矩阵相关性质

矩阵相关性质
矩阵相关性质

等价:存在可逆矩阵Q P ,,使B PAQ =,则A 与B 等价;

相似:存在可逆矩阵P ,使B AP P =-1,则A 与B 相似;

合同:存在可逆矩阵C ,使B AC C T =,则A 与B 合同.

一、相似矩阵的定义及性质

定义1 设B A ,都是n 阶矩阵,若有可逆矩阵P ,使B AP P

=-1,则称B 是A 的相似矩阵,或说矩阵

A 与

B 相似,记为B A ~.对A 进行运算AP P 1-称为对A 进行相似变换,可逆矩阵P 称为把A 变成B 的相似变换矩阵.

注 矩阵相似是一种等价关系.

(1)反身性:A A ~.

(2)对称性:若B A ~,则A B ~.

(3)传递性:若B A ~,C B ~,则C A ~.

性质1 若B A ~,则

(1)T T B A ~;

(2)11~--B A

; (3)

E B E A λλ-=-; (4)B A =;

(5))()(B R A R =.

推论 若n 阶矩阵A 与对角矩阵??????? ?

?=Λn λλλ 21相似,则n λλλ,,,21 是A 的n 个特征值.

性质2 若1-=

PBP A ,则A 的多项式1)()(-=P B P A φφ. 推论 若A 与对角矩阵Λ相似,则

1211)()()()()(--??????

? ??=Λ=P P P P A n λφλφλφφφ . 注 (1)与单位矩阵相似的只有它本身;

(2)有相同特征多项式的矩阵不一定相似.

二、矩阵可对角化的条件

对n 阶方阵

A ,如果可以找到可逆矩阵P ,使Λ=-AP P 1为对角阵,就称为把方阵A 对角化。

定理1 n 阶矩阵

A 可对角化(与对角阵相似)A ?有n 个线性无关的特征向量。

推论 如果n 阶矩阵A 的n 个特征值互不相等,则A 与对角阵相似.(逆命题不成立) 注:(1)若A ~Λ,则Λ的主对角元素即为A 的特征值,如果不计i λ的排列顺序,则Λ唯一,

称之为矩阵

A 的相似标准形。

(2)可逆矩阵P 由A 的n 个线性无关的向量构成。 把一个矩阵化为对角阵,不仅可以使矩阵运算简化,而且在理论和应用上都有意义。 可对角化的矩阵主要有以下几种应用:

三、实对称矩阵的相似矩阵

实对称矩阵是一类特殊的矩阵,它们一定可以对角化.即存在可逆矩阵P ,使得Λ=-AP P

1.更可找到正交可逆矩阵T ,使和Λ=-AT T 1

定理2 实对称矩阵的特征值为实数。

定理2的意义:因为对称矩阵A 的特征值1λ为实数,所以齐次线性方程组0)(=-x E A i λ是实系数方程组。又因为0=-E A i λ,可知该齐次线性方程组一定有实的基础解系,从而对应的特征向量可以取实向量。

定理3:实对称矩阵

A 的对应于不同特征值的特征向量正交。

定理4:A 为n 阶实对称矩阵,0λ是A 的k 重特征值,则对应于0λ的特征向量中,线性无关的个数为k ,即0)(0=-X E A λ的基础解系所含向量个数为k 。

定理5:(实对称矩阵必可对角化)

对于任一n 阶实对称矩阵A ,一定存在n 阶正交矩阵T ,使得Λ=-AT T 1。其中Λ是以A 的n 个特征值为对角元素的对角阵。

定义 2 若二次型Ax x f T =,则对称矩阵

A 叫做二次型f 的矩阵,也把f 叫做对称矩阵A 的二次型.对称矩阵

A 的秩就叫做二次型f 的秩. 推理 对称矩阵A 为正定的充分必要条件是:A 的特征值全为正.

定理3 对称矩阵A 正定的充分必要条件是:A 的各阶主子式都为正,即

011>a ,

022211211>a a a a ,0,1111>nn

n n a a a a ; 对称矩阵A 为负定的充分必要条件是:奇数阶主子式为负,而偶数阶主子式为正 1.设A 为正定阵,则*1,,A A A T -均为正定矩阵;

2.设B A ,均为正定矩阵,则B A +也是正定矩阵.

四、如果n 阶矩阵A 与B 相似,那么A 与B 的特征值相同吗?

答 一定相同。因为它们有相同的特征多项式。 证明 A 与B 相似,即存在可逆矩阵P ,使B AP P =-1,

E A E A P P E A P P E P AP P E B λλλλλ-=-=-=-=-∴----1111)()(

但务必注意:

1. 即使A 与B 的特征值都相同,A 与B 也未必相同。

2. 虽然相似矩阵有相同的特征值,但特征向量不一定相同。

五、判断矩阵

A 是否可对角化的基本方法有哪些? 答 常有如下四种方法。 (1)判断A 是不是实对称矩阵,若是一定可对角化。

(2)求A 的特征值,若n 个特征值互异,则A 一定可对角化。

(3)求A 的特征向量,若有n 个线性无关的特征向量,则A 可对角化,否则不可对角化。

(4)方阵A 可对角化的充要条件是A 的每个重特征值对应的线性无关的特征向量的个数等于该特征值的重数。

一般来说,常用方法(2)和(4),且(2)中的条件仅仅是充分的。

六、已知n 阶方阵

A 可对角化,如何求可逆矩阵P ,使得?),,,(diag 211n AP P λλλ =- 答 若n 阶方阵

A 可对角化时,则求可逆矩阵P 的具体步骤为: (1)求出A 的全部特征值s λλλ,,,21 ;

(2)对每个)1(s i i ≤≤λ,求齐次方程组0)(=-x E A i λ的基础解系,得n 个线性无关的特征向量n ααα ,,21;

(3)令),,,(21n P ααα =,则),,,(211

n diag AP P λλλ =Λ=-,其中 n λλλ,,,21 为n ααα,,,21 对应的特征值。

七、对于实对称矩阵

A ,如何求正交矩阵P ,使AP P 1-为对角阵? 答 若A 为n 阶实对称矩阵,则一定存在正交阵P ,使AP P 1-为对角阵。可按以下步骤求出正交矩阵P 。

(1)求出方阵A 的全部特征值s λλλ,,,21 ,其中重根数分别为s k k k ,,,21 。

(2)对每一个i λ求出齐次线性方程组0)(=-x E A i λ的基础解系s i ik i i ,,2,1,,,,21 =ααα。

(3)将s i ik i i ,,2,1,,,,21 =ααα正交化(若1=i k ,则只须单位化)得正交单位特征向量组:n p p p ,,21。

令),,,(21n p p p P =

(4)??????

? ??=-n AP P λλλ 211 ,其中λ是特征向量i p 所对应的特征值。 九、如何判断一个二次型Ax x f T =是正定的?

答 判别二次型Ax x f T =正定性的方法通常有

(1)用定义,

(2)f 的标准形中的n 个系数全为正,

(3)对称矩阵A 的特征值全大于0,

(4)正惯性指数n p =,

(5)计算矩阵A 的各阶顺序主子式,各阶顺序主子式均大于0。

十三、什么叫矩阵的合同?矩阵合同与矩阵相似有什么区别与联系?

答 如果存在可逆矩阵P ,使,则称矩阵A 与B 合同。

合同关系是一种等价关系,矩阵合同在证明矩阵正定性和化二次型为标准型中有很广泛的应用,在此给出一个非常有用的结论:

如果矩阵A 与矩阵E 合同,则A 为正定矩阵。

合同与矩阵相似是有区别的,矩阵

A 与

B 相似,则存在可逆矩阵P ,使B AP P =-1。显然,若P 为正交矩阵,则1-=P P

T ,矩阵合同与矩阵相似就有联系了,由此我们可得出: 如果A 为n 阶实对称矩阵,则存在正交矩阵P ,使Λ=-AP P 1,此时A 与Λ相似,A 与Λ合同。

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1 i 1 tr(A)a ====λ∑∑,etrA=exp(trA)

性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1 tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1 i 1 tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y]

幂等矩阵的性质及应用(定稿)

JIU JIANG UNIVERSITY 毕业论文(设计) 题目幂等矩阵的性质及应用 英文题目Properties and Application of Idempotent Matrix 院系理学院 专业数学与应用数学 姓名邱望华 年级A0411 指导教师王侃民 二零零八年五月

幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。 [关键词] 幂等矩阵,性质,幂等性,线性组合

The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices. [Key Words] the idempotent, the nature, the idempotence, linear combination

分块矩阵的性质及其应用【开题报告】

阵的相关计算简单化, 而且还可以用于证明一些与矩阵有关的问题. 分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题, 以及求逆矩阵和方阵行列式的计算问题上, 对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解, 所以分块矩阵作为高等代数中的一个重要概念, 我们需要透彻的了解分块矩阵, 在此基础上较好地学会在何时应用矩阵分块, 从而研究它的性质及应用是非常必要的. 根据目前国内外对矩阵应用研究的发展, 可以知道矩阵已经广泛应用到线性规划、线性代数、统计分析, 以及组合数学等.在这样的形式下, 必须要求对矩阵有一种科学的处理方式以提高应用效果.本文是通过查阅相关文献和学习相关知识后总结并探讨了分块矩阵在各方面的应用.当前对分块矩阵的应用主要发展到计算和证明两大方面.证明方面: 通过对矩阵的分块证明了有关矩阵秩的定理以及其他线性代数证明问题; 计算方面,本文通过对分块矩阵的性质的研究很好的解决了求矩阵的逆矩阵问题, 求行列式, 求矩阵的秩等问题的新的快捷方式. 二、研究的基本内容, 拟解决的主要问题: 研究的基本内容: 通过学习分块矩阵的相关的几种定义, 掌握分块矩阵的性质, 从而熟练分块矩阵的应用. 解决的主要问题: 1.了解分块矩阵的基本概念. 2.探讨分块对角化的性质. 3.研究分块矩阵的应用. 三、研究步骤、方法及措施: 研究步骤: 1.查阅相关资料, 做好笔记; 2.仔细阅读研究文献资料; 3.在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告; 4.翻译英文资料; 5.撰写毕业论文; 6.上交论文初稿; 7.反复修改论文, 修改英文翻译, 撰写文献综述; 8.论文定稿.

浅谈幂等矩阵的性质

万方数据

万方数据

浅谈幂等矩阵的性质 作者:侯君芳, 黄丽莉 作者单位:郑州旅游职业学院,河南郑州,450009 刊名: 科技风 英文刊名:TECHNOLOGY TREND 年,卷(期):2009,""(13) 被引用次数:0次 相似文献(6条) 1.期刊论文高灵芝幂等矩阵秩试题求解及其结论的推广-中国科教创新导刊2008,""(31) 本文从高等代数课本中的一道习题入手,从不同的角度给出这道习题的不同解法,并把其结论进行了推广. 2.期刊论文邹本强.ZOU Ben-qiang特殊矩阵的特征值性质-重庆职业技术学院学报2006,15(5) 在高等代数中矩阵是研究问题很重要的工具,在讨论矩阵的性质时给出了矩阵特征值的定义,但对矩阵特征值的性质研究很少,对特殊矩阵的特征值性质的研究更少,而特殊矩阵的特征值对研究特殊矩阵有很重要的意义.我们在研究矩阵及学习有关数学知识时,经常要讨论一些特殊矩阵的性质.为此,本文围绕幂等矩阵、反幂等矩阵、对合矩阵、反对合矩阵、幂零矩阵、正交矩阵、对角矩阵、可逆矩阵等特殊矩阵给出了其主要性质并加以证明,为广大读者学习矩阵时提供参考. 3.期刊论文孙莉.陈传良.王品超分块矩阵的理论应用-曲阜师范大学学报(自然科学版)2002,28(1) 分块矩阵的理论在高等代数中有着广泛的应用,用这一理论解决问题简明而清晰,该文是本理论的具体应用. 4.期刊论文杨忠鹏.陈梅香.林国钦.Yang Zhongpeng.Chen Meixiang.Lin Guoqin关于三幂等矩阵的秩特征的研究-数学研究2008,41(3) 本文对已有的关于三幂等矩阵秩的等式作了进一步研究,指出其中有些可以作为判定三幂等矩阵的充要条件,即三幂等矩阵的秩特征等式.本文还证明了有无穷多种三幂等矩阵的秩特征等式形式. 5.期刊论文杨忠鹏.陈梅香.YANG Zhong-peng.CHEN Mei-xiang关于矩阵秩等式研究的注记-莆田学院学报2008,15(5) 最近一些文献应用自反广义逆和广义Schur补得到了一些重要的矩阵秩的恒等式.对这些结果,给出了只用分块初等变换的简单证法;作为应用对 k(k=2,3,4)幂等矩阵的秩等式作进一步讨论,还给出了打洞技巧在求秩上应用的例子. 6.期刊论文林志兴.杨忠鹏.LIN Zhi-xing.YANG Zhong-peng与给定矩阵A的可交换子环C(A)的一些探讨-莆田学院学报2010,17(2) 收集整理现在常用的高等代数与线性代数材料中与给定矩阵A可交换的矩阵所构成的全矩阵空间pn×n的子空间C(A)的习题.指出C(A)的交换性及用 A的多项式表示问题同C(A)的维数与n有密切关系,得到n(n≥3)阶幂等矩阵A或对合矩阵A的C(A)都是不可交换的结论. 本文链接:https://www.360docs.net/doc/ad8447724.html,/Periodical_kjf200913005.aspx 授权使用:洛阳工学院(河南科技大学)(wflskd),授权号:d7e0c32f-0155-4388-9ee0-9dde00edfb00 下载时间:2010年8月26日

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA) 性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1tr(P AP)tr(A)-=;

5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1i 1tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y] 得 定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B) 这里等号成立的充要条件是A=cB,c 为一常数。特别当A 和B 为实对称阵或Hermit 矩阵时 0≤|t r(AB)|≤ 定理:设A 和B 为两个n 阶Hermite 阵,且A≥0,

正投影及其性质

29.1 投影 第2课时正投影 【学习目标】 (一)知识技能: 1.进一步了解投影的有关概念。 2.能根据正投影的性质画出简单平面图形的正投影。 (二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。 (三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。 (四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。 【学习重点】 能根据正投影的性质画出简单平面图形的正投影。 【学习难点】 归纳正投影的性质,正确画出简单平面图形的正投影。 【学习准备】手电筒、三角尺、作图工具等。 【学习过程】 【知识回顾】 正投影的概念:投影线于投影面产生的投影叫正投影。 【自主探究】 活动1 出示探究1 如图29.1—7中,把一根直的细铁丝(记为线段AB)放在三个不同位置: (1)铁丝平行于投影面; (2)铁丝倾斜于投影面: (3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。 三种情形下铁丝的正投影各是什么形状? (1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB A1B1; (2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB A2B2; (3)当线段AB垂直于投影面P时,它的正投影是。 设计意图:用细铁丝表示一条线段,通过实验观察,分析它的正投影简单直观,易于发现结论。 活动2 如图,把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面。 三种情形下纸板的正投影各是什么形状?

浅析分块矩阵的性质和应用[1]讲解

浅析分块矩阵的性质和应用 作者姓名:周甜 河南理工大学数学与信息科学学院数学与应用数学专业2007级2班 性质1:分块矩阵都是可逆的,且逆矩阵为分块初等矩阵。 性质2:分块单位矩阵经过一次分块矩阵的初等变换后所得到的矩阵仍为分块初等矩阵。 摘要:分块矩阵在高等代数中有着广泛的应用,矩阵的分块运算是矩阵运算的一种重要方法。本文主要讨论了分块矩阵的运算性质,初等变换,并举例说明和分析了分块矩阵在解决矩阵特征值计算和有关矩阵证明等问题中的应用。利用分块矩阵可以使阶数比较高,比较复杂的矩阵和抽象矩阵的特征值问题的解决变得简明而清晰。 关键词:分块矩阵行列式特征值初等变换矩阵的逆 Tentative Analysis of Properties and Applications of Block Matrices Author Name:Zhou Tian Class 2 Grade 2007 of Mathematics and Applied Mathematics of College Mathematics and Information Science of Henan Polytechnic University School Summary:Block matrices has a wide use in Advanced Algebra. Operations of block matrices play an important role in the operation of matrices. This paper mainly illustrates the operation properties and the elementary transformations of block matrices. Several examples are given in the paper to show the applications of block matrices in calculating the eigenvalues of a matrix and proving a subject in connection with matrices. It is convenient to apply block matrices to deal with questions containing matrices with high order and complex appearances and calculating the eigenvalues of abstract matrices. Keywords: block matrices determinant eigenvalues elementary transformation the inverse of a matrix

4、证明:和是幂等矩阵当且仅当是幂等矩阵。

幂等矩阵 1、如果A 是幂等阵, 证明:A ,),2,1( =k A T 和A E -都是幂等阵。 证:A E A A E A E -=+-=-222)(。 证毕 2、设A 是幂等阵,问:A -是否幂等矩阵? 答:当0≠A ,A A A A -≠==-22)(。 3、问:幂等矩阵是否是对称阵? 答:一般不是。 设T ab A =,满足1=T ba ,其中? ??? ? ??=n a a a 1,????? ??=n b b b 1, 发现A 是幂等矩阵; 而? ? ??? ???? ???=n n n n n n b a b a b a b a b a b a b a b a b a A 2 1 2221 21211 1一般不是对称阵。 4、证明:A 和B 是幂等矩阵当且仅当?? ? ???=B A Z 00是幂等矩阵。 证:?? ? ? ??=2220 0B A Z 。 A 和B 是幂等矩阵当且仅当A A =2且B B =2 当且仅当Z Z =2 当且仅当Z 是幂等矩阵。 证毕 5、以下命题成立吗?

方阵A 是幂等矩阵当且仅当其特征值为0或1。 答:方阵A 是幂等矩阵,则其特征值为0或1。 反之一般不成立。 例如??????????=000110111A ,但A A ≠???? ??????=0001102212 。 6、设A 是特征值为0或1的方阵, 证明:A 幂等矩阵当且仅当A 可对角化。 证: 必要性。 因为A 与若当形矩阵J 相似,所以J AT T =-1 ,且?? ????=01 00J J J , 其中r r J ?? ? ?? ?? ??????=11111 ,()() r n r n J -?-????????????=01100 。 发现J J =2 ,即J 是幂等矩阵。 于是i J 是幂等矩阵,1,0=i ,进而i J 是对角矩阵,1,0=i 。 所以J 是对角矩阵。 即A 可对角化。 充分性。 因为A 可对角化,所以D AT T =-1 ,其中D 是主对角元是0或1的对角矩阵。 有D D =2 , 所以A TDT TDT TDT TDT A ====----11 1 2 12 )(。 证毕 7、问:n 阶幂等矩阵按相似关系来分类,可以分成几类? 答:记r 是幂等矩阵特征值1的个数,n r ≤≤0,所以有1+n 类。 8、设A 是n 阶幂等矩阵,

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的?就如矩阵的元素(数)一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,- 般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法?比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A、C都是n阶矩阵, A B 其中A 0,并且AC CA,则可求得AD BC ;分块矩阵也可以在求解线性 C D 方程组应用? 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利

1 分块矩阵的定义及相关运算性质 1.1 分块矩阵的定义 矩阵分块 , 就是把一个大矩阵看成是由一些小矩阵组成的 . 就如矩阵的元素 ( 数) 一 样,特别是在运算中 , 把这些小矩阵当作数一样来处理 . 定义1设A 是一个m n 矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 A 11 ... 分成s 块,于是有rs 块的分块矩阵,即A .... A r1 . 1.2 分块矩阵的相关运算性质 1. 2.1 加法 A A ij r s , B B ij r s , 其中 A ij , B ij 的级数相同, A B A ij B ij r s 1.2.2 数乘 kA 1.2.3 乘法 1.2.4 转置 A A ji s r 1.2.5 分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换: A 1s ... ,其中 A ij 表示的是一个矩阵 . A rs 设 A a ij B mn b ij m n ,用同样的方法对 A,B 进行分块 设是任 A a ij mn A ij r s ,k 为任意数, 定义分块矩阵 A A ij r s 与 k 的数乘为 设 A a ij ,B sn n m 分块为 A A ij nm r l ,B B ij l r ,其中 A ij 是 s i n j 矩阵, B ij 是 n i m j 矩阵, 定义分块矩阵A A j rl 和B B ij l r 的乘积为 r C ij A i1 B 1j A i2 B 2j ... A il B lj , i 1,2,...t; j 1,2,3,..., l a ij s n 分块为 A sn A ij r s ,定义分块矩阵 A A ij r s 的转置为 rs

幂等矩阵的质

幂等矩阵的质

目录 中文摘要 (1) 英文摘要 (1) 1 引言 (1) 2 幂等矩阵的概念 (3) 3 幂等矩阵的性质 (4) 3. 1 幂等矩阵的主要性质 (4) 3. 2 幂等矩阵的等价性命题 (7) 3. 3 幂等矩阵的线性组合的相关性质 (11) 4 幂等矩阵与其他矩阵的关系 (14) 4. 1 幂等矩阵与对合矩阵 (14) 4. 1. 1 对合矩阵 (14) 4. 1. 2 幂等矩阵与对合矩阵的关系 (15) 4. 2 幂等矩阵与投影矩阵 (16) 4. 2. 1 投影矩阵 (16) 4. 2. 2 幂等矩阵与投影矩阵的关系 (17) 结束语 (19) 参考文献 (20) 致谢 (21) 英文原文 (22) 英文译文 (29)

数学与应用数学专业2009级王素云 摘要:本文对幂等矩阵的一些性质进行归纳总结及推广, 并将幂等矩阵与其他特殊矩阵进行了比较. 给出幂等矩阵的概念. 讨论幂等矩阵的主要性质, 并将其进行推广. 然后研究了幂等矩阵的等价性命题, 以及幂等矩阵的线性组合的相关性质. 再结合对合矩阵和投影矩阵更深入的研究幂等矩阵的性质, 分别讨论了幂等矩阵与对合矩阵, 幂等矩阵与投影矩阵的关系. 关键字: 幂等矩阵; 性质; 对合矩阵; 投影矩阵; 广义逆矩阵 PROPERTIES OF IDEMPOTENT MATRIX Suyun Wang, Grade 2009, Mathematics and Applied Mathematics Abstract In this paper, some properties of the idempotent matrix are summarized and extended, and idempotent matrices are compared with other special matrix. The concept of idempotent matrices are given. The main properties of the idempotent matrix are discussed and promoted . Then, the equivalent propositions of idempotent matrix and the nature of the linear combinations of idempotent matrices are studied. The involution matrix and the projection matrix are used to discuss the nature of the idempotent matrices much deeper. The relationship between the idempotent matrix and involution matrix, the idempotent matrix and the projection matrix are discussed. Key Words the idempotent; the nature; involution matrix; the projection matrix; generalized inverse matrix

M矩阵的性质、定理及证明

M 矩阵的性质、定理及证明 一、M 矩阵的概念 定义1 设n n ij a A ?=)(,且0≤ij a ,j i ≠,01≥-A ,称A 为M 矩阵。 定义2 设n n ij a A ?=)(,且0≥ij a ,若1-A 为M 矩阵,则称A 为逆M 矩阵。 引理1 如果n n ij a A ?=)(,且0≤ij a ,j i ≠,A 为M 矩阵的充要条件是A 可做三角分解,R L A ?=,其中L 为下三角阵,R 为上三角阵,L 和R 的主对角元都是正值。 二、M 矩阵的判定定理与证明 定理1 若n n ij a A ?=)(为M 矩阵,则R L A ?=,其中下三角阵L 和上三角阵R 的主对角线元素为正,且其余元素为非正值。 证明 若A 为M 阵,则当j i ≠,0≤ij a ;j i =,0>ij a 。由引理1,A 可做三角分解R L A ?=。设 ????????????=nn n n l l l l l l L 21222111000 , ? ???? ? ??????=nn n n r r r r r r R 00 022211211 则?????? ??????+++++=nn nn n n n n n n n r l r l r l r l r l l r l r l r l r l r l r l r l A 1122 21211112212122221221112111112111111, 故0,,1111211≤n r l r l 。 因011>l ,故0,,112≤n r r ;因,0,0,,111111121>≤r r l r l n 故0,,121≤n r r ;因 022321231≤+r l r l ,故02221≤r l ,从而021≤l ;因023221321≤+r l r l ,故023≤r 。类

分块矩阵的应用研究

1引言 在数学名词中,矩阵(英文名Matrix )是用来表示统计数据等方面的各种有关联的数据.这个定义很好的解释了Matrix 代码是制造世界的数学逻辑基础.数学上,矩阵就是方程组的系数及常数所构成的方阵.把它用在解线性方程组上既方便,又直观.例如对于方程组 我们可以构成一个矩阵 因为这些数字是有规则的排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来.数学上,一个*m n 矩阵乃一个m 行n 列的矩形阵列.矩阵由数组成,或更一般的,由某环中元素组成. 矩阵作为数学工具之一有其重要的实用价值,它常用于很多学科中.如:线性代数、线性规划、统计分析,以及组合数学等.在实际生活中有许多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛况表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算的证明中则会是一个很繁琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解决,矩阵分块的思想由此产生,对级数较高矩阵的处理是矩阵的相关内容中重要的一部分,分块矩阵形象的揭示了一个复杂或是特殊矩阵的内部本质结构.本文即是通过查阅相关文献和学习相关知识后总结并探讨分块矩阵在各方面的应用,以计算和证明两大方面为主. 在已有的相关文件中,分块矩阵的一些应用如下: (1)从行列式的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明中的应用. (2)分块矩阵在线性代数中是一个基本工具,研究许多问题都需要它.借助分块矩阵的初等变换可以发现分块矩阵在计算行列式、求逆矩阵及矩阵秩方面的应用. 如:设A B M C D ??=???? 是一个四分块n 阶矩阵,其中A 、B 、C 、D 分别是,r r ?(),r n r ?-(),n r r -?()n r -?()n r -阶矩阵,若A 可逆,可证M =AD - 1CA B -,另若D 可逆,则可证得1M D BD C -=-.

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

浅谈幂等矩阵的性质

2009年7月(上 ) [摘要]幂等矩阵的种常规的正定性,虽然在几何学,物理学以及概率论等学科中都得到了重要的应用,但随着数学本身以及应用矩阵的 其他学科的发展,越来越不能满足人们的需要,现代经济数学等众多学科中的重要作用,使矩阵的次正定性研究不仅在理论上,而且在应用上都是有意义的。[关键词]幂等矩阵;高等代数;线性变换浅谈幂等矩阵的性质 侯君芳 黄丽莉 (郑州旅游职业学院,河南郑州 450009) 在高等代数的研究中,矩阵占有重要的地位,线性变换中的许多问题都是通过矩阵来解决的。幂等矩阵是一类特殊的矩阵,本篇文章探讨的就是幂等矩阵的性质,研究过程中运用的特殊符号说明如下:A T 矩阵A 的转置,A H 矩阵A 的共轭转置R (A )矩阵A 的值域,N (A )矩阵A 的核空间。 幂等矩阵 定义[1]设A ∈C n ×n ,若A 2=A 则称A 是幂等矩阵。定理1若P 是幂等矩阵,则 1)P T ,P H ,E-P T ,E-P H 是幂等矩阵。2)P (E-P)=(E-P )P=03)Px=x 的充要条件是x ∈R (P ) 证明:1)P 2=P =>(P T )2=(P 2)T =P T =>P T 为幂等矩阵P 2=P =>(P H )2=(P 2)H =P H =>P H 为幂等矩阵 (E-P )2=(E-P )(E-P )=E 2-EP-PE+P 2=E-2P+P 2=E-P 故E-P 为幂等矩阵 (E-P T )2=(E-P T )( E-P T )=E 2-EP T -P T E+(P T )2 =E-P T 故E-P T 为幂等矩阵 (E-P H )2=(E-P H )( E-P H )=E 2-EP H -P H E+(P H )2=E-P H 故E-P H 为幂等矩阵 2)P (E-P )=PE-P 2=P-P 2=0(E-P )P=EP-P 2=P-P 2=0故P (E-P )=(E-P )P=0 3)设x 满足Px=x ,则x ∈R (P )。反之,若x ∈R (P ),则必存在y ∈C n ,使得Py=x ,于是,Px=P (Py )=Py 结论的几何意义是P 的特征值为1的特征子空间就是P 的值域。定理2秩为r 的n 阶。矩阵P 是幂等矩阵的充要条件是存在C ∈C n ×n 使得 C -1PC= Er 0(1) 证明:必要性:设J 是P 的Jordan 标准形,C ∈C n ×n ,且 C -1PC=J=J 1J 2··J i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i s ,J i = λi 1λi 1··λi i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i n i ×n i J i 是Jordan 块。由于P 2=P ,则J 2i =J i (i=1,2,3…s )。欲使J i 2=J i ,必须n i =1。因此J 是对角阵。又由P 2=P 。知λi =0或1,故r=rankJ=trP 。 充分性:由 Er 02 =Er 0知P 2 =P 。推论[1]rankP=trP 证明:由上题的(1)知幂等矩阵的特征值非1即0。且r=rankP 又有式(1)知 trP=λ1+λ2+…+λN =r 其中λ1,λ2…λN 是P 的n 个特 征值 矩阵的性质通常从以下几方面来研究:矩阵的秩,矩阵的相似对角化,矩阵的特征值对于幂等矩阵我们也从这几方面入手,讨论其具有的性质。 性质1若A 为n ×n 矩阵且A 2=A ,则A 相似于一对角阵 Er 证明:取一线性空间V (n 维)及一组基ε1,ε2…εn 定义一线性变换A :V →V ,A α=A α则A (ε1,ε2,…εn )=(ε1,ε2…εn )A 。由A 2=A ,则A 2=A 。A α∈A ∩A -1(0),设α=A β,β∈V ,A α=A 2β=β=α。又A α=0,则α=0,则AV+A -1(0)为直和。所以V=A +A -1(0)。在子空间AV 中取基η1η2…ηr ,在子空间A -1(0)取基ηr+1ηr+2…ηn ,则向量组η1,η2…ηr ηr+1…ηn 就是V 的一组基。又A η1=η1,A η2=η2…A ηr =ηr 且A ηr+1=0,A ηr+2=0…A ηn =0,A (η1,η2…ηn )=(η1,η2…ηn )Er 所以А相似于Er 性质2若А为n ×n 幂等矩阵,且R ( A 2 )=R (A )则有以下结论成立 1)Ax=0与A 2x=0同解 2)对于任意自然数P ,均有R (A p )=R (A ) 证明:设R (A )=r 显然Ax=0的解均为A 2x=0的解;设有一基础解系η1,η2…ηn-r 则此基础解系也为A 2x=0的解,并且线性无关,而 R (A 2 ) =r ,所以η1,η2…ηn-r 也为A 2x=0的基础解系,那么Ax=0与A 2x=0同解 若α为A 2x=0的解,则A 2α=0= >A 3α=0,则α为A 3E=0的解,反之,若α为A 3x=0的解,则A 3α=0即A 2A α=0,说明向量A α=0为方程组A 2x=0的解,由(1)则A α为Ax=0的解,则有A 2α=0,即α也为A 2x=0的解,所以A 2x=0与A 3x=0同解。因此,照 此方法类推,则必有R ( A p ))=R (A )。性质3若A 为n 阶方程,且R (A )+(E-A )=n ,则A 2=A 证明:设V 为n 维线性空间,其基ε1,ε2...εn 定义下述线性变换A :V →V ,A (ε1,ε2...εn )=(ε1,ε2...εn )A (E-A )(ε1,ε2...εn )=(ε1,ε2...εn )(E-A ),dim (AV )=R (A ),dim [(E-A )]=R (E-A )由题设,则dimAV+dim (E-A )=n (1) A α∈V ,α=A α+(α-A α)∈AV+(E-A )V ,则V=AV+ (E-A )V 则V=AV +(E-A )V 。下证A 2=A ,其实A α∈V ,有A 2α-A α=A (A-E )α∈AV ∩(E-A )α={0}。因此A 2α=A ,则 A 2=A ,从而A 2=A 。 下面通过三个例题说明幂等矩阵的性质与应用 例1设A 为n ×n 矩阵,且R (A )=r ,证明:A 2=A 当且仅当A=CB ,其中C 为n ×r 矩阵,秩为r ,B 为r ×n 矩阵,秩也为r ,且有BC=E r 。 证明:必要性:由于A 2=A ,由性质(1)则A 必(下转第13页)6

矩阵的分块及应用

矩阵的分块及应用 武夷学院毕业设计(论文) 矩阵的分块及应用院系:专业:姓名:学号: 指导教师:职称:完成日期:数学与计算机系计算机科学与技术陈航20073011014 魏耀华教授年月日武夷学院教务处制摘要矩阵分块,就是把一个大矩阵按照一定规则分成小矩阵,它是矩阵运算的一种常用技巧与方法。分块矩阵的理论不但在工程技术和实际生产中有着广泛的应用,而且在线性代数中求矩阵乘积、行列式的值、逆矩阵、矩阵的秩和矩阵的特征根的过程中也起到重要作用。分块矩阵的初等变换则是处理分块矩阵有关问题的重要工具,它在线性代数中有非常广泛的应用。讨论了分块矩阵的概念、分块矩阵的运算、分块矩阵的性质以及分块矩阵的广义初等矩

阵,归纳并提出了分块矩阵的一些应用,这些应用主要涉及到矩阵的秩,逆矩阵,行列式以及矩阵正定和半正定等方面。通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解。关键词: 分块矩阵;初等变换;计算;逆矩阵;证明。I Abstract Partitioned matrices mean dividing a big matrix into the small matrices according to the certain rule. It is a common technique and method in matrix operation. The theories of partitioned matrices have not only a wide range of applications in engineering and production, but also play an important role to the process for seeking matrix product and the value of determinant and inverse matrix and rank of matrix and the characteristic in linear algebra. Elementary transformation of partitioned matrices is an important tool to deal with the partition matrix. Also, it is

幂零矩阵迹的特征

幂零矩阵迹的特征 严文(061114228) (孝感学院数学与统计学院湖北孝感 432000) 摘要:2009年全国大学生数学竞赛题(第3题):设V是复数域上向量空间, -=,那么f的所有特征值均为0,并且,f g是V上的线性变换,且满足fg gf f g和f之间存在相同的特征向量(对应的特征值不一定相等).我们把它转换为矩阵,在矩阵中讨论特殊情况即AB BA =,求证A和B有公共特征向量,并且求出A和B的公共特征向量. 关键词:幂零矩阵;迹;特征值;特征向量 Features of Nilpotent matrix trace Y AN Wen (Department of Mathematics and Statistics,Xiaogan university,Xiaogan,Hubei 432000,China) Abstract:2009 National College Mathematics Competition Problems (3th item):Based vector space V is the complex field,,f g are the linear transformation, and satisfies fg gf f -=, Then all the eigenvalues of f are 0, Between f and g there are the same feature vector (not necessarily equal the corresponding eigenvalue). We convert it to matrix and discussed in the special circumstances that BA AB=, V erify:A and B have public feature vectors, and eigenvectors obtained the public. Key words:Nilpotent matrix; Trace;Eigenvalue;Eigenvector.

相关文档
最新文档