修改显示器驱动INF(特选参考)

修改显示器驱动INF(特选参考)
修改显示器驱动INF(特选参考)

二、修改头戴显示器驱动

右键点击计算机—>设备管理器

点开监视器,选择某个监视器,查看设备ID,看是否是头戴显示器的把他改成oculus rift 官方显示器驱动,双击“通用即插即用监视器”

点击第三个选项卡“详细信息”选择属性ID 查看是否是IVM46E4

选择第二个选项卡点击更新驱动程序

TFT LCD液晶显示器的驱动原理

TFT LCD液晶显示器的驱动原理 我们针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver所送出波形的timing图. SVGA分辨率的二阶驱动波形 我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=786432个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver 来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着768个gate

driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate d river打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压. 而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的t iming介绍过一次呢?因为我们接下来要讨论的feed through电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc). Cs on common架构且common电压固定不动的feed through电压 我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成f eed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed thro ugh电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame 的时间比例是不正确的.在此我们是为了能仔细解释每个frame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将7

LED显示屏控制软件操纵使用说明(灵信V3.3)

第一章概述 1.1 功能特点 《LED Player V3.3》是本公司新推出的一套专为LED显示屏设计的功能强大,使用方便,简单易学的节目制作、播放软件,支持多种文件格式:文本文件,WORD文件,图片文件(BMP/JPG/GIF/JPEG...),动画文件(SWF /Gif)。 2.2 运行环境 操作系统 中英文Windows/7/NT/XP 硬件配置 CPU: 奔腾600MHz以上 内存:128M 相关软件 OFFICE2000--如需WORD文件必须安装

第二章安装与卸载 2.1 安装 《LED Player》软件安装很简单,操作如下:将LED Player播放软件的安装光盘插入电脑光驱,即可显示LED Player播放软件的安装文件,双击LED Player,即可实现轻松安装。 《LED Player》软件安装成功后,在【开始】/【程序】里将出现“LED软件”程序组,然后进入该程序组下的“LED Player”,单击即可运行,如图所示, opyright ? 2005-2007 Listen tech. All Rights Reserved 灵感设计诚信 同时,桌面上也出现“LED Player”快捷方式:如右图所示,双击它同样可以启动程序。

2.2 卸载 《LED Player》软件提供了自动卸载功能,使您可以方便地删除《LED Player》的所有文件、程序组和快捷方式,用户可以在“LED软件”组中选择“卸载LED Player”,也可在【控制面板】中选择【添加/删除程序】快速卸载. 第三章使用详解 3.1 节目组成 每块显示屏由一个或多个节目页组成。节目页是用来显示用户所要播放的文本、图片、动画等内容。区域窗口有十一种:图文窗、文本窗、单行文本窗、静止文本窗、时间窗、正计时窗、倒计时窗、模拟时钟窗、表格窗、动画窗、温度窗。 文件窗:可以播放各种文字、图片、动画、表格等几十种文件。 文本窗:用于快速输入简短文字,例如通知等文字。 单行文本窗:用于播放单行文本,例如通知、广告等文字。 静止文本窗:用于播放静止文本,例如公司名称、标题等文字。 时间窗:用于显示数字时间。 计时窗:用于计时,支持正/倒计时显示。

液晶屏驱动板原理维修代换方法

液晶屏驱动板的原理与维修代换方法 1、液晶屏驱动板的原理介绍 液晶屏驱动板常被称为A/D<模拟/数字)板,这从某种意义上反应出驱动板实现的主要功能所在。液晶屏要显示图像需要数字化过的视频信号,液晶屏驱动板正是完成从模拟信号到数字信号<或者从一种数字信号到另外一种数字信号)转换的功能模块,并同时在图像控制单元的控制下去驱动液晶屏显示图像。液晶显示器的驱动板如图1、图2所示。 图1 品牌液晶显示器采用的驱动板 图2部分液晶显示器采用的是通用驱动板 如图3所示,液晶屏驱动板上通常包含主控芯片、MCU微控制器、ROM存储器、电源模块、电源接口、VGA视频信号输入接口、OSD按键板接口、高压板接口、LVDS/TTL驱屏信号接口等部分。 液晶屏驱动板的原理框图如图4所示,从计算机主机显示卡送来的视频信

号,通过驱动板上的VGA视频信号输入接口送入驱动板的主控芯片,主控芯片根据MCU微控制器中有关液晶屏的资料控制液晶屏呈现图像。同时,MCU微控制器实现对整机的电源控制、功能操作等。因此,液晶屏驱动板又被称为液晶显示器的主板。 图3 驱动板上的芯片和接口 液晶屏驱动板损坏,可能造成无法开机、开机黑屏、白屏、花屏、纹波干扰、按键失效等故障现象,在液晶显示器故障中占有较大的比例。 液晶屏驱动板广泛采用了大规模的集成电路和贴片器件,电路元器件布局

紧凑,给查找具体元器件或跑线都造成了很大的困难。在非工厂条件下,它的可修性较小,若驱动板因为供电部分、VGA视频输入接口电路部分损坏等造成的故障,只要有电路知识我们可以轻松解决,对于那些因为MCU微控制器内部的数据损坏造成无法正常工作的驱动板,在拥有数据文件<驱动程序)的前提下,我们可以用液晶显示器编程器对MCU微控制器进行数据烧写,以修复固件损坏引起的故障。早期的驱动板,需要把MCU微控制器拆卸下来进行操作,有一定的难度。目前的驱动板已经普遍开始采用支持ISP<在线编程)的MCU微控制器,这样我们就可以通过ISP工具在线对MCU微控制器内部的数据进行烧写。比如我们使用的EP1112最新液晶显示器编程器就可以完成这样的工作。 图4 驱动板原理框图 在液晶显示器的维修工作中,当驱动板出现故障时,若液晶显示器原本就使用的是通用驱动板,就可以直接找到相应主板代换处理,当然,仍需要在其MCU中写入与液晶屏对应的驱动程序;若驱动板是品牌机主板,我们一般采用市场上常见的“通用驱动板”进行代换方法进行维修; “通用驱动板”也称“万能驱动板”。目前,市场上常见的“通用驱动板”有乐华、鼎科、凯旋、悦康等品牌,如图5所示,尽管这种“通用驱动板”所用元器件与“原装驱动板”不一致,但只要用液晶显示器编程器向“通用驱动板”写入液晶屏对应的驱动程序<购买编程器时会随机送液晶屏驱动程序光盘),再通过简单地改接线路,即可驱动不同的液晶屏,通用性很强,而且维修成本也不高,用户容易接受。

基于某STM32LCD12864驱动程序

STM32 LCD12864驱动程序(头文件)(2012-05-29 21:25:08)转载▼ 标签:杂谈 #ifndef LCD12864_H #define LCD12864_H #define LCD_CONTROL GPIOD //默认LCD12864的控制口在PD口 #define LCD_DATAPORT GPIOD //默认LCD12864的数据口在PD口 #define LCD_RESET_Pin GPIO_Pin_12 //默认LCD12864的复位引脚连接到PD.12 也可不用 #define LCD_RS_Pin GPIO_Pin_13 //默认LCD12864 RS -- PD.13 #define LCD_RW_Pin GPIO_Pin_14 //默认LCD12864 RW -- PD.14 #define LCD_EN_Pin GPIO_Pin_15 //默认LCD12864 E -- PD.15 #define LCD_CONTROL_CLOCK RCC_APB2Periph_GPIOD //默认LCD12864的控制口时钟 #define LCD_DATAPORT_CLOCK RCC_APB2Periph_GPIOD //默认LCD12864的数据口时钟 #define LCD_RS_1 LCD_CONTROL->BSRR &=~LCD_RS_Pin;LCD_CONTROL->BSRR |=LCD_RS_Pin //RS置高电平 #define LCD_RS_0 LCD_CONTROL->BRR &=~LCD_RS_Pin;LCD_CONTROL->BRR |=LCD_RS_Pin //RS置低电平 #define LCD_RW_1 LCD_CONTROL->BSRR &=~LCD_RW_Pin;LCD_CONTROL->BSRR |=LCD_RW_Pin //RW置高电平 #define LCD_RW_0 LCD_CONTROL->BRR &=~LCD_RW_Pin;LCD_CONTROL->BRR |=LCD_RW_Pin //RW置低电平 #define LCD_EN_1 LCD_CONTROL->BSRR &=~LCD_EN_Pin;LCD_CONTROL->BSRR |=LCD_EN_Pin //EN置高电平 #define LCD_EN_0 LCD_CONTROL->BRR &=~LCD_EN_Pin;LCD_CONTROL->BRR |=LCD_EN_Pin //EN置低电平 #define LCD_RESET_0 LCD_CONTROL->BRR = LCD_RESET_Pin // 复位 #define LCD_RESET_1 LCD_CONTROL->BSRR = LCD_RESET_Pin // 复位脚拉高 #define DATAOUT LCD_DATAPORT->ODR &=0xff00;LCD_DATAPORT->ODR // 数据输出寄存器 #define DATAIN LCD_DATAPORT->IDR // 数据输入寄存器 #define LCD_BF ((DATAIN)& 0x0080) // 忙状态 void LCD_delayus(unsigned long n); //延时n(us) void LCD_delayms(unsigned long n); //延时n(ms) void LCD_WriteInitcmd(uint8_t initcmd); //写初始化命令 void LCD_WaitLaisure(void); //一直等待到LCD内部操作完成,变为空闲状态 void LCD_Writecmd(uint8_t cmd); //写命令到LCD12864 void LCD_WriteByte(uint8_t byte); //写一字节数据到LCD12864 void LCD_pos(uint16_t pos); //LCD显示位置设置 void LCD_Setpos(uint16_t row,uint16_t col);//设定LCD12864的显示地址,根据习惯 void LCD_DispChar(char ch); //显示一个字符 void LCD_Setpos_DispChar(uint16_t row,uint16_t col,char ch);//在指定位置显示一个字符 void LCD_DispString(char str[]); //显示一个字符串,显示位置需提前设定

DSP课程设计---液晶显示器控制显示

一、设计题目:液晶显示器控制显示 (1) 二、设计目的与步骤: (1) 2.1、 (1) 2.2、 (1) 三、设计原理: (2) 3.1、扩展IO接口: (2) 3.2、液晶显示模块的访问、控制是由VC5416 DSP对扩展接口的操作完成.. 2 3.3、液晶显示模块编程控制: (2) 3.4、控制I/O口的寻址: (2) 3.5、显示控制方法: (2) 3.6.液晶显示器与DSP的连接: (4) 3.7、数据信号的传送: (4) 四、 CCS开发环境 (5) 4.1、 (5) 4.2、 (6) 五、C语言程序 (8) 六、实验结果和分析 (15) 6.1、 (15) 6.2、 (16) 6.3、 (16) 6.4、 (16) 七、设计收获及体会 (17)

一、设计题目:液晶显示器控制显示 二、设计目的与步骤: 2.1、设计目的 通过实验学习使用VC5416 DSP的扩展I/O端口控制外围设备的方法,了解液晶显示器的显示控制原理及编程方法。 2.2、设计步骤 1.实验准备: ⑴连接实验设备:请参看本书第三部分、第一章、二。 2.设置Code Composer Studio 2.21在硬件仿真(Emulator)方式下运行: 3.启动Code Composer Studio 2.21: 选择菜单Debug→Reset CPU。 4.打开工程文件:浏览LCD.c文件的内容,理解各语句作用 工程目录:C:\ICETEK\VC5416AES61\VC5416AES61\Lab0403-LCD\LCD.pjt。5.编译、下载程序。 6.运行程序观察结果: 7将内层循环中的 “CTRLCDLCR=( nBW==0 )?(ledkey[nCount][i]):(~ledkey[nCount][i]);”语句改为“CTRLCDRCR=( nBW==0 )?(ledkey[nCount][i]):(~ledkey[nCount][i]);”,重复步骤5-6,实现在屏幕右侧显示。 8.更改程序中对页、列的设置,实现不同位置的显示。

液晶屏驱动方法

心之所向,所向披靡 0802字符型液晶显示模块 外形尺寸:PCB外形:40*30.5毫米液晶屏金属黑框:38*23.5毫米 0802采用标准的16脚接口,其中: 第1脚:VSS为地电源 第2脚:VDD接5V正电源 第3脚:V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度 第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。 第5脚:RW为读写信号线,高电平时进行读操作,低电平时进行写操作。当RS和RW共同为低电平时可以写入指令或者显示地址,当RS为低电平RW为高电平时可以读忙信号,当RS为高电平RW为低电平时可以写入数据。 第6脚:E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。 第7~14脚:D0~D7为8位双向数据线。 第15~16脚:空脚(背光)

0802液晶模块内部的字符发生存储器(CGROM)已经存储了160个不同的点阵字符图形,如表1所示,这些字符有:阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,每一个字符都有一个固定的代码,比如大写的英文字母“A”的代码是01000001B(41H),显示时模块把地址41H中的点阵字符图形显示出来,我们就能看到字母“A” 1602液晶模块内部的控制器共有11条控制指令,如表2所示, 它的读写操作、屏幕和光标的操作都是通过指令编程来实现的。(说明:1为高电平、0为低电平)指令1:清显示,指令码01H,光标复位到地址00H位置 指令2:光标复位,光标返回到地址00H 指令3:光标和显示模式设置 I/D:光标移动方向,高电平右移,低电平左移S:屏幕上所有文字是否左移或者右移。高电平表示有效,低电平则无效 指令4:显示开关控制。D:控制整体显示的开与关,高电平表示开显示,低电平表示关显示 C:控制光标的开与关,高电平表示有光标,低电平表示无光标B:控制光标是否闪烁,高电平闪烁,低电平不闪烁 指令5:光标或显示移位S/C:高电平时移动显示的文字,低电平时移动光标 指令6:功能设置命令DL:高电平时为4位总线,低电平时为8位总线 N:低电平时为单行显示,高电平时双行显示 F:低电平时显示5x7的点阵字符,高电平时显示5x10的点阵字符(有些模块是DL:高电平时为8位总线,低电平时为4位总线) 指令7:字符发生器RAM地址设置 指令8:DDRAM地址设置 指令9:读忙信号和光标地址BF:为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。 指令10:写数据 指令11:读数据 0802液晶显示模块可以和单片机AT89C51直接接口,电路如图1所示。 液晶显示模块是一个慢显示器件,所以在执行每条指令之前一定要确认模块的忙标志为低电平,表示不忙,否则此指令失效。要显示字符时要先输入显示字符地址,也就是告诉模块在哪里显示字符,表3是0802的内部显示地址. 比如第二行第一个字符的地址是40H,那么是否直接写入40H就可以将光标定位在第二行第一个字符的位置呢?这样不行,因为写入显示地址时要求最高位D7恒定为高电平1所以实际写入的数据应该是01000000B(40H)+10000000B(80H)=11000000B(C0H) 以下是在液晶模块的第二行第一个字符的位置显示字母“A”的程序: ORG 0000H RS EQU P3.7;确定具体硬件的连接方式 RW EQU P3.6 ;确定具体硬件的连接方式 E EQU P3.5 ;确定具体硬件的连接方式 MOV P1,#00000001B;清屏并光标复位 ACALL ENABLE;调用写入命令子程序 MOV P1,#00111000B ;设置显示模式:8位2行5x7点阵 ACALL ENABLE ;调用写入命令子程序 MOV P1,#00001111B;显示器开、光标开、光标允许闪烁 ACALL ENABLE ;调用写入命令子程序 MOV P1,#00000110B;文字不动,光标自动右移 ACALL ENABLE ;调用写入命令子程序 MOV P1,#0C0H;写入显示起始地址(第二行第一个位置) ACALL ENABLE ;调用写入命令子程序 MOV P1,#01000001B ;字母A的代码

led液晶显示器的驱动原理

led液晶显示器的驱动原理 LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与 TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对 TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于 Cs(storage capacitor)储存 电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在 CMOS 的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 , 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因.

很好用的12864驱动程序

/////////////////////////////////////////////////////////// #include #include #define uchar unsigned char #define uint unsigned int //////////单片机与液晶显示的引脚连接///////// sbit P32=P3^2; //RST sbit P33=P3^3; //CS2 sbit P34=P3^4; //CS1 sbit P35=P3^5; //E sbit P36=P3^6; //rs&DI sbit P37=P3^7; // R/W ////////延时///////// void delay(uint v) { while(v!=0)v--; } ////////复位/////////// void reset() { P32=0; delay(10); P32=1; delay(10); } ////////write code写指令/////// void wcode(uchar c,uchar cs1,uchar cs2) { P34=cs1; P33=cs2; P37=0; P36=0; P1=c; P35=0; delay(10);

P35=1; delay(10); P35=0; } /////////write data写数据/////////////// void wdata(uchar c,uchar cs1,uchar cs2) { P34=cs1; P33=cs2; P37=1; P36=0; P1=c; P35=0; delay(10); P35=1; delay(10); P35=0; } ////////////set start设置起始行///////////// void set_startline(uchar i)//起始行。11A5A4A3A2A1A0 共有64行 // 液晶显示器的最底层为第一行 { i=0xc0+64-i;//此算法为把最顶层做为第一层 wcode(i,1,1); } ////////////set 页值设置,起始列值函数///////////// void set_adr(uchar x,uchar y) { x=x+0xb8;//页地址设置。10111A2A1A0 DDRAM的8行为一页,A0~A2为页码,LCD为64行8页 y=y+0x40;//列地址设置。01A5A4A3A2A1A0 两半屏分别有64列,A0~A5送入列地址计数器, //作为列(Y)地址指针。每读写一次其自动加一,指向下一列DDRAM单元wcode(x,1,1); wcode(y,1,1); } ///////////on/off开/关显示函数//////////////

TFT LCD液晶显示器的驱动原理(一)

TFT LCD液晶显示器的驱动原理(一) 前两次跟大家介绍有关液晶显示器操作的基本原理,那是针对液晶本身的特性,与TFT LCD本身结构上的操作原理来做介绍。这次我们针对TFT LCD的整体系统面来做介绍,也就是对其驱动原理来做介绍,而其驱动原理仍然因为一些架构上差异的关系,而有所不同。首先我们来介绍由于 Cs(storage capacitor)储存电容架构不同,所形成不同驱动系统架构的原理。 Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种,分别是Cs on gate与Cs on common这两种。这两种顾名思义就可以知道,它的主要差别就在于储存电容是利用gate走线或是common走线来完成的。在上一篇文章中提到,储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用。所以我们就必须像在CMOS的制程之中,利用不同层的走线,来形成平行板电容。而在TFT LCD的制程之中,则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs。

图1就是这两种储存电容架构,从图中我们可以很明显的知道,Cs on gate由于不必像Cs on co mmon一样,需要增加一条额外的common走线,所以它的开口率(Aperture ratio)会比较大。而开口率的大小,是影响面板的亮度与设计的重要因素。所以现今面板的设计大多使用Cs on gate的方式。但是由于Cs on gate的方式,它的储存电容是由下一条的gate走线与显示电极之间形成的。(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线,顾名思义就是接到每一个TFT的gate 端的走线,主要就是作为gate driver送出信号,来打开TFT,好让TFT对显示电极作充放电的动作。所以当下一条gate走线,送出电压要打开下一个TFT时,便会影响到储存电容上储存电压的大小。不过由于下一条gate走线打开到关闭的时间很短,(以1024×768分辨率,60Hz更新频率的面板来说.

LED液晶显示器的驱动原理

LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之 中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs. For personal use only in study and research; not for commercial use

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因 素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方 式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显 示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时, 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因. For personal use only in study and research; not for commercial use

dsp实验报告 哈工大实验三 液晶显示器控制显示实验

实验三液晶显示器控制显示实验 一. 实验目的 通过实验学习使用2407ADSP 的扩展I/O 端口控制外围设备的方法,了解液晶显示器的显示控制原理及编程方法。 二. 实验设备 计算机,ICETEK-LF2407-EDU 实验箱。 三.实验原理 ICETEK-LF2407-A 是一块以TMS320LF2407ADSP 为核心的DSP 扩展评估板,它通过扩展接口与实验箱的显示/控制模块连接,可以控制其各种外围设备。 液晶显示模块的访问、控制是由2407ADSP 对扩展I/O 接口的操作完成。 控制I/O 口的寻址:命令控制I/O 接口的地址为0x8001,数据控制I/O 接口的地址为0x8003 和0x8004,辅助控制I/O 接口的地址为0x8002。 显示控制方法: ◆液晶显示模块中有两片显示缓冲存储器,分别对应屏幕显示的象素,向其中写入数 值将改变显示,写入“1”则显示一点,写入“0”则不显示。其地址与象素的对应 方式如下: ◆发送控制命令:向液晶显示模块发送控制命令的方法是通过向命令控制I/O 接口 写入命令控制字,然后再向辅助控制接口写入0。下面给出的是基本命令字、解释 和 C 语言控制语句举例。 ?显示开关:0x3f 打开显示;0x3e 关闭显示; ?设置显示起始行:0x0c0+起始行取值,其中起始行取值为0 至63; ?设置操作页:0x0b8+页号,其中页号取值为0-7; ?设置操作列:0x40+列号,其中列号为取值为0-63; ◆写显示数据:在使用命令控制字选择操作位置(页数、列数)之后,可以将待显示的 数据写入液晶显示模块的缓存。将数据发送到相应数据控制I/O 接口即可。

LED电子显示屏常见驱动方式介绍

LED电子显示屏常见驱动方式介绍 目前市场上LED显示屏的驱动方式有静态扫描和动态扫描两种,静态扫描又分为静态实像素和静态虚拟,动态扫描也分为动态实像和动态虚拟。下面由明新源科技为大家介绍下LED电子显示屏常见的驱动方式吧。 河南明新源相关负责人介绍说,在一定的显示区域内,同时点亮的行数与整个区域行数的比例,称扫描方式;室内单双色一般为1/16扫描,室内全彩LED显示屏一般是1/8 扫描,室外单双色一般是1/4扫描,室外全彩显示屏一般是静态扫描。驱动IC一般用国产HC595,台湾MBI5026,日本东芝TB62726,一般有1/2 扫,1/4扫,1/8扫,1/16扫。 举列说明:一个常用的全彩模组像素为16*8 (2R1G1B),模组总共使用的LED灯是:16*8(2+1+1)=512个,如果用MBI5026 驱动,MBI5026 为16位芯片,512/16=32 (1)如果用8个MBI5026芯片,是动态1/4扫虚拟。 (2)如果用16个MBI5026芯片,是动态1/2扫虚拟。 (3)如果用32 个MBI5026芯片,是静态虚拟。 (4)用6个MBI5026芯片,是动态1/4扫实像素。 (5)用12个MBI5026芯片,是动态1/2扫实像素。 (6)如果板子上两个红灯串连,用个MBI5026芯片,是静态实像素。 在LED单元板,扫描方式有1/16,1/8,1/4,1/2,静态。LED电子显示屏常见驱动方式介绍还有哪些,该如何区分呢?一个最简单的办法就是数一下单元板的LED灯数目和74HC595的数量。计算方法:LED的数目除以74HC595的数目再除以8 =几分之一扫描。 实像素与虚拟是相对应的简单来说,实像素屏就是指构成显示屏的红绿蓝三种发光管中的每一种发光管最终只参与一个像素的成像使用,以获得足够的亮度。虚拟像素是利用软件算法控制每种颜色的发光管最终参与到多个相邻像素的成像当中,从而使得用较少的灯管实现较大的分辨率,能够使显示分辨率提高四倍。

利用拨码开关控制液晶显示器进行ASIC字符显示

中北大学 课程设计说明书 学生姓名:甘世伟学号:04 学院: 电子与计算机科学技术学院 专业: 微电子学 题目: 利用拨码开关控制液晶显示器进行ASIC字符显示 指导教师:王红亮职称: 讲师 2010 年 6 月 25 日 目录

表—1:OCMJ2X8(128X32)引脚说明....................- 12 -硬件接口 ..................................................................................................................................................................... - 13 -四、电性能参数 ......................................................................................................................................................... - 13 -1)表—1模块时间参数表.........................- 13 -2)表—2模块主要电气参数表.......................- 14 -用户命令 ..................................................................................................................................................................... - 14 -外型尺寸图(图11) .............................................................................................................................................. - 15 -6.附录:液晶显示器简介 (13) 1、课程设计目的 (1)学习操作数字电路设计实验开发系统,掌握液晶显示器的工作原理及应用。 (2)掌握组合逻辑电路、时序逻辑电路的设计方法。 (3)学习掌握可编程器件设计的全过程。 2、课程设计内容和要求: 、设计内容 用VHDL语言编写程序,利用拔码开头控制液晶显示器进行ASIC字符显示。 、设计要求 (1)学习掌握拔码开头控制模块、液晶显示模块的工作原理及应用; (2)熟练掌握VHDL编程语言,编写键盘控制模块的控制逻辑;

段码LCD液晶屏驱动方法

TFT液晶屏:https://www.360docs.net/doc/ae10020375.html, 段码LCD液晶屏驱动方法 段码LCD液晶屏驱动方法 首先,不要以为用单片机来驱动就以为段码屏是直流驱动的,其实,段码屏是交流驱动,什么是交流?矩形波,正弦波等。大家可能会经常用驱动芯片来玩,例如HT1621等,但是有些段式屏IO口比较少,或者说IO口充足的情况下,也可以省去写控制器的驱动了。与单片机接口方便,而后者驱动电流小,功耗低、寿命长、字形美观、显示清晰、视角大、驱动方式灵活、应用广泛。但在控制上LCD较复杂,因为LCD 电极之间的相对电压直流平均值必须为0,否则易引起LCD氧化,因此LCD不能简单地用电平信号控制,而要用一定波形的方波序列来控制。 LCD显示有静态和时分割两种方式,前者简单,但是需要较多的口线;后者复杂,但所需口线较少,这两种方式由电极引线的选择方式确定。下面以电子表的液晶显示为例,小时的高位同时灭或亮,分钟的高位在显示数码1~5时,其顶部和底部也是同时灭或亮,两个dot点也是同时亮或灭,其驱动方式是偏置比为1/2的时分割驱动,共有11个段电极和两个公共电极。但是,IO模拟驱动段式液晶有一个前提条件,就是IO必须是三态,为什么? 下面我们一起细细道来: 第一步,段码式液晶屏的重要参数:工作电压,占空比,偏压比。这三个参数非常重要,必须都要满足。 第二步,驱动方式:根据LCD的驱动原理可知,LCD像素点上只能加上AC电压,LCD显示器的对比度由COM脚上的电压值减去SEG脚上的电压值决定,当这个电压差大于LCD的饱和电压就能打开像素点,小于LCD阈值电压就能关闭像素点,LCD型MCU已经由内建的LCD驱动电路自动产生LCD驱动信号,因此只要I/O口能仿真输出该驱动信号,就能完成LCD的驱动。 段码式液晶屏幕主要有两种引脚,COM,SEG,跟数码管很像,但是,压差必须是交替变化,例如第一时刻是正向的3V,那么第二时刻必须是反向的3V,注意一点,如果给段码式液晶屏通直流电,不用多久屏幕就会废了,所以千万注意。下面我们来考虑如何模拟COM口的波形,以1/4D,1/2B为例子:

led显示屏控制卡-LED显示屏控制器原理

目录 第一章 801型、802型卡功能简介 (1) 第二章硬件参数 (5) 第二章第8代控制系统使用手册 (6) 第三章国标网线制作方法 (25) Index Chapter I Model 801 and 802 functions and features (27) Chapter II Model 801 and 802 manual (30) Chapter III Communication cable making method (49) 深圳三鑫维科技是一家专业生产制造LED显示屏的知名企业,20年的led行业研究经验,如还有不理解的请咨询电话:9

第一章 801型、802型卡功能简介 一、完全兼容第七代 基于第七代升级开发,原功能不少,新功能更多更强大,系统更稳定更可靠。可与七代系统混合使用。 二、支持10位颜色 旧系统的8位颜色只能显示256X256X256=1677216种颜色,新系统颜色数为1024X1024X1024=1073741824种颜色,新系统颜色数是旧系统的64倍。 三、智能连接功能 同一块显示屏的多块接收卡/箱体(含备用的)可以任意交换而不需重新设置,接收卡能智能地动识别需显示的内容。 四、智能监控 每块接收卡均有温度检测和四路风扇监控输出,可根据用户设定的温度上限智能地控制四路风扇转速。 五、公司图标显示 当发送卡电源没开启时显示屏自动显示设定的公司图片,图片像素为128X128,颜色数为16K色。 六、支持16以内的任意扫描方式 原系统只支持1、2、4、8、16扫描,新系统为1、2、3、4、5、6、 7、8、9、10、11、12、13、14、15、16扫描。 七、支持模块宽度为64以内的任意数

无字库12864液晶的驱动方法

无字库12864液晶的驱动方法 在制作单片机系统时,一般都需要用显示器件来显示单片机的工作状态并显示输出结果,如LED、数码管和液晶显示器等。LED最简单,但能给出的信息很少。数码管能清晰地显示数字和部分字母,但是耗电较大,不适合使用电池供电的装置。 常见的液晶显示器有段式液晶、字符液晶和图形液晶等。其中,段式液晶最省电,但对于通用显示使用起来不很方便,只能显示固定式数字或符号,而且需要专用驱动电路或特殊的单片机。 字符液晶(如1602)用得比较多,容易和单片机配合,但是一般都需要5V工作电压,虽然现在也有3V就可以工作的模块,但是体积还是较大,而且只能显示数字和西文字符,无法显示图形和汉字。 点阵液晶模块既可以显示ASCII字符,又可以显示汉字和图形,相对于前面几种,具有更大的灵活性,所以使用得越来越多。不过常用的图形液晶因为显示面积增加,体积比字符液晶(如1602)更大,价格也更贵。初学者要注意的是,12864图形点阵液晶随着厂家设计使用的驱动芯片不同,驱动程序有所区别,不像1602那样基本通用。 几种常见的12864图形点阵模块 12864点阵液晶模块分为带汉字库和不带汉字库两大类,目前带汉字库的通常是ST7920驱动,它可以工作在汉字字符方式和图形点阵方式,很多制作都用它,如果需要显示较多汉字,用它最为方便。 在显示汉字数量很少的场合,我们可以使用更加廉价的、不带字库的点阵液晶模块,这正是本文重点介绍的。它们的控制电路有KS0108和ST7565两种:KS0108很简单,一共只有7条指令,可是它没有串行接口;ST7565有20多条指令(最常用的也就几条),有串行接口,可选串行或并行工作。KS0108和ST7565的指令和上述带字库的ST7920区别较大,所以初学者买液晶时一定要搞清楚是哪种驱动电路。即使同样的驱动电路,不同厂家或者不同型号的产品,具体细节仍可能不同。例如有的片选信号是高电平有效,有的却是低电平有效,有的把显示区分为左右两半分别选取,有的却不加区分。所以使用前要仔细看厂家说明,如果没有,就要看液晶模块背面给出的具体型号,根据这个型号去查找使用手册。 笔者最近在淘宝网上搜寻到一款12864的图形点阵液晶,只有4cm宽、3.5cm高,显示面积为3.2cm宽、1.95cm高,非常小巧。更加难能可贵的是它可以在3V低电压工作,很适合我们制作小型便携装置。该液晶模块型号是SP12864FPD-12CSBE,由北京集粹电子设备公司出品,它的外形见图1。

相关文档
最新文档