2017年第34届全国中学生物理竞赛复赛理论考试试题和答案

2017年第34届全国中学生物理竞赛复赛理论考试试题和答案
2017年第34届全国中学生物理竞赛复赛理论考试试题和答案

第34届全国中学生物理竞赛复赛理论考试试题解答

2017年9月16日

一、(40分)一个半径为r 、质量为m 的均质实心小圆柱被置于一个半径为R 、质量为M 的薄圆筒中,圆筒和小圆柱的中心轴均水平,横截面如图所示。重力加速度大小为g 。试在下述两种情形下,求小圆柱质心在其平衡位置附近做微振动的频率: (1)圆筒固定,小圆柱在圆筒内底部附近作无滑滚动;

(2)圆筒可绕其固定的光滑中心细轴转动,小圆柱仍在圆筒内

底部附近作无滑滚动。 解: (1)如图,θ为在某时刻小圆柱质心在其横截面上到圆筒中心轴的垂线与竖直方向的夹角。小圆柱受三个力作用:重力,圆筒对小圆柱的支持力和静摩擦力。设圆筒对小圆柱的静摩擦力大小为F ,方向沿两圆柱切点的切线方向(向右为正)。考虑小圆柱质心的运动,由质心运动定理得

sin F mg ma θ-=①

式中,a 是小圆柱质心运动的加速度。由于小圆柱与圆筒间作无滑滚动,小圆柱绕其中心轴转过的角度1θ(规定小圆柱在最低点时10θ=)与θ之间的关系为

1()R r θθθ=+②

由②式得,a 与θ的关系为

22122()d d a r R r dt dt

θθ

==-③

考虑小圆柱绕其自身轴的转动,由转动定理得

21

2d rF I dt

θ-=④

式中,I 是小圆柱绕其自身轴的转动惯量

21

2

I mr =⑤

由①②③④⑤式及小角近似 sin θθ≈⑥ 得

22203()

θθ+=-d g

dt R r ⑦ 由⑦式知,小圆柱质心在其平衡位置附近的微振动是简谐振动,其振动频率为

f =

(2)用F 表示小圆柱与圆筒之间的静摩擦力的大小,1θ和2θ分别为小圆柱与圆筒转过的角度(规定小圆柱相对于大圆筒向右运动为正方向,开始时小圆柱处于最低点位置120θθ==)。对于小圆柱,由转动定理得

2

21

212θ??-= ???d Fr mr dt ⑨

对于圆筒,同理有

222

2()θ=d FR MR dt

由⑨⑩式得

22122221θθ??

-+=- ???

d d F r R m M dt dt ?

设在圆柱横截面上小圆柱质心到圆筒中心轴的垂线与竖直方向的夹角θ,由于小圆柱与圆筒间做无滑滚动,有 12()θθθθ=+-R r R ? 由?式得

22212

222()θθθ-=-d d d R r r R dt dt dt

?

设小圆柱质心沿运动轨迹切线方向的加速度为a ,由质心运动定理得 sin F mg ma θ-=? 由?式得

22()θ

=-d a R r dt

?

由????式及小角近似sin θθ≈,得 22203d M m g

dt M m R r

θθ++=+-? 由?式可知,小圆柱质心在其平衡位置附近的微振动是简谐振动,其振动频率为

f =

?

评分参考:第(1)问20分,①②式各3分,③式2分,④式3分,⑤⑥式各2分,⑦式3分,⑧式2分;第(2)问20分,⑨⑩?式各2分,?式3分,???式各2分,?式3分,?式2分。 二、(40分)星体P (行星或彗星)绕太阳运动的轨迹为圆锥曲线

1cos k

r εθ

=+ 式中,r 是P 到太阳S 的距离,θ是矢径SP 相对于极轴SA 的夹角(以逆时针方向为正),22

L k GMm =, L 是P 相对于太阳的角动量,

113126.6710m kg s G ---=???为引力常量,301.9910kg M ≈?为太阳的质量

εm 和E 分别为P 的质量

和机械能。假设有一颗彗星绕太阳运动的轨道为抛物线,地球绕太阳运动的轨道可近似为圆,两轨道相交于C 、D 两点,如图所示。已知地球轨道半径11E 1.4910m R ≈?,彗星轨道近日点A 到太阳的距离为地球轨道半径的三分之一,不考虑地球和彗星之间的相互影响。求彗星

(1)先后两次穿过地球轨道所用的时间; (2)经过C 、D 两点时速度的大小。

已知积分公式()()3/21/2

223

x a a x a C =+-++,式中C 是任意常数。

解:

(1)由题设,彗星的运动轨道为抛物线,故 1, 0E ε==①

彗星绕太阳运动的轨道方程为:

1cos k

r θ

=

+② 彗星绕太阳运动过程中,机械能守恒 ()2

221022L mr V r E mr ++==&③ 式中

()Mm

V r G r

=-④ 当彗星运动到近日点A 时,其径向速度为零,设其到太阳的距离为min r ,由③式得 ()2min 2

min min 2L Mm

V r G mr r =-=⑤ 由⑤式和题给条件得 2E min 2

23L R

r GMm ==⑥ 由③式得

dr dt =或

dt =

⑦ 设彗星由近日点A 运动到与地球轨道的交点C 所需的时间为t ?,对⑦式两边积分,并利用⑥式得

E E R R r t ?==?⑧ 对⑧式应用题给积分公式得

3/21/2

E E E E E 22 3333 R t R R R R R ?=??????=

-+-?? ? ??

????=

⑨ 由对称性可知,彗星两次穿越地球轨道所用的时间间隔为

2T t =?=

⑩ 将题给数据代入⑩式得 66.4010s T ≈??

(2)彗星在运动过程中机械能守恒 2102GMm m E r

-==v ? 式中v 是彗星离太阳的距离为r 时的运行速度的大小。由?式有

v 当彗星经过C 、D 处时

C D E r r R ==?

由??式得,彗星经过C 、D 两点处的速度的大小为

C D ==v v ?

由?式和题给数据得 4C D 4.2210m/s ==?v v ?

评分参考:第(1)问28分,①式4分,②式2分,③式4分,④式2分,⑤式4分,⑥⑦⑧⑨⑩?式各2分;第(2)问12分,?式4分,????式各2分。

三、(40分)一质量为M 的载重卡车A 的水平车板上载有一质量为m 的重物B ,在水平直公路上以速度0v 做匀速直线运动,重物与车厢前壁间的距离为L (0L >)。因发生紧急情况,卡车突然制动。已知卡

车车轮与地面间的动摩擦因数和最大静摩擦因数均为1μ,重物与车厢底板间的动摩擦因数和最大静摩擦因数均为2μ(21μμ<)。若重物与车厢前壁发生碰撞,则假定碰撞时间极短,碰后重物与车厢前壁不分开。重力加速度大小为g 。

(1)若重物和车厢前壁不发生碰撞,求卡车从制动开始到卡车停止的过程所花的时间和走过的路程、重物从制动开始到重物停止的过程所花的时间和走过的路程,并导出重物B 与车厢前壁不发生碰撞的条件;

(2)若重物和车厢前壁发生碰撞,求卡车从制动开始到卡车和重物都停止的过程所经历的时间、卡车走过的路程、以及碰撞过程中重物对车厢前壁的冲量。 解:

(1)若重物和车厢前壁不发生碰撞。

卡车在水平直公路上做匀减速运动,设其加速度大小为1a 。由牛顿第二定律有

121()M m g mg Ma μμ+-=①

由①式得

1121()M m

a g M

μμμ+-=

由匀减速运动公式,卡车从制动开始到静止时所用的时间1t 和移动的距离1s 分别为

0011112()M

t a M m g μμμ==

+-v v ,22

0011112

2()2M s a M m g μμμ==+-v v ② 重物B 在卡车A 的车厢底板上做匀减速直线运动,设B 相对于地面的加速度大小为2a 。由牛顿第二定律有

22mg ma μ=③

由③式得

222mg

a g m

μμ=

=

从卡车制动开始到重物对地面速度为零时所用的时间2t 和重物移动的距离2s 分别为 00222t a g

μ==v v

,2

2

0022222v v μ=

=s a g ④ 由于21μμ<,由②④二式比较可知,12t t >,即卡车先停,重物后停。 若21s s L ≤+,重物B 与车厢前壁不会发生碰撞,因此不发生碰撞的条件是

222

000

1221212112()()22[()]2M m L s s a a M m g

μμμμμμ-+≥-=-=+-v v v ⑤

(2)由⑤式知,当满足条件

2

12212112()()2[()]M m L s s M m g

μμμμμμ-+<-=

+-v 时,重物B 与车厢前壁必定发生碰撞。

设从开始制动到发生碰撞时的时间间隔为t ,此时有几何条件 21()()s t s t L =+⑥

这里又可分为两种情况:12t t t >>(重物在卡车停下后与车厢前壁发生碰撞)和1t t ≤(重物在卡车停下前与车厢前壁发生碰撞)。

(i )12t t t >>,即卡车A 在1t 时停下,重物B 继续运动,在t 时与车厢前壁发生碰撞。

卡车停下的时间和向前滑动的距离是②给出的1t 和1s ,同时重物相对于地面向前滑动的距离是

[][]22

01212

121202

11212

(2)2() 2()s t a t M M m g M m μμμμμμμ'=--+-=

+-v v ⑦ 重物相对于车厢向前滑动的距离是

[][][]22

121200212

112112

20

122112(2)2()2()2()()() 2()M M m M

s s g M m g M m M m M g

M m μμμμμμμμμμμμμμμ-+-'-=-+-+--+=

+-v v v

如果

2121s s L s s '-<<-, 即当

22

1200

1221122112()()()()2[+()]2[()]v v μμμμμμμμμμμ-+-+<<-+-m M M M m L M m g M m g

满足时,在车已停稳后重物仍会向前运动并且撞上车厢前壁。

从制动到重物B 与车厢前壁碰撞前,重物B 克服摩擦力做功。设在碰撞前的瞬间重物B 相对地面的速度为2v ,由动能定理有

22

202111()22m m mg s L μ=-+v v ⑧ 由⑧式得

2=v

设碰撞后瞬间重物B 与卡车A 的速度均为v ,由于碰撞时间极短,碰撞前后动量守恒 2()m m M =+v v ⑨

由⑨式得

2m m M ==

+v v 碰撞过程中重物B 对车厢前壁的冲量为

0I M =-v

碰撞后,卡车和重物又一起运动了一段时间

()2

11m t g m M g

μμ'==

+v v ? 再移动了一段路程

2

22

12012211112()()222()()M m m s gL g m M g M m μμμμμμμμ??-+'=-??++-??v v =? 才最终停止下来(对于卡车而言,这是第二次停下来)。 重物撞上车厢前壁的时间是

022

2t g

μ-'=v v ? 所以,从卡车制动到车和重物都停下所用的总时间为

(i)020222

21221021()() m m

t t t g g M m g g g M m g μμμμμμ??-''=+=+=--??++??=

v v v v v v ?

卡车移动的总路程则为

22

2(i)

112021112

11121[()()]=+2()[()]()M m M m m L s s s m M M m g m M μμμμμμμμμ++-'=-++-+v ? (ii )1t t ≤,即卡车还未停下,重物就与车厢前壁发生碰撞 由⑨式的推导可知,条件1t t ≤可写成

2

120

2112()()2[()]v μμμμμ-+≤+-m M M L M m g

由匀减速运动学公式,⑥式成为

22020111

()22v v -=-+t a t t a t L

解得碰撞发生的时间

==t 在碰撞前的瞬间,卡车A 的速度1'v 和重物B 的速度2'v 分别为

1

010v v v '=-=-a t a

,2020v v v '=-=-a t a ?

由碰撞前后动量守恒,可得碰撞后重物B 和卡车A 的共同速度'v 为

2100m M m M μ''+'==+=-v v v v v

由冲量定理和以上两式得碰撞过程中重物B 对车厢前壁的冲量为

1()I M '''=-=v v ?

卡车运动时间为碰撞前后的两段时间之和,由t =?式可得

(ii)011t t g g

μμ'

=+

=v v ? 卡车总路程等于碰前和碰后两段路程之和

22(ii)

20101111222mL s t a t g g M m

μμ'=++=-+v v v ?

[另解,将卡车和重物视为一个系统,制动过程中它们之间的摩擦力和碰撞时的相互作用力

都是内力,水平外力只有地面作用于卡车的摩擦力

1)M m g μ+(。在此力作用下系统质心做加速度大小为g 1μ的匀减速运动,从开始到卡车和重物都停止时所经历的时间为

(ii)01t g

μ=v

?

系统质心做匀减速运动的路程为

20

12c x =g μ?v

设制动前卡车和重物的质心分别位于1x 和2x ;制动后到完全停下卡车运动了路程(ii)1s ,两个

质心分别位于(ii)1

11x x s '=+和(ii)

221+x x s L '=+。于是有 2(II)

0121211()=2c Mx mx Mx mx M m s mL

x M m M m M m g

μ''++++?-==+++v

由此解得

2(ii)

0112mL s g M m μ=-+v ?

]

评分参考:第(1)问10分,①②③④⑤式各2分;第(2)30分,⑥式2分,⑦⑧⑨⑩?????式各2分,?????式各2分。 四、(40分)如俯视图,在水平面内有两个分别以O 点

与O 1点为圆心的导电半圆弧内切于M 点,半圆O 的半

径为2a ,半圆O 1的半径为a ;两个半圆弧和圆O 的半径ON 围成的区域内充满垂直于水平面向下的匀强磁场(未画出),磁感应强度大小为B ;其余区域没有磁场。半径OP 为一均匀细金属棒,以恒定的角速度ω绕O 点顺时针旋转,旋转过程中金属棒OP 与两个半圆弧均接触良好。已知金属棒OP 电阻为R ,两个半圆弧的电阻可忽略。开始时P 点与M 点重合。在t (π

0t ω

≤≤

)时刻,半径OP 与半圆O 1交于Q 点。求

(1)沿回路QPMQ 的感应电动势;

(2)金属棒OP 所受到的原磁场B 的作用力的大小。 解:

(1)考虑从初始时刻0t =至时刻π

02t ω

≤≤,金属棒OP 扫过的磁场区域的面积为 11O QO OPM O QM S S S S ?=--扇形扇形①

式中,OPM S 扇形、1O QM S 扇形和1O QO S ?分别是扇形OPM 、扇形O 1QM 和1O QO ?的面积。由几何关系得

2OPM 1

()(2)2S t a ω=扇形②

12O QM 1

(2)2S t a ω=扇形③

1O QO (sin )(cos )S a t a t ωω?=④

由①②③④式得

21

(2sin2)2S t t a ωω=-⑤

通过面积S 的磁通量为

BS φ=⑥

由法拉第电磁感应定律得,沿回路QPMQ 的感应电动势为

d dt

φε=-

⑦ 式中,负号表示感应电动势沿回路逆时针方向(即沿回路QPMQ )。由⑤⑥⑦式得

(1cos2), 02

t a B t εωωω=--≤≤⑧

ππ2t ωω≤≤时,沿回路QPMQ 的感应电动势与π

2t ω

=

时的一样,即 2π

2, π2

a B t εωω=-≤≤⑨

(2)在t 时刻流经回路QPMQ 的电流为

1

i R ε

=

式中

12L R R

a

=? 这里,L 为PQ 的长。由几何关系得

π22cos , 02

L a a t t ωω=-≤≤? π

2,

π2

L a t ω=≤≤? 半径OP 所受到的原磁场B 的作用力的大小为

F iLB =?

由⑧⑩???式得

322π

(1cos2), 02a B F t t R ωωω=-≤≤?

由⑨⑩???式得

324π

, π.2a B F t R ωω=≤≤?

评分参考:第(1)问22分,①②③④⑤式各2分,⑥⑦式各4分,⑧⑨式各2分;

第(2)问18分,⑩式4分,???式各2分,?式4分,??式各2分。 五、(40分)某种回旋加速器的设计方案如俯视图a 所示,图中粗黑线段为两个正对的极板,其间存在匀强电场,两极板间电势差为U 。两个极板的板面中部各有一狭缝(沿OP 方向的狭长区域),带电粒子可通过狭缝穿越极板(见图b );两细虚线间(除开两极板之间的区域)既无电场也无磁场;其它部分存在匀强磁场,磁感应强度方向垂直于纸面。在离子源S 中产生的质量为m 、带电量为q (0q >)的离子,

由静止开始被电场加速,经狭缝中的O 点进入磁场区域,O 点到极板

右端的距离为D ,到出射孔P 的距离为bD (常数b 为大于2

图a

自然数)。已知磁感应强度大小在零到max B 之间可调,离子从离子源上方的O 点射入磁场区域,最终只能从出射孔P 射出。假设如果离子打到器壁或离子源外壁则即被吸收。忽略相对论效应。求

(1)可能的磁感应强度B 的最小值; (2)磁感应强度B 的其它所有可能值; (3)出射离子的能量最大值。 解:

(1)设离子从O 点射入磁场时的速率为v ,由能量守恒得

21

2qU m =v ①

由①式得

=

v ② 设离子在磁场中做匀速圆周运动的轨迹半径为r ,有

2

qB m r =v v ③

由②③式得

r =

2bD r >

或22

D bD

r << 则离子只能打到器壁或离子源外壁被吸收,不能从P 射出。若离子从O 射出后只运动半个圆周即从P 射出,则

2

bD r =

⑤ 将⑤式代入④式得,电子能够从P 出射,可能的磁感应强度B 的最小值为

min B

(2)若

2

D

r <

则离子将穿过上极板进入电场区域,被减速到零后,又重新反向加速至进入时的速率,从进入处再回到磁场区域。设这样的过程进行了k 次,然后离子将绕过两极板右端从下极板进入电场区域被加速,再穿过上极板进入磁场时能量增加到2qU ,运动半径增加到

1r =⑦

这样加速n 次后,离子做圆周运动的半径n r 为

n r =⑧

当满足条件

)2

n bD

kr r k r +==⑨ 或

r =

时,离子可从P 处射出。另一方面,显然有1k ≥,且

22(1)kr D k r ≤<+⑩

解得

2(1)2D D

r k k

<≤+?

由⑨⑩?式有

)

)

2(1)

2

2D bD D k k k k

+<

≤++?

解得

222

(1)1[(1)]1b k n b k b --≤<-+-?

由④?式可得

max

22

D a k r ≤

=

?

式中max r 是当max B B =时由④式定出的。因此k 为不大于2

a 的最大自然数2a ??????

2a k ??????

≤?

由④⑨式知,磁感应强度B 的其它所有可能值为

B =

=?

式中

{}{}{}2222222222222222

222

2

2

222

1(1)1(1)(1)1212

2(1)21(1)2(1)212(1)23(1)31

(1)3(1)31

3(1)2

(1)1(1)(1)1(1)22222k n

b b b b b b b b b b b b b b a a a a a b b b b b ----+------+-+-----+-+-??????????

??----+-+????????????????????

????

L L L M

M

M

M

M

M

L

2

2-?

(3)离子被电场加速了1n +次后,其出射能量为

(1)E n qU =+?

对于满足?式的k ,n 可以取到最大值为2[(1)]2b k b -+-,再由?式,可得出射离子的能量最大值为 2

max max

(1)(1)12b b a E n qU qU -+????

????=+=-??????????????

?

评分参考:第(1)问12分,①②③④⑤⑥式各2分;第(2)问23分,⑦⑧式各2分,⑨式4分,??????式各2分,?式3分;第(3)问5分,?式3分,?式2分。

六、(40分)1914年,弗兰克-赫兹用电子碰撞原子的方法使原子从低能级激发到高能级,从而证明了原子能级的存在。加速电子碰撞自由的氢原子,使某氢原子从基态激发到激发态。该氢原子仅能发出一条可见光波长范围(400nm 760nm :)内的光谱线。仅考虑一维正碰。 (1)求该氢原子能发出的可见光的波长; (2)求加速后电子动能k E 的范围;

(3)如果将电子改为质子,求加速质子的加速电压的范围。

已知1240nm eV hc =?,其中h 为普朗克常数,c 为真空中的光速;质子质量近似为电子质量的1836倍,氢原子在碰撞前的速度可忽略。 解:

(1)由氢原子的能级公式

2

13.6eV

, 1,2,n E n n =-

=L ① -3.40

-1.51

-0.850ev

可得氢原子的能级图如图所示。

可见光光子能量的上限1E '和下限2

E '分别为 11

1240nm eV

3.10eV 400nm

hc

E λ?'=

=

=②

2

2

1240nm eV

1.63eV 760nm

hc

E λ?'==

=③

要能观察到可见光范围内的光谱线,发生跃迁的两能级的能量之差应在可见光的能量范围

1.63eV ~3.10eV ④

内。要仅能观察到一条可见光范围内的光谱线,由氢原子的能级图可知,只能将氢原子激发到第二激发态,即能级

3n =⑤

氢原子第二激发态(3n =)到第一激发态(2n =)的能量差为

3232( 1.51eV)( 3.4eV) 1.89eV E E E =-=---=⑥

氢原子从第二激发态跃迁到第一激发态所发出的可见光的波长为

32

656nm hc

E λ=

=⑦ (2)要使氢原子能激发到能级3n =,需要提供的能量至少为 3131( 1.51eV)(13.60eV)12.09eV E E E =-=---=⑧

设电子质量为e m ,电子碰撞前后的速度分别为1v 和2v ,氢原子碰撞前后的速度分别为10u ≈(由题意)和2u ,电子因激发氢原子而损失的能量为E ?(被氢原子吸收为激发能)。由动量和能量守恒有 e 1e 22m m Mu =+v v ⑨

222

e 1e 22111222m m Mu E =++?v v ⑩ 由⑨⑩式消去2u ,得

222

e e 2e 12e e 1()2()20m M m m m m M M E +-+-+?=v v v v ?

此式是关于2v 的一元二次方程。注意到2v 为实的常量,故方程?的系数应满足条件

222e 1e e e e 1(2)4()[()2]0m m M m m m M M E --+-+?≥v v ?

化简得

2

e e 11(1)2k m E m E M

≡≥+?v ?

要使原子从基态仅激发到第二激发态,E ?应满足

3141E E E ≤?

式中31E 已由⑧式给出,而

4141(0.85eV)(13.60eV)12.75eV E E E =-=---=?

由???式得

e e 31k 41(1)(1)m m

E E E M M

+

≤<+? 由?式和题给条件得 k 12.10eV 12.76eV E ≤

(3)如果将电子改为质子,?式成为

p p 3141(1)(1)k m m E E E M

M

+

≤<+

?

式中p m 为质子的质量。由?式和题给条件得 k 24.17eV 25.49eV E ≤

设加速质子的加速电压为V 。由 k eV E =(e 为质子电荷)

和?式得

24.17V <25.49V V ≤?

评分参考:第(1)问14分,①②③④⑤⑥⑦式各2分;第(2)问20分,⑧⑨式各2分,⑩式各3分,?式2分,?式4分,?式2分,?式1分,??式各2分;第(3)问6分,???式各2分。

七、(40分)如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程(正循环指沿图中箭头所示的循环),其中自A 到B 为直线过程,自B 到

A 为等温过程。双原子理想气体的定容摩尔热容为5

2R ,R 为气体常量。

(1)求直线AB 过程中的最高温度;

(2)求直线AB 过程中气体的摩尔热容量随气体体积变化的关系式,说明气体在直线AB 过程各段体积范围内是吸热过程还是放热过程,确定吸热和放热过程发生转变时的温度c T ; (3)求整个直线AB 过程中所吸收的净热量和一个正循环过程中气体对外所作的净功。 解:

(1)直线AB 过程中任一平衡态的气体压强p 和体积V 满足方程

P 0P

000

00

222

V V P P P V P V -

-=

-- 此即

000

3

2P P P V V =

-① 根据理想气体状态方程有

PV RT ν=②

式中T 是相应的绝对温度。由①②式得

2

20000

000013392416P P PV T V PV V V R V RV R ννν??-??=-+=-+ ?

?????

③ 由③式知,当

03

4

V V =④

时,气体达到直线AB 过程中的最高温度

00

max 916PV T R

ν=

⑤ (2)由直线AB 过程的摩尔热容量m C 的定义有 m dQ C dT ν=⑥

由热力学第一定律有 dU dQ PdV =-⑦

由理想气体内能公式和题给数据有

52

V R

dU C dT dT νν

==⑧ 由①⑥⑦⑧⑨式得 0m 0053

122V P P dV dV C C R P V dT V dT νν??=+

=+- ???

⑨ 由③式两边微分得 0002(34)

RV dV

dT P V V ν=

-⑩ 由⑩式代入⑨式得 0m 02124342

V V R

C V V -=

-?

由⑥⑩?式得,直线AB 过程中, 在V 从

02V 增大到034V 的过程中,m 0C >,0dT dV >,故0dQ dV

>,吸热?

在V 从034V 增大到02124V 的过程中,m 0C <,0dT dV <,故0dQ

dV >,吸热?

在V 从

02124V 增大到0V 的过程中,m 0C >,0dT dV <,故0dQ

dV

<,放热 ? 由???式可知,系统从吸热到放热转折点发生在

c 021

24

V V V ==

处。由③式和上式得

2000

c 001335264P PV T V PV R V R νν??=

-+= ???

? (3)对于直线AB 过程,由⑥⑩式得 0m

0000

212421644V V dT V

dQ C dV P dV P dV dV V V ν-??

===- ???

? 将上式两边对直线过程积分得,整个直线AB 过程中所吸收的净热量为 0

00

20

0000

0/2/22162133448V V V V V

V Q P dV P V PV V V ????

=-

=-= ? ??

????直线? 直线AB 过程中气体对外所作的功为

00000013

()()2228P V W P V PV =+-=直线?

等温过程中气体对外所作的功为

000

/2

/2

0000

ln 222

V V V V V PV

dV W PdV P V =

=

=-?

?

等温? 一个正循环过程中气体对外所作的净功为

003ln2

()82

W W W PV =+=-直线等温?

评分参考:第(1)问10分,①②式各3分,④⑤式各2分;第(2)问20分,⑥⑦⑧⑨⑩?????式各2分;第(3)问10分,?????式各2分。

八、(40分)菲涅尔透镜又称同心圆阶梯透镜,它是由很多个同轴环带套在一起构成的,其迎光面是平面,折射面除中心是一个球冠外,其它环带分别是属

F

于不同球面的球台侧面,其纵剖面如右图所示。这样的结构可以避免普通大口径球面透镜既厚又重的缺点。菲涅尔透镜的设计主要是确定每个环带的齿形(即它所属球面的球半径和球心),各环带都是一个独立的(部分)球面透镜,它们的焦距不同,但必须保证具有共同的焦点(即图中F 点)。已知透镜材料的折射率为n ,从透镜中心O (球冠的顶点)到焦点F 的距离(焦距)为f (平行于光轴的平行光都能经环带折射后会聚到F 点),相邻环带的间距为d (d 很小,可忽略同一带内的球面像差;d 又不是非常小,可忽略衍射效应)。求 (1)每个环带所属球面的球半径和球心到焦点的距离; (2)该透镜的有效半径的最大值和有效环带的条数。 解:

(1)考虑单个球面的折射。如图,设某一与光轴距离为h 的光线平行于光轴Z 从折射率为n 的介质中射向半径为R 、球心位于C 点的球面,入射点为球面上的A 点,CA 为球面半径,入射角为α,球面

外是空气,折射角为β,折射线与Z 轴交点为F 。由A 作Z 轴的垂线,垂足为O 。由折射定律,有

sin sin n βα=, ①

在ACF ?中,由正弦定理有

α

βsin AF

sin CF =② 在AOF ?中,由勾股定理有

22OF AO AF +=③ 22AO CO CA +==R ④

OF CF CO -=,h =AO ,f =OF , ⑤

由①②③④⑤式得

22CF f h n +=⑥

R ==

在制作给定焦点和焦距的菲涅尔透镜时,应按⑥⑦式来确定各环带球面的球心位置和球半径,即对第k (0,1,2,k =L )个环带球台,其球心在光轴上与焦点的距离应为

C F k =

Z

球半径则为

k R =

特别地,位于透镜中心的环带(0k =)球心与焦点距离为 0C F nf =⑩

球半径为 0(1)R n f =-?

(2)当f 不变而h 取某一值m h 时,图中CAF ∠成为直角,这意味着光线的入射角达到全反射的临界角C α。在此情况下有

C 1sin n α=

=?

由?式得

m h =?

这就是透镜能够达到的最大有效半径。透镜的最大有效环带数m k

大整数

m k =? 评分参考:第(1)问27分,①式5分,②③④⑤⑥⑦⑧式各2分,⑨式4分,⑩?式各2分;第(2)问13分,?式5分,??式各4分。

第届全国中学生物理竞赛复赛试题及答案

第届全国中学生物理竞赛复赛试题及答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

第23届全国中学生物理竞赛复赛试卷 一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。现用支架固定一照相机,用以拍摄小球在空间的位置。每隔一相等的确定的时间间隔T 拍摄一张照片,照相机的曝光时间极短,可忽略不计。从所拍到的照片发现,每张照片上小球都处于同一位置。求小球开始下落处离玻璃管底部距离(用H 表示)的可能值以及与各H 值相应的照片中小球位置离玻璃管底部距离的可能值。 二、(25分)如图所示,一根质量可以忽略的细杆,长为2l ,两端和中心处分别固连着质量为m 的小球B 、D 和C ,开始时静止在光滑的水平桌面上。桌面上另有一质量为M 的小球A ,以一给定速度0v 沿垂直于杆DB 的方间与右端小球B 作弹性碰撞。求刚碰后小球A,B,C,D 的速度,并详细讨论以后可能发生的运动情况。 三、(23分)有一带活塞的气缸,如图1所示。缸内盛有一定质量的气体。缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是 绝热的,它们的热容量都不计。轴穿过气缸处不漏气。 如果叶片和轴不转动,而令活塞缓慢移动,则在这 种过程中,由实验测得,气体的压强p 和体积V 遵从以下的过程方程式 图1 其中a ,k 均为常量, a >1(其值已知)。可以由上式导出,在此过程中外界对气体做的功为 式中2V 和1V ,分别表示末态和初态的体积。 如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ?和经过的时间t ?遵从以 图2 下的关系式 式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。 上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示) 四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。图中1D 和2D 是理想的、点接触型二极管(不考虑二极管的电容),1C 和2C 是理想电容器,它们的电容都为C ,初始时都不带电,G 点接地。现在A 、G 间接上一交变电源,其电压A u ,随时间t 变化的图线如图2所示.试

2020年第27届全国中学生物理竞赛复赛试卷及答案 精品

第 27 届全国中学生物理竞赛复赛试卷 本卷共九题,满分 160 分.计算题的解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后结果的不能得分.有数字计算的题.答案中必须明确写出数值和单位.填空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程. 一、( 15 分)蛇形摆是一个用于演示单摆周期与摆长关系的实验仪器(见图).若干个摆球位于同一高度并等间距地排成一条直线,它们 的悬挂点在不同的高度上,摆长依次减小.设重 力加速度 g = 9 . 80 m/ s2 , 1 .试设计一个包含十个单摆的蛇形摆(即求 出每个摆的摆长),要求满足: ( a )每个摆的 摆长不小于 0 . 450m ,不大于1.00m ; ( b ) 初始时将所有摆球由平衡点沿 x 轴正方向移动 相同的一个小位移 xo ( xo <<0.45m ) ,然后同 时释放,经过 40s 后,所有的摆能够同时回到初 始状态. 2 .在上述情形中,从所有的摆球开始摆动起,到它们的速率首次全部为零所经过的时间为________________________________________. 二、( 20 分)距离我们为 L 处有一恒星,其质量为 M ,观测发现其位置呈周期性摆动,周期为 T ,摆动范围的最大张角为△θ.假设该星体的周期性摆动是由于有一颗围绕它作圆周运动的行星引起的,试给出这颗行星的质量m所满足的方程. 若 L=10 光年, T =10 年,△θ = 3 毫角秒, M = Ms (Ms为太阳质量),则此行星的质量和它运动的轨道半径r各为多少?分别用太阳质量 Ms 和国际单位 AU (平均日地距离) 作为单位,只保留一位有效数字.已知 1 毫角秒=1 1000角秒,1角秒= 1 3600 度,1AU=1.5×108km, 光速 c = 3.0 ×105km/s.

26全国中学生物理竞赛复赛试题及答案(全Word版)

最新全国中学生物理竞赛复赛理论考试试题 说明:所有答案 (包括填空)必须写在答题纸上,写在试题纸上无效。 一、(12分)2013年6月20日,“神舟十号”女航天员王亚平在“天宫一号”目标飞行器里成功进行了我国首次太空授课. 授课中的一个实验展示了失重状态下液滴的表面张力引起的效应. 视频中可发现漂浮的液滴处于周期性的“脉动”中(平时在地球表面附近,重力的存在会导致液滴下降太快,以至于很难观察到液滴的这种“脉动”现象). 假设液滴处于完全失重状态,液滴的上述“脉动”可视为液滴形状的周期性的微小变化(振动),如图所示. (1)该液滴处于平衡状态时的形状是__________; (2)决定该液滴振动频率f 的主要物理量是________________________________________; (3)按后面括号中提示的方法导出液滴振动频率与上述物理量的关系式.(提示:例如,若认为,,a b c 是决定该液滴振动频率的相互独立的主要物理量,可将液滴振动频率f 与,,a b c 的关系式表示为αβγ∝f a b c ,其中指数,,αβγ是相应的待定常数.) 二、(16分) 一种测量理想气体的摩尔热容比/p V C C γ≡的方法(Clement-Desormes 方法)如图所示:大瓶G 内装满某种理想气体,瓶盖上通有一个灌气(放气)开关H ,另接出一根U 形管作为压强计M .瓶内外的压强差通过U 形管右、左两管液面的高度差来确定. 初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U 形管液面的高度差i h .然后打开H ,放出少量气体,当瓶内外压强相等时,即刻关闭H . 等待瓶内外温度又相等时,记录此时U 形管液面的高度差f h .试由这两次记录的实验数据i h 和f h ,导出瓶内 气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U 形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化) 三、(20分)如图所示,一质量为m 、底边AB 长为b 、等腰边长为a 、质量均匀分布的等腰三角形平板,可绕过光滑铰链支点A 和B 的水平轴x 自由转动;图中原点O 位于AB 的中点,y 轴垂直于板面斜向上,z 轴在板面上从原点O 指向三角形顶点C . 今在平板上任一给定点000M (,0,)x z 加一垂直于板面的拉 振动的 液滴 M 0 A B x Q ? O y z C

第24届全国中学生物理竞赛复赛试题(WORD版)

第24届全国中学生物理竞赛复赛试卷 (本题共七大题,满分160分) 一、(20分)如图所示,一块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹簧的下端与地面固定连接。平板被限制在两条竖直光滑的平行导轨之间(图中未画出竖直导轨),从而只能地竖直方向运动。平板与弹簧构成的振动系统的振动周期s T 00.2=。一小球B 放在光滑的水平台面上,台面的右侧边缘正好在平板P 端的正上方,到P 端的距离为m h 80.9=。平板静止在其平衡位置。水球B 与平板PQ 的质量相等。现给小球一水平向右的速度0μ,使它从水平台面抛出。已知小球B 与平板发生弹性碰撞,碰撞时间极短,且碰撞过程中重力可以忽略不计。要使小球与平板PQ 发生一次碰撞而且只发生一次碰撞,0μ的值应在什么范围内?取2 /8.9s m g = 二、(25分)图中所示为用三角形刚性细杆AB 、BC 、CD 连成的平面连杆结构图。AB 和CD 杆可分别绕过A 、D 的垂直于纸面的固定轴转动,A 、D 两点位于同一水平线上。BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。当AB 杆绕A 轴以恒定的角速度ω转到图中所示的位置时,AB 杆处于竖直位置。BC 杆与CD 杆都与水平方向成45°角,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。求此时C 点加速度c a 的大小和方向(用与CD 杆之间的夹角表示) 三、(20分)如图所示,一容器左侧装有活门1K ,右侧装有活塞B ,一厚度可以忽略的隔板M 将容器隔成a 、b 两室,M 上装有活门2K 。容器、隔板、活塞及活门都是绝热的。隔板和活塞可用销钉固定,拔掉销钉即可在容器内左右平移,移动时不受摩擦作用且不漏气。整个容器置于压强为P 0、温度为T 0的大气中。

《全国中学生物理竞赛大纲》2020版

《全国中学生物理竞赛大纲2020版》 (2020年4月修订,2020年开始实行) 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2020年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 力学 1.运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度 曲率半径角速度和※角加速度 相对运动伽里略速度变换 2.动力学 重力弹性力摩擦力惯性参考系 牛顿第一、二、三运动定律胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出) ※非惯性参考系※平动加速参考系中的惯性力 ※匀速转动参考系惯性离心力、视重 ☆科里奥利力 3.物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件 ☆虚功原理 4.动量 冲量动量质点与质点组的动量定理动量守恒定律※质心 ※质心运动定理 ※质心参考系 反冲运动 ※变质量体系的运动 5.机械能 功和功率

动能和动能定理※质心动能定理 重力势能引力势能 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)弹簧的弹性势能功能原理机械能守恒定律 碰撞 弹性碰撞与非弹性碰撞恢复系数 6.※角动量 冲量矩角动量 质点和质点组的角动量定理和转动定理 角动量守恒定律 7.有心运动 在万有引力和库仑力作用下物体的运动 开普勒定律 行星和人造天体的圆轨道和椭圆轨道运动 8.※刚体 刚体的平动刚体的定轴转动 绕轴的转动惯量 平行轴定理正交轴定理 刚体定轴转动的角动量定理刚体的平面平行运动9.流体力学 静止流体中的压强 浮力 ☆连续性方程☆伯努利方程 10.振动 简谐振动振幅频率和周期相位 振动的图像 参考圆简谐振动的速度 (线性)恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成 阻尼振动受迫振动和共振(定性了解) 11.波动 横波和纵波 波长频率和波速的关系 波的图像 ※平面简谐波的表示式 波的干涉※驻波波的衍射(定性) 声波 声音的响度、音调和音品声音的共鸣乐音和噪声

2016全国初中物理竞赛复赛试题(含答案)

2016全国初中物理竞赛复赛试题(含答案) 初中物理是义务教育的基础学科,一般从初二开始开设这门课程,教学时间为两年。一般也是中考的必考科目。随着新高考/新中考改革,学生的综合能力越来越重要,录取方式也越来越多,三位一体录取方式十分看重学生的课外奖项获取。万朋教育小编为初中生们整理了2016年全国初中物理竞赛试卷和答案,希望对您有所帮助。 第29届全国中学生物理竞赛复赛试卷 本卷共8题,满分160分。 一、(17分)设有一湖水足够深的咸水湖,湖面宽阔而平静,初始时将一体积很小的匀质正立方体物块在湖面上由静止开始释放,释放时物块的下底面和湖水表面恰好相接触。已知湖水密度为ρ;物块边长为b ,密度为'ρ,且ρρ<'。在只考虑物块受重力和液体浮力作用的情况下,求物块从初始位置出发往返一次所需的时间。 解: 由于湖面足够宽阔而物块体积很小,所以湖面的绝对高度在物块运动过程中始终保持不变,因此,可选湖面为坐标原点并以竖直向下方向为正方向 建立坐标系,以下简称x 系. 设物块下底面的坐标为x ,在物块未完全浸没入湖水时,其所受到的浮力为 2b f b x g ρ= ( x b ≤) (1) 式中 g 为重力加速度.物块的重力为 3 g f b g ρ'= (2) 设物块的加速度为a ,根据牛顿第二定律有

3 g b b a f f ρ'=- (3) 将(1)和(2)式代入(3)式得 g a x b b ρρρρ'?? =- - ?'? ? (4) 将x 系坐标原点向下移动/b ρρ' 而建立新坐标系,简称X 系. 新旧坐标的关 系为 X x b ρρ ' =- (5) 把(5)式代入(4)式得 g a X b ρρ=-' (6) (6)式表示物块的运动是简谐振动. 若0X =,则0a =,对应于物块的平衡位置. 由(5)式可知,当物块处于平衡位置时,物块下底面在x 系中的坐标为 0x b ρρ ' = (7) 物块运动方程在 X 系中可写为 ()()cos X t A t ω?=+ (8) 利用参考圆可将其振动速度表示为 ()()sin V t A t ωω?=-+ (9) 式中ω为振动的圆频率 'g b ρωρ= (10) 在(8)和(9)式中 A 和?分别是振幅和初相位,由初始条件决定. 在物块刚被释 放时,即0t =时刻有x =0,由(5)式得

全国中学生物理竞赛决赛试题及答案

第27届全国中学生物理竞赛决赛试题及答案 一、(25分)填空题 1.一个粗细均匀的细圆环形橡皮圈,其质量为M,劲度系数为k,无形变时半径为R。现将它用力抛向空中,忽略重力的影响,设稳定时其形状仍然保持为圆形,且在平动的同时以角速度ω绕通过圆心垂直于圆面的轴线匀速旋转,这时它的半径应为。 2.鸽哨的频率是f。如果鸽子飞行的最大速度是u,由于多普勒效应,观察者可能观测到的频率范围是从到。(设声速为V。) 3.如图所示,在一个质量为M、内部横截面积为A 的竖直放置的绝热气缸中,用活塞封闭了一定量温 度度为 T的理想气体。活塞也是绝热的,活塞质量 以及活塞和气缸之间的摩擦力都可忽略不计。已知 大气压强为 p,重力加速度为g,现将活塞缓慢上提,当活塞到达气 缸开口处时,气缸刚好离开地面。已知理想气体在缓慢变化的绝热过程中pVγ保持不变,其中p是气体的压强,V是气体的体积,γ是一常数。根据以上所述,可求得活塞到达气缸开口处时气体的温度为。

4.(本题答案保留两位有效数字)在电子显微镜中,电子束取代了光束被用来“照射”被观测物。要想分辨101.010m -?(即原子尺度)的结构,则电子的物质波波长不能大于此尺度。据此推测电子的速度至少需被加速到 。如果要想进一步分辨121.010m -?尺度的结构,则电子的速度至少需被加速到 ,且为使电子达到这一速度,所需的加速电压为 。 已知电子的静止质量 319.110kg e m -=?,电子的电量 191.610C e -=-?,普朗克常量346.710J s h -=??,光速813.010m s c -=??。

二、(20分)图示为一利用传输带输送货物的装置,物块(视为质点)自平台经斜面滑到一以恒定速度v运动的水平长传输带上,再由传输带输送到远处目的地,已知斜面高 2.0m h=,水平边长 4.0m L=,传输带宽 2.0m d=,传输带的运动速度 3.0m/s v=。物块与斜面间的摩擦系数 10.30 μ=。物块自斜面顶端下滑的初速度为零。沿斜面下滑的速度方向与传输带运动方向垂直。设斜面与传输带接触处为非常小的一段圆弧,使得物块通过斜面与传输带交界处时其速度的大小不变,重力加速度2 10m/s g=。 1.为使物块滑到传输带上后不会从传输边缘脱离,物块与传输带之 间的摩擦系数 2 μ至少为多少? 2.假设传输带由一带有稳速装置的直流电机驱动,与电机连接的电源的电动势200V E=,内阻可忽略;电机的内阻10 R=Ω,传输带空载(无 输送货物)时工作电流 02.0A I=,求当货物的平均流量(单位时间内输送货物的质量),稳定在640kg/s 9 η=时,电机的平均工作电流等于多少?假设除了货物与传输带之间的摩擦损耗和电机的内阻热损耗外,其它部分的能量损耗与传输带上的货物量无关。

第28届全国中学生物理竞赛复赛试题及答案(word版)

第28届全国中学生物理竞赛复赛试题 一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年。1986年它过近日点P0时,与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离。经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°.已知:1AU=1.50×1011m,引力常量G=6.67×10-11m3?kg-1?s-2,太阳质量m S=1.99×1030kg.试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。 二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦因数为μA, B、D两点与光滑竖直墙面接触,杆A B和CD接触处的静摩擦因数为μC,两杆的质量均为m,长度均为l. (1)已知系统平衡时AB杆与墙面夹角θ,求CD杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。 (2)若μA=1.00,μC=0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。

三、(25分)人造卫星绕星球运行的过程中,为了保持其对称轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴旋转。但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转。减慢或者消除卫星旋转的一种方法是所谓的“YO—YO”消旋法,其原理如图。 设卫星是一半径为R、质量为M的薄壁圆筒,其横截面如图所示。图中O是圆筒的对称轴。两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q、Q'(位于圆筒直径两端)处,另一端各拴有一质量为m/2的小球。正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P0、P0'处,与卫星形成一体,绕卫星的对称轴旋转。卫星自转的角速度为ω0.若要使卫星减慢或停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。当卫星转速逐渐减小到零时,立即使绳与卫星脱离,接触小球与卫星的联系,于是卫星停止转动。已知此时绳与圆筒的相切点刚好在Q、Q'处。试求: (1)当卫星角速度减至ω时绳拉直部分的长度l; (2)绳的总长度L; (3)卫星从ω0到停转所经历的时间t. m /2

第29届全国高中物理竞赛复赛试题及答案

一、 由于湖面足够宽阔而物块体积很小,所以湖面的绝对高度在物块运动过程中始终保持不变,因此,可选湖面为坐标原点并以竖直向下方向为正方向建立坐标系,以下简称x 系. 设物块下底面的坐标为x ,在物块未完全浸没入湖水时,其所受到的浮力为 2b f b x g ρ= (x b ≤) (1) 式中g 为重力加速度.物块的重力为 3g f b g ρ'= (2) 设物块的加速度为a ,根据牛顿第二定律有 3g b b a f f ρ'=- (3) 将(1)和(2)式代入(3)式得 g a x b b ρρρρ'??=-- ?'?? (4) 将x 系坐标原点向下移动/b ρρ' 而建立新坐标系,简称X 系. 新旧坐标的关系为 X x b ρρ'=- (5) 把(5)式代入(4)式得 g a X b ρρ=-' (6) (6)式表示物块的运动是简谐振动. 若0X =,则0a =,对应于物块的平衡位置. 由(5)式可知,当物块处于平衡位置时,物块下底面在x 系中的坐标为 0x b ρρ '= (7) 物块运动方程在X 系中可写为

()()cos X t A t ω?=+ (8) 利用参考圆可将其振动速度表示为 ()()sin V t A t ωω?=-+ (9) 式中ω为振动的圆频率 ω= (10) 在(8)和(9)式中A 和?分别是振幅和初相位,由初始条件决定. 在物块刚被释放时,即0t =时刻有x =0,由(5)式得 (0)X b ρρ '=- (11) (0)0V = (12) 由(8)至(12)式可求得 A b ρρ '= (13) ?=π (14) 将(10)、(13)和(14)式分别代人(8)和(9)式得 ()()cos X t b t ρωρ '=+π (15) ()()V t t ω=+π (16) 由(15)式可知,物块再次返回到初始位置时恰好完成一个振动周期;但物块的运动始终由(15)表示是有条件的,那就是在运动过程中物块始终没有完全浸没在湖水中. 若物块从某时刻起全部浸没在湖水中,则湖水作用于物块的浮力变成恒力,物块此后的运动将不再是简谐振动,物块再次返回到初始位置所需的时间也就不再全由振动的周期决定. 为此,必须研究物块可能完全浸没在湖水中的情况. 显然,在x 系中看,物块下底面坐标为b 时,物块刚好被完全浸没;由(5)式知在X 系中这一临界坐标值为 b 1X X b ρρ'??==- ?? ? (17)即物块刚好完全浸没在湖水中时,其下底面在平衡位置以下b X 处. 注意到在 振动过程中,物块下底面离平衡位置的最大距离等于振动的振蝠A ,下面分两种情况讨论: I .b A X ≤. 由(13)和(17)两式得 ρρ'≥2 (18) 在这种情况下,物块在运动过程中至多刚好全部浸没在湖水中. 因而,物块从初始位置起,经一个振动周期,再次返回至初始位置. 由(10)式得振动周期 22T ωπ= = (19)物块从初始位置出发往返一次所需的时间

历届全国初中物理竞赛(物态变化)

最近十年初中应用物理知识竞赛题分类解析专题3--物态变化 一.选择题 1. (2013全国初中应用物理知识竞赛)在严寒的冬季,小明到滑 雪场滑雪,恰逢有一块空地正在进行人工造雪。他发现造雪机在工作 过程中,不断地将水吸入,并持续地从造雪机的前方喷出“白雾”, 而在“白雾”下方,已经沉积了厚厚的一层“白雪”,如图1所示。 对于造雪机在造雪过程中,水这种物质发生的最主要的物态变化,下 图1 列说法中正确的是( ) A.凝华 B.凝固 C.升华 D.液化 答案:B 解析:造雪机在造雪过程中,水这种物质发生的最主要的物态变化是凝固,选项B正确。2.(2012全国初中应用物理知识竞赛预赛)随着人民生活水平的提高,饭桌上的菜肴日益丰富,吃饭时发现多油的菜汤与少油的菜汤相比不易冷却。这主要是因为【】 A、油的导热能力比较差 B、油层阻碍了热的辐射 C、油层和汤里的水易发生热交换 D、油层覆盖在汤面,阻碍了水的蒸发 答案:D 解析:多油的菜汤不易冷却的原因是油层覆盖在汤面,阻碍了水的蒸发,选项D正确。 3.(2012全国初中应用物理知识竞赛)我国不少地区把阴霾天气现象并入雾,一起作为灾害性天气,统称为“雾霾天气”。关于雾和霾的认识,下列说法中正确的是() A.霾是大量的小水滴或冰晶浮游在近地面空气层中形成的 B.雾和霾是两种不同的天气现象 C.雾是由悬浮在大气中的大量微小尘粒、烟粒或盐粒等颗粒形成的 D.雾和霾是同一个概念的两种不同说法 解析:雾是大量的小水滴或冰晶浮游在近地面空气层中形成的,霾是由悬浮在大气中的大量微小尘粒、烟粒或盐粒等颗粒形成的,雾和霾是两种不同的天气现象,选项B正确。 答案:.B 4(2011全国初中应用物理知识竞赛河南预赛)如图所示的4种物态变化中,属于放热过程的是,( )

第十九届全国中学生物理竞赛复赛试题(含答案)

第十九届全国中学生物理竞赛复赛试题 一、(20分)某甲设计了1个如图复19-1所示的“自动喷泉”装置,其中A 、B 、C 为3个容器,D 、E 、F 为3根细管,管栓K 是关闭的.A 、B 、C 及细管D 、E 中均 盛有水,容器水面的高度差分别为1h 和1h 如图所示.A 、B 、C 的截 面半 径为12cm ,D 的半径为0.2cm .甲向同伴乙说:“我若拧开管栓K ,会有水从细管口喷出.”乙认为不可能.理由是:“低处的水自动走向高外,能量从哪儿来?”甲当即拧开K ,果然见到有水喷出,乙哑口无言,但不明白自己的错误所在.甲又进一步演示.在拧开管栓K 前,先将喷管D 的上端加长到足够长,然后拧开K ,管中水面即上升,最后水面静止于某个高度处. (1).论证拧开K 后水柱上升的原因. (2).当D 管上端足够长时,求拧开K 后D 中静止水面与A 中水面的高度差. (3).论证水柱上升所需能量的来源. 二、 (18 分) 在图复19-2中,半径为R 的圆柱形区域内有匀强磁场,磁场方向垂直纸面指向纸外, 磁感应强度B 随时间均匀变化,变化率/B t K ??=(K 为一正值常量),圆柱形区外空间没有磁场,沿图中AC 弦的方向画一直线,并向外延长,弦AC 与半径OA 的夹角/4απ=.直线上有一任意点,设该点与A 点的距离为x ,求从A 沿直线到该点的电动势的大小. 三、(18分)如图复19-3所示,在水平光滑绝缘的桌面上,有三个带正电的质点1、2、3,位于边长为l 的等边三角形的三个顶点处。C 为三角形的中心,三个质点的质量皆为m ,带电量皆为q 。质点 1、3之 间和2、3之间用绝缘的轻而细的刚性杆相连,在3的连接处为无摩擦的铰链。已知开始时三个质点的速度为零,在此后运动过程中,当质点3运动到C 处时,其速度大小为多少? 四、(18分)有人设计了下述装置用以测量线圈的自感系数.在图复19-4-1中,E 为电压可调的直流电源。K 为开关,L 为待测线圈的自感系数,L r 为线圈的直流电阻,D 为理想二极管,r 为用电阻丝做成的电阻器的电阻,A 为电流表。将图复19-4-1中a 、b 之间的电阻线装进图复19-4-2所示的试管1内,图复19-4-2中其它装置见图下说明.其中注射器筒5和试管1组成的密闭容器内装有

第29届全国中学生物理竞赛决赛试题及答案(word版)

29届全国中学生物理竞赛决赛试题 panxinw 整理 一、(15分) 如图,竖直的光滑墙面上有A 和B 两个钉子,二者处于同一水平高度,间距为l ,有一原长为l 、劲度系数为k 的轻橡皮筋,一端由A 钉固定,另一端系有一质量为m=g kl 4的小 球,其中g 为重力加速度.钉子和小球都可视为质点,小球和任何物体碰 撞都是完全非弹性碰撞而且不发生粘连.现将小球水平向右拉伸到与A 钉 距离为2l 的C 点,B 钉恰好处于橡皮筋下面并始终与之光滑接触.初始时刻小球获得大小为20gl v 、方向竖直向下的速度,试确定此后小球沿 竖直方向的速度为零的时刻.

二、(20分) 如图所示,三个质量均为m的小球固定于由刚性轻质杆构成的丁字形架的三个顶点A、B和C处.AD ⊥BC,且AD=BD=CD=a,小球可视为质点,整个杆球体系置于水平桌面上,三个小球和桌面接触,轻质杆架 悬空.桌面和三小球之间的静摩擦和滑动摩擦因数均为μ,在AD杆上距A点a/4 1.试论证在上述推力作用下,杆球体系处于由静止转变为运动的临界状态时, 三球所受桌面的摩擦力都达到最大静摩擦力; 2.如果在AD杆上有一转轴,随推力由零逐渐增加,整个装置将从静止开始绕 该转轴转动.问转轴在AD杆上什么位置时,推动该体系所需的推力最小,并求出 该推力的大小.

三、(20分) 不光滑水平地面上有一质量为m的刚性柱体,两者之间的摩擦因数记为μ.柱体正视图如图所示,正视图下部为一高度为h的矩形,上部为一半径为R的半圆形.柱体上表面静置一质量同为m的均匀柔软的链条,链条两端距地面的高度均为h/2,链条和柱体表面始终光滑接触.初始时,链条受到微小扰动而沿柱体右侧面下滑.试求在链条开始下滑直至其右端接触地面之前的过程中,当题中所给参数满足什么关系时, 1.柱体能在地面上滑动; 2.柱体能向一侧倾倒; 3.在前两条件满足的情形下,柱体滑动先于倾倒发生.

22全国中学生物理竞赛复赛试题及答案

最新 全国中学生物理竞赛复赛试题 一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g . 二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量; 2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件. 三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令m L λ= 表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω= 式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值. 2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值. 3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g . 提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为

第25届全国中学生物理竞赛复赛试题及答案

2008年第25届全国中学生物理竞赛复赛试卷 本卷共八题,满分160分 一、(15分) 1、(5分)蟹状星云脉冲星的辐射脉冲周期是0.033s 。假设它是由均匀分布的物质构成的球体,脉冲周期是它的旋转周期,万有引力是唯一能阻止它离心分解的力,已知万有引力常量 113126.6710G m kg s ---=???,由于脉冲星表面的物质未分离,故可估算出此脉冲星密度的下限是3kg m -?。 2、(522C -?,电荷量q 1洁的形式F q =C 。 3、(5强度B 当B 。 二、(21圆轨道,高 5 31 f H =1所示)使卫星以后的近地点点火,使卫星加速和变轨,抬高远地点,相继进入24小时轨道、转移轨道(分别如图中曲线3、4、5所示)。已知卫星质量32.35010m k g =?,地球半径 36.37810R km =?,地面重力加速度29.81/g m s =,月球半径31.73810r km =?。 1、试计算16小时轨道的半长轴a 和半短轴b 的长度,以及椭圆偏心率e 。 2、在16小时轨道的远地点点火时,假设卫星所受推力的方向与卫星速度方向相同,而且点火时间很短,可以认为椭圆轨道长轴方向不变。设推力大小F=490N ,要把近地点抬高到600km ,问点火时间应持续多长? 3、试根据题给数据计算卫星在16小时轨道的实际运行周期。 4、卫星最后进入绕月圆形轨道,距月面高度H m 约为200km ,周期T m =127分钟,试据此估算月球质量与地球质量之比值。

三、(22分)足球射到球门横梁上时,因速度方向不同、射在横梁上的位置有别,其落地点也是不同的。已知球门的横梁为圆柱形,设足球以水平方向的速度沿垂直于横梁的方向射到横梁上,球与横梁间的滑动摩擦系数0.70μ=,球与横梁碰撞时的恢复系数e=0.70。试问足球应射在横梁上什么位置才能使球心落在球门线内(含球门上)?足球射在横梁上的位置用球与横梁的撞击点到横梁轴线的垂线与水平方向(垂直于横梁的轴线)的夹角θ(小于90)来表示。不计空气及重力的影响。 四、(20分)图示为低温工程中常用的一种气体、蒸气压联合温度计的原理示意图,M 为指针压力表,以V M 表示其中可以容纳气体的容积;B 为测温饱,处在待测温度的环境中,以V B 表示其体积;E 为贮气容器,以V E 表示其体积;F 为阀门。M 、E 、B 由体积可忽略的毛细血管连接。在M 、E 、B 均处在室温T 0=300K 时充以压强50 5.210p Pa =?的氢气。假设氢的饱和蒸气仍遵从理想气体状态方125K 示的压强p 2时压力表M 在设25V T K =25K 时,3、的800五、(20个电子,时刻刚好到达电容器的左极板。电容器的两个极板上各开一个小孔,使电子束可以不受阻碍地穿过电容器。两极板图所示的周期性变化的电压AB V (AB A B V V V =-,图中只画出了一个周期的图线),电压的最大值和最小值分别为V 0和-V 0,周期为T 。若以τ表示每个周期中电压处于最大值的时间间隔,则电压处于最小值的时间间隔为T -τ。已知τ的值恰好使在V AB 变化的第一个周期内通过电容器到达电容器右边的所有的电子,能在某一时刻t b 形成均匀分布的一段电子束。设电容器两极板间的距离很小,电子穿过电容器所需要的时间可以忽略,且206mv eV =,不计电子之间的相互作用及重力作用。 1、满足题给条件的τ和t b 的值分别为τ=T ,t b =T 。 2、试在下图中画出t=2T 那一时刻,在0-2T 时间内通过电容器的电子在电容器右侧空间形成的电流I ,随离开右极板距离x 的变化图线,并在图上标出图线特征点的纵、横坐标(坐标的数字保留到小数点后第二位)。取x 正向为电流正方向。图中x=0处为电容器的右极板B 的小孔所在的位置,

第37届全国中学生物理竞赛复赛试题解析,附试卷及答案

总评 这套题作为复赛题的难度还是比较大的。从这套题我们大概可以看出来,计算量增大、基础知识向大学普通物理靠拢(甚至直接用普通物理作为最底层的基础)、微积分作为最基本的数学工具、题目模型直接采用现实科研前沿模型已经成为物理竞赛的趋势。这一套题从题型、模型新颖程度、计算量和阅读分析能力上来看逐渐向国际比赛的风格靠拢,是一套非常优秀的考题(虽然对于基础不扎实的考生来说并不友好)。 第一题 热学题,采用了现实生活中的装置作为模型,比较考验抽象出模型的能力。该题计算量较大,加上需要自己理解模型,对于未经过此类建模计算题目训练的同学难度较大。较有区分度。 第二题 这套卷子为数不多的较为常规的题目。第一问考察刚体的动力学,第二题运动学分析。考查基础知识,对刚体力学基础扎实的同学来说应该不难。但要注意计算的仔细程度,第二问的运动学量矢量运算稍显复杂。 第三题 考察交流电路系统。需要对交流电路的微分方程有一个扎实的基础知识。虽然这道题给出了解的形式降低了一部分难度,但是具体的计算量还是较大的。对于理解谐振系统的解的物理意义的要求也很高。同时交流电也是一个冷门考点,如果考生在备赛的时候忽略了这一部分知识的复习,那么这道题拿到高分的希望渺茫。 第四题 基础的高能粒子物理题目。回旋加速器应该是很常见的模型,具体原理应该要求考生掌握。这套卷子中的常规送分题目,要把握好。 第五题

相对论题目,内容比较基础,但涉及到繁杂的参照系变换。对于在平时学习中弄不清参照系变换的考生有极大的考验。并且由于过程繁杂,这道题对考生的细心程度和阅读理解能力造成了了不小的考验。 第六题 光学题,并且和相对论结合。这道题的模型和科研前沿结合较为紧密,并考察了光在介质中的传播的相对论变换。计算量相对不大,但对于平时只练习常规题目的考生来说是个很大的挑战。 第七题 引力波。这直接用了近年来的科研最前沿的模型。但冷静分析后在这道题里面引力波只是一个“能量损失的原因”,并不需要分析引力波的具体物理机制。第一问考察量纲分析的基础知识,后两问是一个能量逐渐损失的二体运动,需要由能量损失计算角速度随时间的关系然后积分求角位移。物理实质实际上很简单,但计算量较大。 第八题 实际上如果学过光的偏振的话,这道题实际上很简单,都是基础知识,除了阅读量比较大。但问题是……它考的是偏振。光的偏振是比较难的知识,在竞赛中也是新加入考纲,以前考的并不多(或者是复赛从来没考过?),加上这是最后一题,考虑到紧张等其他因素,没学好这一部分知识的同学基本上不会得到很多分数…… 试卷

历届全国初中物理竞赛(浮力)

历届全国初中物理竞赛 (浮力) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

最近十年初中应用物理知识竞赛题分类解析专题10--浮力 一、选择题 1. (2013全国初中应用物理知识竞赛预赛题)下列各种现象与其涉及物理知识之间的关系中,说法错误的是 ( ) A.高原反应——大气压和海拔高度的关系 B.飞机飞行时获得升力——流体压强和流速的关系 C.水下潜水艇能够上浮——液体压强和深度的关系 D.利用高压锅容易将饭煮熟——沸点和气体压强的关系 1.答案:C 解析:水下潜水艇能够上浮,是由于浮力大于重力,选项C说法错误。 2. (2013全国初中应用物理知识竞赛预赛题)如图7所示:在研究浮力的大小时,将浮于水面的盆子慢慢向下按,用力越大,盆子浸入水中的部分越多。根据以上事实,下列猜想最符合研究目的的是 A.用力越大,物体排开水的体积越大 B.液体密度越大,物体所受浮力越大 C.物体的体积越大,所受浮力越大 D.物体排开水越多,所受浮力越大 2. 答案:D 解析:用力越大,物体排开水的体积越大,但是不符合研究浮力的大小的目的。根据将浮于水面的盆子慢慢向下按,用力越大,盆子浸入水中的部分越多,不能得出液体密度越大,物体所受浮力越大,不能得出物体的体积越大,所受浮力越大。将浮于水面的盆子慢慢向下按,用力越大,盆子浸入水中的部分越多,说明物体排开水越多。而用力大,说明所受浮力越大。选项D正确。

3.设想从某一天起,地球的引力减小一半,那么对于漂浮在水面上的船来说,下列说法中正确的是 A.船受到的重力将减小,船的吃水深度仍不变 B.船受到的重力将减小,船的吃水深度也减小 C.船受到的重力将不变,船的吃水深度也不变 D.船受到的重力将不变,船的吃水深度将减小 答案:A解析:对于漂浮在水面上的船来说,所受浮力等于船的重力;若地球的引力减小一半,其g值减小一半,船受到的重力将减小,船的吃水深度仍不变,选项A正确。 4.如图所示,将底面半径为2R的圆柱形薄壁容器放在水平桌面上,把高为h。密度为ρ(ρ<ρ水),半径为R的实心圆柱体木块竖直放在容器中,然后向容器内注水,则A.注水前,木块对容器底的压力为4πR2ρgh B.注水前,木块对容器底的压强为2ρgh C.若使木块竖直漂浮,向容器中注入水的质量至少为πR2ρh D.若使木块竖直漂浮,向容器中注入水的质量至少为3πR2ρh 答案:D 解析:根据柱体压强公式,注水前,木块对容器底的压强为ρgh,压力为 πR2ρgh,选项AB错误;若使木块竖直漂浮,由阿基米德定律,木块排开水的重力等于πR2ρgh,由于圆柱形薄壁容器底面是实心圆柱体木块底面面积的4倍,所以,向容器中注入水的质量至少为3πR2ρh,选项D正确C错误。 5.甲、乙两个圆柱形容器盛有相同深度的液体,放置于水平桌面上,如图7所示。甲、乙两容器的底面积分别为S1和S2,且2S1=3S2。甲 容器中液体的密度为ρ1,液体对容器底产生的压强为 p1。乙容器中液体的密度为ρ2,液体对容器底产生的压

第届全国中学生物理竞赛复赛试题及参考答案

第30届全国中学生物理竞赛复赛考试试题 一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g . 二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量; 2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.

三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令m L λ= 表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω= 式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值. 2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值. 3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g . 提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为 d (())d d d d d Y X t Y X t X t = 例如,函数cos ()t θ对自变量t 的导数为 dcos ()dcos d d d d t t t θθθθ= 四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为 q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总 是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .

第16届全国中学生物理竞赛复赛试题

1 / 2 第十六届全国中学生物理竞赛复赛试题 全卷共六题,总分为140分。 一、(20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。若让其继续作等温膨胀,使体积再次加倍。试计算此时: 1.汽缸中气体的温度; 2.汽缸中水蒸气的摩尔数; 3.汽缸中气体的总压强。 假定空气和水蒸气均可以当作理想气体处理。 二、(25分)两个焦距分别是1f 和2f 的薄透镜1L 和2L ,相距为d ,被共轴地安置在光具座上。 1. 若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件? 2. 根据所得结果,分别画出各种可能条件下的光路示意图。 三、(25分)用直径为1mm 的超导材料制成的导线做成一个半径为5cm 的圆环。圆环处于超导状态,环内电流为100A 。经过一年,经检测发现,圆环内电流的变化量小于610A -。试估算该超导材料电阻率数量级的上限。 提示:半径为r 的圆环中通以电流I 后,圆环中心的磁感应强度为02I B r μ= ,式中B 、I 、 r 各量均用国际单位,720410N A μπ=??--。 四、(20分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。一般双星系统距离其他星体很远,可以当作孤立系统处理。 现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L 。他们正绕两者连线的中点作圆周运动。 1. 试计算该双星系统的运动周期T 计算。 2. 若实验上观测到的运动周期为T 观测, 且:(1)T T N =>观测计算。为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。作为一种简化模型,我们假定在这两个星体连线为直径的球体内均匀分布着这种暗物质,而不考虑其它暗物质的影响。试根据这一模型和上述观测结果确定该星系间这种暗物质的密度。 五、(25分)六个相同的电阻(阻值均为R )连成一个电阻环,六个接点依次为1、2、3、4、5和6,如图复16-5-1所示。现有五个完全相同的这样的电阻环,分别称为1D 、2D 、┅5D 。 现将2D 的1、3、5三点分别与1D 的2、4、6三点用导线连接,如图复16-5-2所示。然后将3D 的1、3、5三点分别与2D 的2、4、6三点用导线连接,┅ 依此类推。最后将5D 的1、3、5三点分别连接到4D 的2、4、6三点上。 1.证明全部接好后,在1D 上的1、3两点间的等效电阻为 724627 R 。 1999年

相关文档
最新文档