15.79 35.87 F连接好卫星接收系统,确认接收天线仰角和方位角; F旋动天线俯仰调节杆(丝杠)上的螺母,确定天线的仰角。一般采用仰角仪或量角器来测量仰角的大小。注意:若天线是偏馈式,仰角应减去22.3度的偏馈角。 F将高频头的极化调整到垂直极化位置(站在天线前边看,高频头输出口应指向右并偏下约45度)。 F调整好天线仰角后,以正南为基准,根据计算出的天线方位角,将天线方位调整到大概位置。 F打开接收机和监视器,调整接收机并输入要接收卫星节目的下行频率(查表)、极

化方式、符号率等数据,然后使接收机处于寻星状态,此时监视器上显示出卫星信号强度显示条。 F缓慢转动天线方位(在方位角左右范围内)搜寻卫星信号,同时观察监视器上的接收信号强度显示条。注意:每转动一次需等待2-3秒,这不同于C波段。 F如果在调整中发现强度显示增加,要进一步放慢转动速度,通过调整方位角使信号强度达到最大,然后固定方位调节螺母; F再次缓慢调节天线的俯仰角度,使信号强度达到最大,然后固定天线俯仰调节螺母。F反复微调天线的方位角和仰角,使信号强度显示最大; F保持天线方位与仰角不变,缓慢调节高频头前后位置和旋转高频头,同时观察信号强度显示,使信号最强,然后锁定高频头。 F注意:在锁定天线和高频头时,要注意观察接收机信号强度不要发生变化,以免在锁定天线时偏离方向使信号变弱跑台。 F连接高频头到接收机的连线,并用胶条(高频头盒内有)把高频头输出F5头缠紧,以防雨水浸入 F按电源开关,再按遥控开关,先按MENU出主菜单,跳过填写密码(不设密码),在主菜单选节目设定,按OK。出数据填写框并填入有关数据。 F卫星名称:ST 1;本地高振频:11300 F本地低振频:00000;转频器编号:TS00 F卫星频率:12620 Mhz 极性:垂直; F符码率:32553Ms FEC;AUTO F Diseqc:DISHA; F信号强度:对准卫星后有黄色条显示,达45%以上。按OK后,出现寻星/稍后字样,等待数秒钟后,按OK,接着按频道数,可看CETV节目三套和CCTV-9。F在我区范围内,以包头的土右旗为中点(110E)。在土右旗以西的旗县,天线方位为正南偏东(负值);土右旗以东的旗县,天线方位为正南偏西(正值)。 F举例:呼市地区方位角1.83,仰角42.8。偏馈天线调试时以天线背面托盘的平面为参照对象,测量仰角应为69.5度。由于新星天线加工的误差,经推算出的偏馈角为 23.8度,所以测量角是71度。

方位角的计算方法

方位角的计算方法:(已知方位角+水平角大于540°-540°)已知方位角+水平角±180°=方位角 坐标增量的计算方法: 平距×COS方位角=△X坐标增量 平距×Sin方位角=△Y坐标增量 坐标的计算方法: 已知X坐标±△X坐标增量=X坐标 已知Y坐标±△Y坐标增量=Y坐标 高差、平距的计算方法: 斜距×Sin倾角=高差 斜距×COS倾角=平距 高差÷Sin倾角=斜距 平距÷cos已知度分秒=斜距 高程的计算方法: 已知高程-仪器高+前视高±高差=该点的顶板高差 原始记录计算方法: 前视-后视相加÷2=水平角(前视不够-后视的+360°再减)后视 00°00′00″ 180°00′09″

前视92°49′02″272°49′13″水平角= 92°49′03″ 实测倾角:正镜-270°倒镜-90°(正、倒镜相加-360°)实例: 110°30′38″-90°= 00°30′38″ 实例: 270°30′38″-270°= 00°30′38″ 激光的计算方法:两点的高程相减: 比如:5点高程1479、479-4点高程1471、052 = 8、427 两点之间的平距:60、673×tan7°19′25″=7、798 8、427-7、797=0、629(上山前面的点一定高于后面的点,所以前面的点减后面的点) 测量:1、先测后视水平角:归零,倒镜180°不能误差15′ 2、前视:先测水平角并读数记录,然后倒镜测倾角,水平角、平距、斜距、高差、量出仪器高,前视量出前视高。 要求方位角-已知方位角±180°=拨角方位 画两千的图:展点用0.6正好. 倾角的计算方法:180°以下的-90° 270°-超过180°的 两点的高差除平距按tan=倾角

测量方位角计算公式VB源代码

测量方位角计算公式VB源代码 角度化弧度 Public Function Radian(a As Double) As Double Dim Ra As Double Dim c As Double Dim FS As Double Dim Ib As Integer Dim Ic As Integer Ra = pi / 180# Ib = Int(a) c = (a - Ib) * 100# Ic = Int(c) FS = (c - Ic) * 100# Radian = (Ib + Ic / 60# + FS / 3600#) * Ra End Function '弧度化角度 Public Function Degree(a As Double) As Double Dim B As Double Dim Fs1 As Double Dim Im1 As Integer Dim Id1 As Integer B = a Call DMS(B, Id1, Im1, Fs1) Degree = Id1 + Im1 / 100# + Fs1 / 10000# End Function Public Sub DMS(a As Double, ID As Integer, IM As Integer, FS As Double) Dim B As Double Dim c As Double c = a c = 180# / pi * c ID = Int(c + 0.0000005) B = (c - ID) * 60 + 0.0005 IM = Int(B) FS = (B - IM) * 60 End Sub '计算两点间的方位角 Public Function azimuth(x1 As Double, y1 As Double, x2 As Double, y2 As Double) As Single Dim dx As Double Dim dy As Double Dim fwj As Double dx = x2 - x1 dy = y2 - y1 If dy <> 0 Then fwj = pi * (1 - Sgn(dy) / 2) - Atn(dx / dy) azimuth = Degree(fwj) Else If dx > 0 Then

卫星天线的方位、仰角、极化角

卫星天线的方位、仰角、极化角 要进行卫星接收,关键点是卫星接收天线的定位,它包括:天线的方位角、仰角和馈源的极化角这三大参数。 1、方位角 从地球的北极到南极的等分线称为经线(0-180度),把地球分为东方西方,偏东的经线称为东经,偏西方的经线称为西经。从地球的东到西的等分线称纬线(0-90度),把地球分为南北半球,以赤道为界(赤道的纬度为0),北半球的纬线称北纬,南半球的纬线称南纬。我国处于北半球的东方,约在东经75-1 35度,北纬18-55度之间。所有的广播电视卫星都分布在地球赤道上空35786.6公里的高空同步轨道的不同经度上,平时我们惯称多少度的卫星,这个度指的是地球的经线。卫星在地球上的

投影称为星下点,它是位于赤道上,经度与卫星经度相同的地方。如亚太6号卫星的星下点是位于赤道上的东经134度的位置。我们在寻星时,如果你所在的地方(北半球)的经度大于星下点的经度,那么天线的方位角必定时正南(以正南为基准)偏西,反过来,如果你所在的位置的经度小于星下点的经度,那么天线的方位角是正南偏东。 卫星天线的方位角计算公式是: A=arctg{tg(ψs-ψg)/sinθ}----------(1) 公式(1)中的ψg是接收站经度,ψs为卫星的经度,θ为接收站的纬度。图1是卫星的方位角示意图。 方位角的调整方法很简单,首先用指南针找到正南方,天线方向正对正南方,如果计算的角度A是负值,则天线向正南偏西转动A度,如果A是正值,则天线向正南偏东方向转动A度。即可完成方位角的调整。 2、仰角 仰角是接收站所在地的地平面水平线于天线中心线所形成的角度,如图2所示。 仰角的计算公式是:

查询地面接收天线对在轨卫星仰角和方位角的几种简便方法

查询地面接收天线对在轨卫星的 仰角和方位角的几种简便方法 卫星通信广播是广播电视播出工作的重要组成部分,而卫星接收天线的寻星精度则是影响广播电视节目传输的信号强弱好坏的重要指标。在调整卫星地面接收天线时,我们经常要计算接收天线所在地对地球同步卫星的仰角和方位角,以利于正确调整卫星接收天线的方向。计算某一轨位卫星方位角和仰角时的公式如下: 从上面的公式可以看出,手工计算比较复杂,既费时费力又容易出错。下面介绍几种比较简单实用的方法,可以非常容易准确地获得任意经、纬度地址上接收各卫星的仰角和方位角。 1、计算器编程查询法 用有计算程序存储器的函数计算器通过输入程序来运算接收天线所在地对地球同步卫星的仰角和方位角,如用CASIO的fx-

3800p、fx-3900p、fx-180p等型号的计算器来进行编程计算。只需输入一次程序,就能把程序存储到该计算器中。每次计算时只要打开计算器,调出运算程序,输入想要接收的地球同步卫星的定点轨道的度数,就能非常及时、方便地计算出接收天线所在地对地球同步卫星的仰角和方位角。本人用的是CASIO fx-3800p计算器,应依次写入下面运算程序:MODE 、·、SHIFT 、 AC (KAC) 、MODE 、4 、 120.65 、 Kin 、 1 、 42.85 、 Kin 、 2 、 0.1513 、Kin 、 3 、 MODE 、 EXP 、Ⅰ(或Ⅱ、Ⅲ、Ⅳ)、 RUN 、115.5 、-、 Kout 、 1 = 、 SHIFT 、 MR (Min) 、 tan 、 ÷ 、Kout 、 2 、 sin 、 = 、 SHIFT 、 tan ( tan -1 ) 、SHIFT 、 RUN (ENT) 、[(…、 MR 、 cos 、 × 、 Kout 、 2 、 cos 、-、SHIFT 、 MR (Min) 、 Kout 、 3 、…)] 、 ÷ 、 MR 、 SHIFT 、cos (cos -1) 、 sin 、 = 、 SHIFT 、 tan (tan -1) 、 MODE 、·、AC 、Ⅰ(或Ⅱ、Ⅲ、Ⅳ)、接收卫星在轨度数、 RUN 、显示该星的方位角、 RUN 、显示该星的仰角。 程序中120.65和42.85是接收天线所在地的经度和纬度,可根据当地的经、纬度换算成小数后输入,其它数据不要更改。已存储程序后,当要计算某一在轨卫星的仰角和方位角时只要打开计算器,按AC 、Ⅰ(或Ⅱ、Ⅲ、Ⅳ),输入接收卫星在轨度数,按RUN后显示该星的方位角,再按RUN则显示该星的仰角。如用已输入上述程序的计算器,输入鑫诺1号110.5度星后计算出的方位

相关文档
最新文档