加性噪声环境下语音特征参数提取方法的研究

加性噪声环境下语音特征参数提取方法的研究
加性噪声环境下语音特征参数提取方法的研究

遥感影像各参数提取和运算

遥感影像各参数提取和运算 一.实验目的 1.1 熟悉使用ENVI软件的一些常用功能; 1.2 学会利用ENVI软件对遥感影像的NDVI和NDWI进行计算,对典型地物的参数信息进行提取和分析。 二.实验内容 2.1 计算可见光至短波红外波段的7个波段的TOA反射率数据和热红外的2个波段的亮度温度值; 2.2 计算NDVI和NDWI; 2.3 选择水体、土壤、植被和人工建筑等典型地物,每种典型地物至少选择50个样点,提取各个样点的7个TOA反射率值、2个亮温值和2个光谱指数值; 2.4 针对各个典型地物的遥感参数进行统计分析,至少计算各个参数的Minimum, Maximum, Range and Standard Deviation,利用图表的形式对其进行专业分析。三.实验数据与实验平台 数据:LANDSAT 7 ETM+影像、p125r053_7t20001106.met 平台:ENVI 4.7软件 四.实验过程与结果分析 4.1. 计算可见光至短波红外波段的7个波段的TOA反射率数据和热红外的1个波段的亮度温度值。 实验步骤: (1)计算可见光至短波红外波段的7个波段的TOA反射率: Main menu →Basic Tools →Preprocessing →Calibration Utilities →Landsat Calibration→选择波段数为6的,点击 OK →Reflectance →Edit Calibration Parameters→输出文件名

图4.1.1 反射率参数设置 图4.1.2反射率转换结果图与原图对比 (7,4,3波段,左图为结果图,右图为原图) (2)转换成亮度温度值步骤: Main menu →Basic Tools →Preprocessing →Calibration Utilities →Landsat Calibration →选择波段数为2的,点击OK →Radiance →Edit Calibration Parameters→输出文件名

基于Matlab的语音信号的特征提取与分类

基于Matlab的语音信号的特征提取与分类语音信号处理是研究数字信号处理技术和语音学知识对语音信号进行处理的新兴学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。本文采用Matlab7.0综合运用GUI界面设计,各种函数调用等对语音信号进行采集、提取、变频、变幅,傅里叶变换、滤波等简单处理。程序界面简练,操作简便,具有一定的实际应用意义。 关键词:语音信号Matlab 信号处理GUI 1、语音信号的低通滤波 本文中设计了一个截止频率为200Hz切比雪夫—Ⅰ型低通滤波器,它的性能指标为:wp=0.075pi, ws=0.125pi, Rp=0.25;Rs=50dB。低通滤波器处理程序如下: [x,fs,bits]=wavread('voice.wav'); wp=0.075;ws=0.125;Rp=0.25;Rs=50; [N,Wn]=cheb1ord(wp,ws,Rp,Rs); [b,a]=cheby1(N,Rp,Wn); [b,a]=cheby1(N,Rp,Wn); X=fft(x); subplot(221);plot(x);title('滤波前信号的波形'); subplot(222);plot(X);title('滤波前信号的频谱'); y=filter(b,a,x); %IIR低通滤波 sound(y,fs,bits);%听取滤波后的语音信号

wavwrite(y,fs,bits,’低通’);%将滤波后的信号保存为“低通.wav” Y=fft(y); subplot(223);plot(y);title(' IIR滤波后信号的波形'); subplot(224);plot(Y);title(' IIR滤波后信号的频谱'); 经过低通滤波器处理后,比较滤波前后的波形图的变化 低通滤波后,听到声音稍微有些发闷,低沉,原因是高频分量被低通滤波器衰减。但是很接近原来的声音。 2、语音信号的高通滤波 运用切比雪夫—Ⅱ型数字高通滤波器,对语音信号进行滤波处理。高通滤波器性能指标:wp=0.6, ws=0.975 ,Rp=0.25;Rs=50dB。高通滤波器处理程序如下: [x,fs,bits]=wavread('voice.wav'); wp=0.6;ws=0.975;Rp=0.25;Rs=50;

环境噪音的发生与处理

一、前言 随着社会经济的发展,环境问题已被国际社会公认为影响21世纪持续发展的关键性问题,而噪声污染更是成为21世纪首要攻克的环境问题之一。噪声的危害是多方面的,噪声不仅对人们正常生活和工作造成极大干扰,使人产生烦躁,反映迟钝,工作效率降低,分散人的注意力,引起工作事故,更重要的情况是噪声会使人的听力和健康受到严重损害。 二、噪声标准 <<社会生活环境噪声排放标准>> 为贯彻《中华人民共和国环境保护法》和《中华人民共和国环境噪声污染防治法,防治社会生活噪声污染,改善声环境质量,制定本标准。本标准根据现行法律对社会生活噪声污染源达标排放义务的规定,对营业性文化娱乐场所和商业经营活动中可能产生环境噪声污染的设备、设施规定了边界噪声排放限值和测量方法。下述内容为社会生活环境噪声排放标准中关于环境噪声排放限值的规定。 1.边界噪声排放限值 1.1社会生活噪声排放源边界噪声不得超过表1规定的排放限值 表1社会生活噪声排放源边界噪声排放限值单位:dB(A)

1.2在社会生活噪声排放源边界处无法进行噪声测量或测量的结果不能如实反映其对噪声敏感建筑物的影响程度的情况下,噪声测量应在可能受影响的敏感建筑物窗外1m处进行。 1.3当社会生活噪声排放源边界与噪声敏感建筑物距离小于1m时,应在噪声敏感建筑物的室内测量,并将表1中相应的限值减10dB(A) 《工业企业厂界噪声标准GB12348-2008》本标准为贯彻《中华人民共和国环境保护法》及《中华人民共和国环境噪声污染防治条例》,控制工业企业厂界噪声危害而制订。 1 标准的适用范围 本标准适用于工厂及有可能造成噪声污染的企事业单位的边界。 1.1 标准值 各类厂界噪声标准值列于下表:等效声级Leq(dB(A)) 1.2 各类标准适用范围的划定 1.2.1 Ⅰ类标准适用于以居住、文教机关为主的区域。 1.2.2 Ⅱ类标准适用于居住、商业、工业混杂区及商业中心区。

参数提取

对GDSII database进行gate-level寄生参数抽取 VIMICRO 祝侃 1.Abstract 伴随着SOC技术的发展,自动布局布线规模不断扩大,同时产品的上市周期 由于市场竞争的加剧压力也愈来愈大。因此,如何提高自动布局布线设计中寄生 参数验证的效率成为众多IC设计者必须要考虑的重要课题。 通过引入calibre DRC/LVS/XRC,vimicro已经发展了一套提高自动布局布 线设计验证效率的方法,这些方法包括GDSII文件的直接处理,使用gate-level 寄生参数抽取来满足数字电路的时序分析验证,以及修改相应的文件来加速寄生 参数的抽取等。 2. Introduction 首先,在自动布局布线结束后,我们通常会进行DRC/LVS检查,然后在 layout editor (如Virtuoso)里修改错误,最后得到DRC/LVS clean的GDSII 文件。这个时候前端设计人员发现功能有问题进行了修改,要求自动布局布线作 ECO。这样原先的DRC/LVS检查都要重新做一遍。 对DRC/LVS clean的GDSII 文件抽取寄生参数,然后拿这个含有寄生参数 的网表作 STA,如果时序可以满足要求的话,就不需要做那些重复的工作了。 Calibre xRC可以对GDSII 数据进行gate level 的寄生参数抽取. 这样的设计流程是针对于简单的ECO改动,例如IO位置的调整,或者对为 数不多的逻辑门连接关系的修改。对于复杂的改动,还必须应用自动布局布线的 ECO流程. 3. Flow Description

1).Run hierarchical LVS (PHDB Generation) 执行hierarchical LVS是为了对layout做器件和连接关系的抽取,并且建立版图和网表的cross-reference. 2).抽取寄生参数 (PDB Generation) Calibre XRC 抽取gate level的寄生参数. 3).写出网表 (FMT) Calibre xRC 从第二步抽取的寄生参数数据中写出DSPF 或 SPEF 网表. 4).静态时序分析 (STA) PrimeTime 读入DSPF 或 SPEF 网表,还有原来的verilog 网表 和cell library,产生SDF文件. 1).LVS-H 首先要Run hierarchical LVS,就需要设定hcell list.Calibre xRC 叫做xcell.这个xcell list跟普通的LVS使用的hcell list差不多,只是比LVS要更严格一些,需要Calibre识别出所有的standard cells and micro blocks.这样在第二步抽取寄生参数的时候Calibre才知道那些出现在hcell list里的

文本特征提取方法

https://www.360docs.net/doc/ad9483174.html,/u2/80678/showart_1931389.html 一、课题背景概述 文本挖掘是一门交叉性学科,涉及数据挖掘、机器学习、模式识别、人工智能、统计学、计算机语言学、计算机网络技术、信息学等多个领域。文本挖掘就是从大量的文档中发现隐含知识和模式的一种方法和工具,它从数据挖掘发展而来,但与传统的数据挖掘又有许多不同。文本挖掘的对象是海量、异构、分布的文档(web);文档内容是人类所使用的自然语言,缺乏计算机可理解的语义。传统数据挖掘所处理的数据是结构化的,而文档(web)都是半结构或无结构的。所以,文本挖掘面临的首要问题是如何在计算机中合理地表示文本,使之既要包含足够的信息以反映文本的特征,又不至于过于复杂使学习算法无法处理。在浩如烟海的网络信息中,80%的信息是以文本的形式存放的,WEB文本挖掘是WEB内容挖掘的一种重要形式。 文本的表示及其特征项的选取是文本挖掘、信息检索的一个基本问题,它把从文本中抽取出的特征词进行量化来表示文本信息。将它们从一个无结构的原始文本转化为结构化的计算机可以识别处理的信息,即对文本进行科学的抽象,建立它的数学模型,用以描述和代替文本。使计算机能够通过对这种模型的计算和操作来实现对文本的识别。由于文本是非结构化的数据,要想从大量的文本中挖掘有用的信息就必须首先将文本转化为可处理的结构化形式。目前人们通常采用向量空间模型来描述文本向量,但是如果直接用分词算法和词频统计方法得到的特征项来表示文本向量中的各个维,那么这个向量的维度将是非常的大。这种未经处理的文本矢量不仅给后续工作带来巨大的计算开销,使整个处理过程的效率非常低下,而且会损害分类、聚类算法的精确性,从而使所得到的结果很难令人满意。因此,必须对文本向量做进一步净化处理,在保证原文含义的基础上,找出对文本特征类别最具代表性的文本特征。为了解决这个问题,最有效的办法就是通过特征选择来降维。 目前有关文本表示的研究主要集中于文本表示模型的选择和特征词选择算法的选取上。用于表示文本的基本单位通常称为文本的特征或特征项。特征项必须具备一定的特性:1)特征项要能够确实标识文本内容;2)特征项具有将目标文本与其他文本相区分的能力;3)特征项的个数不能太多;4)特征项分离要比较容易实现。在中文文本中可以采用字、词或短语作为表示文本的特征项。相比较而言,词比字具有更强的表达能力,而词和短语相比,词的切分难度比短语的切分难度小得多。因此,目前大多数中文文本分类系统都采用词作为特征项,称作特征词。这些特征词作为文档的中间表示形式,用来实现文档与文档、文档与用户目标之间的相似度计算。如果把所有的词都作为特征项,那么特征向量的维数将过于巨大,从而导致计算量太大,在这样的情况下,要完成文本分类几乎是不可能的。特征抽取的主要功能是在不损伤文本核心信息的情况下尽量减少要处理的单词数,以此来降低向量空间维数,从而简化计算,提高文本处理的速度和效率。文本特征选择对文本内容的过滤和分类、聚类处理、自动摘要以及用户兴趣模式发现、知识发现等有关方面的研究都有非常重要的影响。通常根据某个特征评估函数计算各个特征的评分值,然后按评分值对这些特征进行排序,选取若干个评分值最高的作为特征词,这就是特征抽取(Feature Selection)。

语音信号特征的提取

语音信号特征的提取 摘要 随着计算机技术的发展,语音交互已经成为人机交互的必要手段,语音特征参数的精确度直接影响着语音合成的音质和语音识别的准确率。因此语音信号参数提取是语音信号处理研究中一项非常有意义的工作。 本文采用Matlab软件提取语音信号特征参数,首先对语音信号进行数字化处理,其次,进行预处理,包括预加重、加窗和分帧,本文讨论了预处理中各种参数的选择,以使信号特征提取更加准确。第三,讨论了各种时域特征参数的算法,包括短时能量、短时过零率等。 关键词:语音信号, 特征参数, 提取, Matlab 目录 第一章绪论 1.1语音信号特征提取概况 1.1.1研究意义 语音处理技术广泛应用于语音通信系统、声控电话交换、数据查询、计算机控制、工业控制等领域,带有语音功能的计算机也将很快成为大众化产品,语音将可能取代键盘和鼠标成为计算机的主要输入手段,为用户界面带来一次飞跃。 语音信号特征的提取是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信和准确的语音识别,才能建立语音合成的语音库。因此语音信号参数提取是语音信号处理研究中一项非常有意义的工作。 1.1.2 发展现状 语音信号处理是一门综合性的学科,包括计算机科学、语音学、语言学、声学和数学等诸多领域的内容。它的发展过程中,有过两次飞跃。第一次飞跃是1907年电子管的发明和1920年无线电广播的出现,电子管放大器使很微弱的声

音也可以放大和定量测量,从而使电声学和语言声学的一些研究成果扩展到通信和广播部门;第二次飞跃是在20世纪70年代初,电子计算机和数字信号处理的发展使声音信号特别是语音信号,可以通过模数转换器(A/D)采样和量化转换为数字信号,这样就可以用数字计算方法对语音信号进行处理和加工,提高了语音信号处理的准确性和高效性。 语音信号处理在现代信息科学中的地位举足轻重,但它仍有些基础的理论问题和技术问题有待解决,这些难题如听觉器官的物理模型和数学表示及语音增强的技术理论等,目前还有待发展。 1.2 本课题研究内容 本文主要介绍语音信号处理的理论及Matlab的相关内容,然后从Matlab仿真角度验证了录音、预处理、提取语音信号时域特征参数,主要讨论了预处理中各种参数的选择,以使信号特征提取更加准确。再次讨论了各种时域特征参数的算法,包括短时能量、短时过零率等,介绍了各环节的不同软件实现方法。最后对基于Matlab的语音信号特征参数提取进行总结。 第二章Matlab简介 MATLAB是国际上仿真领域最权威、最实用的计算机工具。它是MathWork 公司于1984年推出,它以强大的科学计算与可视化功能、简单易用、开放式可扩展环境,特别是所附带的30多种面向不同领域的工具箱支持,使得它在许多科学领域中成为计算机辅助设计和分析、算法研究和应用开发的基本工具和首选平台。 2.1 发展概况 Matlab是Matrix Laboratory(矩阵实验室的缩写),最初由美国Cleve Moler 博士在70年代末讲授矩阵理论和数据分析等课程时编写的软件包Linpack与Eispack组成,旨在使应用人员免去大量经常重复的矩阵运算和基本数学运算等繁琐的编程工作。1984年成立的Math Works公司正式把Matlab推向市场,并从事Matlab的研究和开发。1990年,该公司推出了以框图为基础的控制系统仿真工具Simulink,它方便了系统的研究与开发,使控制工程师可以直接构造系统框图进行仿真,并提供了控制系统中常用的各种环节的模块库。1993年,Math Works 公司推出的Matlab4.0版在原来的基础上又作了较大改进,并推出了Windows版,

语音信号特征参数提取方法

语音信号特征参数提取方法 阮雄飞微电子学与固体电子学 摘要:在语音技术的发展过程中使用了大量的语音信号特征参数, 好的语音信号特征参数能对语音识别起至关重要的作用。本文对语音信号特征参数提取方法以及国内外研究现状进行了介绍,最后介绍了Hilbert-Huang 这一新兴理论成果以及在特征提取中的应用。 关键词:语音技术特征提取HHT 1 引言 语音信号是一种短时平稳信号,即时变的,十分复杂,携带很多有用的信息,这些信息包括语义、个人特征等,其特征参数的准确性和唯一性将直接影响语音识别率的高低,并且这也是语音识别的基础[1]。特征参数应该能够比较准确地表达语音信号的特征具有一定的唯一性。 上世纪40年代,potter等人提出了“visiblespeech”的概念,指出语谱图对语音信号有很强的描述能力,并且试着用语谱信息进行语音识别,这就形成了最早的语音特征,直到现在仍有很多的人用语谱特征来进行语音识别[2]。后来,人们发现利用语音信号的时域特征可以从语音波形中提取某些反映语音特性的参数,比如:幅度、短时帧平均能量、短时帧过零率、短时自相关系数、平均幅度差函数等。这些参数不但能减小模板数目运算量及存储量而且还可以滤除语音信号中无用的冗余信息。语音信号特征参数是分帧提取的, 每帧特征参数一般构成一个矢量, 所以语音信号特征是一个矢量序列。我们将语音信号切成一帧一帧, 每帧大小大约是20-30ms。帧太大就不能得到语音信号随时间变化的特性, 帧太小就不能提取出语音信号的特征, 每帧语音信号中包含数个语音信号的基本周期。有时希望相邻帧之间的变化不是太大, 帧之间就要有重叠, 帧叠往往是帧长的1/2或1/3。帧叠大, 相应的计算量也大[3]。随着语音识别技术的不断发展时域特征参数的种种不足逐渐暴露出来,如这些特征参数缺乏较好稳定性且区分能力不好。于是频域参数开始作为语音信号的特征比如频谱共振峰等。经典的特征提取方法主要有LPCC(线性预测倒谱系数)、MFCC(美尔频率倒谱系数)、HMM(隐马尔科夫模型)、DTW(动态时间规整)等。 2 语音信号特征参数提取方法

环境噪声监测技术规范

环境噪声监测技术规范 环境噪声监测技术规范结构传播固定设备噪声 1适用范围 本标准规定了结构传播固定设备噪声监测测量计划制定、现场调查方法、监测点位设置、室 内低频噪声测量方法、监测数据处理与评价、资料整编和监测质量保证等的技术要求。 本标准适用于结构传播固定设备噪声引起的室内低频噪声污染监测。 2规范性引用文件 本标准内容引用了下列文件的条款。凡不注明日期的引用文件,其有效版本适用于本标准。 GB3785声级计电、声性能及测量方法 GB12348工业企业厂界环境噪声排放标准 GB22337社会生活环境噪声排放标准 GB/T3241倍频程和分数倍频程滤波器 GB/T15173声校准器 GB/T17181积分平均声级计 3术语和定义 下列术语和定义适用于本标准。 3.1倍频带声压级soundpressurelevelinoctave 采用符合GB/T3241规定的倍频程滤波器所测量的频带声压级。本标准规定的噪声频谱分析 时使用的倍频带中心频率为31.5Hz、63Hz、125Hz、250Hz、500Hz,其频率覆盖范围为22Hz~ 707Hz。 3.2低频噪声LowFrequencyNoise 不同的国家或地区对于低频噪声的频率范围的认定不尽相同,我国《工业企业厂界环境噪声 排放标准》(GB12348)和《社会生活噪声排放标准》(GB22337)规定固定设备结构传播的低 频噪声范围规定为31.5~500Hz。 3.3噪声评价数noiseratingnumber(NR) 是一种噪声评价方法,它通过一系列频谱曲线(NR噪声评价曲线)来反映不同声级和频率的 噪声对人造成的听力损失、语言干扰或烦恼的程度。曲线的NR值等于中心频率为1000赫的倍频 程声压级的分贝整数。为了弥补A声级在评价室内低频噪声污染方面的不足,本标准引入噪声评 2 价数NR。 4现场监测测量条件 4.1测量仪器 4.1.1声级计与滤波器

特征提取方法

4.2.2 特征提取方法 图像经过一系列的预处理之后,原来大小不同、分布不规则的各个字符变成了一个个大小相同、排列整齐的字符。下面接要从被分割归一处理完毕的字符中,提取最能体现这个字符特点的特征向量。将提取出训练样本中的特征向量代入BP网络之中就可以对网络进行训练,提取出待识别的样本中的特征向量代入到训练好的BP网络中,就可以对汉字进行识别。 特征向量的提取方法多种多样,可以分为基于结构特征的方法和基于像素分布特征的方法,下面给予简单介绍,并说明本文所用的方法。 (1)结构特征。结构特征充分利用了字符本身的特点,由于车牌字符通常都是较规范的印刷体,因此可以较容易地从字符图像上得到它的字符笔画信息,并可根据这些信息来判别字符。例如,汉字的笔画可以简化为4类:横、竖、左斜和右斜。根据长度不同又可分为长横、短横、长竖和短竖等。将汉字分块,并提取每一块的笔画特征,就可得到一个关于笔画的矩阵,以此作为特征来识别汉字。 (2)像素分布特征。像素分布特征的提取方法很多,常见的有水平、垂直投影的特征,微结构特征和周边特征等。水平、垂直投影的特征是计算字符图像在水平和垂直方向上像素值的多少,以此作为特征。微结构法将图像分为几个小块,统计每个小块的像素分布。周边特征则计算从边界到字符的距离。优点是排除了尺寸、方向变化带来的干扰,缺点是当字符出现笔划融合、断裂、部分缺失时不适用。 ①逐像素特征提取法 这是一种最简单的特征提取方法。它可以对图像进行逐行逐列的扫描,当遇到黑色像素时取其特征值为1,遇到白色像素时取其特征值为0,这样当扫描结束后就获得一个维数与图像中的像素点的个数相同的特征向量矩阵。 这种特征提取方法的特点就是算法简单,运算速度快,可以使BP网络很快的收敛,训练效果好,更重要的是对于数字图像这样特征较少的图像,这种方法提取的信息量最大,所以对于本系统来说,这种方法较为适用。但是它的缺点也很明显,就是适应性不强,所以本文没有选用这种方法。 ②骨架特征提取法

语音识别报告

“启动”的时域波形 1、 语音预加重: 由于语音信号在高频部分衰减,在进行频谱分析时,频率越高,所占的成分越小,进行语音预加重,可以提升语音高频部分,使频谱变得平坦,以方便进行频谱的分析和处理。通常的措施是采用数字滤波器进行预加重,传递函数是:11)(--=z z H α,其中α一般去0.92-0.98之间,所以在计算的时候取0.9375。 预加重后的波形 2、 分帧 加窗 语音信号具有较强的时变特性,其特性是随时间变化的,但是语音的形成过程与发音器官的运动有关,这种物理运动比起声音振动的速度十分缓慢,在较短的时间内,语音信号的特征可以被认为是保持不变的,通常对语音处理是通过截取语音中的一段进行处理的,并且短段之间彼此经常有一些叠加,这一段语音成为一帧语音,语音段的长度称为帧长,对每一帧处理的结果可用一组数来表示。一般取帧长为10—30ms 。采样频率是8000Hz ,所以取的帧长是256,帧移是178。分帧之后加汉明窗。 3、 端点检测 端点检测从背景噪声中找出语音的开始和终止点。 短时能量就是每帧语音信号振幅的平方和。 ∑-==1 0)]([N m n m s E ;

短时能量曲线 短时过零率是每帧内信号通过零点的次数,是信号采样点符号的变化次数。 ∑-=+-=1 )]1(sgn[)](sgn[21N m n m x m x Z ; “启动”的过零率曲线 在实验室的安静的环境下,依靠短时能量和短时过零率就可进行语音信号的起止点判断。当背景噪声较小时,没有语音信号的噪声能量很小,而语音信号的短时能量增大到了一定数值,可以区分语音信号的开始点和终止点。当背景噪声较大时,可以用短时平均过零率和短时能量结合来判断。 基于能量一过零率的端点检测一般使用两级判决法,在开始进行端点检测之前,首先为短时能量和过零率分别确定两个门限。整个语音信号的端点检测可以分为四段:静音、过渡音、语音段、结束时的静音段, (1)如果能量或过零率超越了低门限,就应该开始标记起点,进入过渡段。在过渡段中,由于参数的数值比较小,不能确信是否处于真正的语音段,因此只要两个参数的数值都回落到低门限以下,就将当前状态恢复到静音状态。而如果在过渡段中两个参数中的任一个超过了高门限,就可以确信进入语音段了,并标记起始点。 (2)如果当前状态之前处于语音段,而此时两个参数的数值降低到底门限以下,并且持续时间大于设定的最长时间门限,那么就认为语音结束了,返回到参数值降低到底门限以下的时刻,标记结束点。 端点检测波形

10实验十:随机信号分析应用在语音信号分析中

实验十:随机信号分析应用在语音信号分析中 ——音频信号时域特征和频域特征分析【实验目的】 ⑴ 了解随机信号分析的应用领域。 ⑵ 了解如何利用随机信号分析相关知识点对语音信号进行分析。【实验原理】 我们在这里主要研究语音信号检索的部分内容。在语音信号研究中,一般对音频信号需要进行三方面的研究: 1)音频信号的产生,这方面的研究集中在为音频信号建立产生模型,通过产生模型提取音频特征。 2)音频的传播,音频信号如何通过另外介质传播到人的耳朵里。 3)音频的接收,音频信号如何被人所感知。 在这里,我们只涉及到音频信号的产生,而其它方面不涉及。 音频是一种重要媒体。人耳能够听到的音频频率范围是60Hz- 20KHz,其中语音大约分布在300Hz-4KHz之内。人耳听到的音频是连续模拟信号,而计算机只能处理数字化信息。所以要将连续音频信号数字化后才能在计算机上进行处理。音频信号数字化时的采样频率必须高于信号带宽的2倍才能正确恢复信号。 在音频处理中,一般假定音频信号特性在很短时间区间内变化是很缓慢的,所以在这个变化区间内所提取的音频特征保持稳定。这样,对音频信号处理的一个基本概念就是将离散的音频信号分成一定长度单位进行处理,将离散的音频采样点分成一个个音频帧,也就是音频信 号“短时”处理方法。一般一个“短时”音频帧持续时间长度约为几个到几十个微妙。可以从音频信号中提取三类基本特征:时域特征、频域特征和时频特征。 1 时域特征提取 连续音频信号x经过采样后,得到k个采样点x(n)(1≤n≤k)。在音

频时域提取中,认为每个采样点x(n)(1≤n≤k)包含了这一时刻音频信号的所有信息,所以可以直接从x(n)(1≤n≤k)提取信息。可以提取的信息有:短时平均能量、过零率、线性预测系数。 对于采样得到的x(n)(1≤n≤k)音频信号,考虑到信号在段时间内的连贯性,首先把音频信号的K个采样点分割成前后迭代的音频帧,相邻帧之间的迭加率一般为30%-50%,音频处理中的“短时帧”均是这样得到的。 ① 短时平均能量 短时平均能量指在一个短时音频帧内采样点所聚集的能量。它能够方便的表示整个时间段内幅度的变化。其定义如下: 短时平均能量特征可以直接应用到有声/静音检测中,短时平均能量某一短时帧平均能量低于一个事先设定的阀值,则短时帧为静音,否则为非静音。如果静音的短时祯数超过了一定比例,则将这个例子判为静音音频例子。 2 过零率 过零率指在一个短时帧内,离散采样信号值由正到负和由负到正变化的次数。它可以有效的刻画不同的音频信号。其定义如下: 其中, 对于语音信号,辅音信号过零率低,而元音信号的过零率高。语音信号开始和结束都大量集中了辅音信号,所以在语言信号中,开始和结束部分得过零率会有明显身高,所以利用过零率可以判断语音是否开始和结束。 3 频率中心(FC):它是量度声音亮度的指标。即: ,其中是f t(n)的Fourier变换,,STE是短时平均能量。一般的,一段音乐的频率中心变化比较单一,语音的频率中心会出现连续的变化。 4 带宽(BW):它是衡量频率范围的指标。其定义为:

肺结节检测中特征提取方法研究

小型微型计算机系统JournalofChineseComputerSystems2009年10月第10期V01.30No.102009 肺结节检测中特征提取方法研究 何中市1,梁琰1,黄学全2,王健2 1(重庆大学计算机学院,重庆400044) 2(第三军医大学西南医院放射科,重庆400038) E—mail:zshe@cqu.edu.ca 摘要:计算机辅助诊断(Computer—AidedDiagnosis,CAD)系统为肺癌的早期检测和诊断提供了有力的支持.本文对孤立性肺结节特征提取问题进行研究.通过对肺结节和肺内各组织在序列CT图像上的医学征象分析和研究对比,结合专家提供的知识,提出了肺结节特征提取总体方案.该方案分别从肺部CT图像的灰度特征、肺结节形态、纹理、空间上下文特征等几个方面,对关键的医学征象进行图像分析,从而实现对ROI(RegionsofInterest)区域的特征提取和量化;提出特征提取的评价方案,实验结果表明,本文提取的特征提取方案是有效的.利用本文提取的特征,肺结节检测正确率达到93.05%,敏感率为94.53%. 关键词:孤立性;肺结节;特征提取;CT图像;特征评价 中图分类号:TP391文献标识码:A文章编号:1000—1220(2009)10—2073-05 ResearchontheFeatureExtractionApproachforSPNsDetection 腼Zhong—shil,LIANGYanl,HUANGXue—quan2,WANGJian2 1(CollegeofComputerScience,c‰增幻增Univers毋,Chongqing400044,China) 2(DepartmentofRadiology,Southwest丑却池z,ThirdMilitaryMedwalUniversityofChinesePL4,Chongqing400038,China) Abstract:Imageprocessingtechniqueshaveprovedtobeeffectiveforimprovementofradiologists7diagnosisofpubmonarynodules.Inthispaper,wepresentastrategybasedonfeatureextractiontechniqueaimedatSolitaryPulmonaryNodules(SPN)detection.Infeatureextractionscheme,36featureswereobtained,contained3greylevelfeatures,16morphologicalfeatures,10texturefeaturesand7spatialcontextfeatures.Andtheclassifier(SVM)runningwiththeextractedfeaturesachievescomparativeresults,withare-suitof93.05%innoduledetectionaccuracyand94.53%insensitivity. Keywords:isolated;solitarypulmonarynodules;featureextraction;CTimages;featureassessment 1引言 近几年,随着影像检查技术的改进,临床结果初步证明CT扫描是检测早期无症状肺癌最有效的影像学方法。1J.肺部疾病在CT影像上通常表现为孤立性肺结节(SolitaryPul—monaryNodules,SPNs),因此,对孤立性肺结节的检测和识别是对肺部疾病诊断最重要的途径.计算机辅助诊断系统一方面,大大减轻了医生的工作量,提高了工作效率;另一方面,使影像诊断更加客观化,提高诊断的效率和正确效率.因此,用计算机进行肺结节辅助诊断,提取肺结节特征,检测肺结节,是具有十分重要的意义和研究价值的. 在孤立性肺结节自动识别中,肺结节的特征提取及表示是其关键问题之一,它是进行识别的重要手段.关于肺结节检测方法有很多。2…,但对肺结节医学征象描述并不充分.目前一般常用面积、周长等形态方面进行肺结节特征提取.对肺结节的形态、全局、局部上下文特征以及病理征象的分析不足,使得特征提取描述不到位,影响识别准备率.同时也欠缺对识别结果的解释.正因为对提取的特征与肺结节医学征象问的对应关系分析不足,无法对识别结果进行医学知识上的解释, 特征提取特征评价 懂歪母 I里斗1显查鲎堑卜_倒1J躺l 帽霭瓣||描述程度l 1絮嚣卜 lJs、,M识 --|别性能 图1SPNs诊断框架图 Fig.1OverviewofSPNsdetection 而只有”是”或”否”的识别结果,无法给医生提供更多的信息.本文围绕以上几个问题,意在提供全面的、系统的量化信息,便于医学专家诊断的客观化、效率化.本文对孤立性肺结节特征提取问题进行研究.通过对肺结节和肺内各组织在序列CT图像上的医学征象分析和研究对比,提出了肺结节特征提取总体方案.该方案分别从肺部CT图像的灰度特征、形 收稿日期:2008-08-30基金项目:重庆市重大科技专项项目(CSTC,2008AB5038)资助;重庆市自然科学基金项目(CSTC,2007BB2134))资助.作者简介:何中市,男,1965年生,博士,教授,研究方向为人工智能、机器学习与数据挖掘等;梁琰,女,1982年生,博士研究生,图像处理、模式识别;黄学金,男,1966年生,博士,副教授,研究方向为影像诊断和介入放射学;王健,男,1964年生,博士,教授,研究方向为影像诊断和介入放射学.

语音信号时域特征参数提取

学院:信电学院班级:电信102 姓名:徐景广学号:2010081261 课程:专业综合实验实验日期:2014年1 月 3 日成绩: 实验二、语音信号时域特征参数提取 一、实验目的 1.掌握利用matlab程序进行语音信号的录制与回放。 2.理解语音信号的时域特征参数的概念,如短时能量、短时过零率等。 3.掌握matlab的开发环境。 4.掌握对语音信号进行时域特征参数提取的方法。 二、实验原理 本实验要求掌握时域特征分析原理,并利用已学知识,编写程序求解语音信号的短时过零率、短时能量、短时自相关特征,分析实验结果。 1.窗口的选择 通过对发声机理的认识,语音信号可以认为是短时平稳的。在5~50ms的范围内,语音频谱特性和一些物理特性参数基本保持不变。我们将每个短时的语音称为一个分析帧。一般帧长取10~30ms。我们采用一个长度有限的窗函数来截取语音信号形成分析帧。通常会采用矩形窗和汉明窗。图1.1给出了这两种窗函数在帧长N=50时的时域波形。

学院: 信电学院 班级:电信102 姓名: 徐景广 学号: 2010081261 课程:专业综合实验 实验日期:2014年 1 月 3 日 成绩: 0.2 0.40.60.811.2 1.41.61.82矩形窗 sample w (n ) 0.1 0.20.30.40.50.6 0.70.80.91hanming 窗 sample w (n ) 图1.1 矩形窗和Hamming 窗的时域波形 矩形窗的定义:一个N 点的矩形窗函数定义为如下 {1,00,()n N w n ≤<=其他 hamming 窗的定义:一个N 点的hamming 窗函数定义为如下 0.540.46cos(2),010,()n n N N w n π-≤<-??? 其他 = 这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图1.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;汉明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。因此在语音频谱分析时常使用汉明窗,在计算短时能量和平均幅度时通常用矩形窗。表1.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。

噪声测定实验教案

噪声测定实验 一实验目的 1掌握AWA5610C声级计的工作原理及其使用方法 2掌握AWA6270A噪声频谱分析仪的工作原理及其使用方法 二实验内容 1使用AWA5610C声级计测量噪音 2使用AWA6270A噪声频谱分析仪测量噪音 三实验原理 1 AWA5610C声级计的工作原理 工作原理是被测的声压信号通过传声器转换成电压信号,然后经衰减器、放大器以及相应的计权网络、滤波器,或者输入记录仪器,或者经过均方根值检波器直接推动以分贝标定 的指示表头。 2 AWA6270A噪声频谱分析仪的工作原理 工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫瞄产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板。 四实验设备仪器 (一)AWA5610C声级计 AWA5610C型积分声级计是一种袖珍式智能化噪声测量仪 器,可广泛应用于环境噪声的测量与自动监测,也可用于劳动保 护、工业卫生及各种机器、车辆、船舶、电器等工业噪声测量。 本仪器采用了先进的数字检波技术,具有可靠性高、稳定性好、 动态范围宽等优点。 主要技术性能: 驻极体测试电容传声器,灵敏度: 1.传声器:Φ1 2.7mm(1/2”) 约40mV/Pa,频率范围:20Hz~12.5kHz。 2.测量范围:35~130dBA(以2×10-5Pa为参考,下同) 3.频率范围:20Hz~12.5kHz 4.频率计权:A计权 5.时间计权:快(F),慢(S) 图1 AWA5610C声级计 6.检波器特性:真有效值、峰值因数 3 7.准确度:2型 8.测量时间:手控、10s、1min、5min、10min、20min、1h、4h、8h、24h。 9.显示:4位LCD,直接显示测量结果Lp、Leq、Lmax、Lmin、Linst、Tm及日历年、月、日、时、分、秒等。 10.储存:60组数据,包括年、月、日、时、分、设定时间、测量经历时间、最大声级, 最小声级、等效声级。 11.输出接口:RS—232C,可接至微型打印机或计算机。

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

语音特征参数MFCC的提取及识别

语音特征参数MFCC的提取及识别 耳蜗实质上相当于一个滤波器组,耳蜗的滤波作用是在对数频率尺度上进行的,在1000HZ下,人耳的感知能力与频率成线性关系;而在1000HZ以上,人耳的感知能力与频率不构成线性关系,而更偏向于对数关系,这就使得人耳对低频信号比高频信号更敏感。Mel频率的提出是为了方便人耳对不同频率语音的感知特性的研究。频率与Mel频率的转换公式为: MFCC在一定程度上模拟了人耳对语音的处理特点,应用了人耳听觉感知方面的研究成果,采用这种技术语音识别系统的性能有一定提高。 MFCC参数的提取1、 预加重处理 预加重处理其实是一个高通滤波器,该高通滤波顺的传递函数为:

其中的取值为0.97,该高通滤波器作用是滤去低频,使语音信号的高频特性更加突现。 2、 分帧及加窗处理 由于语音信号只在较短的时间内呈现平稳性(一般认为 10-30ms),因此将语音信号划分为一个一个的短时段即一帧。同时为避免丢失语音信号的动态信息,相邻帧之间要有一段重叠区域,重叠区域一段为帧长的1/2或1/3。然后再将每帧乘上窗函数,以增加每帧左端和右端的连续性。 3、 各帧信号的FFT变换 对分帧加窗后的各帧信号进行FFT变换得到各帧的频谱。并对语音信号的频谱取模平方得到语音信号的功率谱。

4、 三角滤波器系数的求取 定义若干个带通三角滤波器(k),0<=m<=M,M为滤波器个数,其中心频率为f(m),每个带通三角滤波器的频率响应为 且满足Mel(f(m))-Mel(f(m-1))=Mel(f(m+1))-Mel(f(m)) 求得滤波系数为m(i),i=1,…,p,p为滤波器阶数 5、 三角滤波并进行离散余弦变换DCT

相关文档
最新文档