电子显微镜发展历程

电子显微镜发展历程
电子显微镜发展历程

“科学之眼“越来越亮

——电子显微镜的发展历程

摘要:Ruska和Knowll在1932年(有说是1931年和1933年的)研制成功第一台电子显微镜。经过半个多世纪的发展,已广泛应用到自然科学的许多学科中,并且极大推动了这些学科的发展。在七十年代电子显微镜终于实现了人们直接观察原子的长期愿望,电子显微镜成了“科学之眼”。一门新兴的电子显微学因此而诞生。而Ruska也因此而获得1986年诺贝尔物理奖。在生命科学,由于电子显微镜技术的迅速发展和应用,改变了细胞学、组织学、病毒学、分类学和分子生物学等的面貌,促使生物学从细胞水平进入到分子水平;它也成为生物学、医学、农林等学科研究工作中极为重要的手段。近年来,我国拥有越来越多的电子显微镜,应用也越广泛,不少高等院校都相继开设相关的课程。“科学之眼”不仅在外国,在我国也会越来越亮,开花结果,前途光明。关键词:电子显微镜扫描电子显微镜透射电子显微镜扫描透射显微镜

正文:电子显微镜问世已有半个多世纪了,但其应用于医学、生物学,尤其是细胞学的研究方面才只有二十余年的历史。我国学者在六十年代初期开始这方面的工作。下面我们来看一下电子显微镜的总体发展历程。

一.电子显微镜的总体发展历程

人类对于生物微观世界的认识过程,有着一段漫长的历史。荷兰人列文虎克(Leeuwenhoek)在300年前创制成功世界上第一架显微镜,发现了当时人们还不知道的微生物世界。这是显微镜第一次显示其巨大作用。

早在一百年以前,朴率克(Plucker)就曾在盖斯雷管的阴极近管壁上发现过一种黄绿色的光辉,但他当时对这一现象并无认识,未予重视。自从1924年德布罗意提出了电子与光一样,具有波动性的假说和1926年Busch发现了旋转对称、不均匀的磁场可作为一个用于聚焦电子束的透镜,就为后来的电子显微镜的问世奠定了理论基础,这就打开了电子光学的大门。经六年后,到1932年克诺露(Knoll)及鲁斯卡(Ruska)等人首次发表了关于电子显微镜的实验和理论研究,并试制成功第一台电磁式电子显微镜。为了获得较大的放大能力,人们又研究制造了短焦距的电磁透镜,它除了会聚透镜外,再利用两个透镜作连续两次的造像。到1934年鲁斯卡和马顿(Marton)分别制成了新型复式电子显微镜。近代的电磁式电子显微镜在具体结构上已经有了很大改进。

Ruska和Knowll在1932年(有说是1931年和1933年的)研制成功第一台电子显微镜。经过半个多世纪的发展,已广泛应用到自然科学的许多学科中,并且极大推动了这些学科的发展。在七十年代电子显微镜终于实现了人们直接观察原子的长期愿望,电子显微镜成了“科学之眼”。一门新兴的电子显微学因此而诞生。而Ruska也因此而获得1986年诺贝尔物理奖。在生命科学,由于电子显微镜技术的迅速发展和应用,改变了细胞学、组织学、病毒学、分类学和分子生物学等的面貌,促使生物学从细胞水平进入到分子水平;它也成为生物学、医学、农林等学科研究工作中极为重要的手段。近年来,我国拥有越来越多的电子显微镜,应用也越广泛,不少高等院校都相继开设相关的课程。“科学之眼”不仅在外国,在我国也会越来越亮,开花结果,前途光明。

如果说,光学显微镜是人类对微观世界的认识有了第一次飞跃,那么可以说,电子显微镜是人类对微观世界的认识有了第二次飞跃。的确,光学显微镜使人类看到了肉眼看不到的细菌和细胞,揭开了许多生物界的“谜”,但是因为光学显微镜的分辨率受光波波长的限制,使更多的“谜”仍无法解开。而电子显微镜是以电子束作为光源的,电子束的波长比可见光的波长短得多,使电子显微镜的分辨率大幅度提高。从此,人类用

电子显微镜揭示了细菌、噬菌体、类病毒、DNA和蛋白质大分子等,甚至获取了“原子

核和电子云”的原子像。

总体历程了解后,下面我们来关注一下透射电子显微镜的发展历程:

二.透射电子显微镜的发展历程

1924年,德国科学家德布罗意(De Broglie)指出,任何一种接近光速运动的粒子都具有波动本质。1926---1927年,Davisson和Germer以及Thompson Reid用电子衍射现象验证了电子的波动性,发现电子波长比X光还要短,从而联想到可用电子射线代替可见光照明样品来制作电子显微镜,以克服光波长在分辨率上的局限性。1926年德国学者Busch指出“具有轴对称的磁场对电子束起着透镜的作用,有可能使电子束聚焦成像”,

为电子显微镜的制作提供了理论依据。

1931年,德国学者诺尔(Knoll)和鲁斯卡(Ruska)获得了放大12~17倍的电子光学系统中的光阑的像,证明可用电子束和电磁透镜得到电子像,但是这一装置还不是真正的电子显微镜,因为它没有样品台。1931—1933年间,鲁斯卡等对以上装置进行了改进,做出了世界上第一台透射电子显微镜(简称透射电镜)。1934年,电子显微镜的分辨率已达到500?,鲁斯卡也因此获得了1986年的诺贝尔物理学奖。

1939年德国西门子公司造出了世界第一台商品透射电子显微镜,分辨率优于100?.1954年又产生了著名的西门子ElmiskopⅠ型电子显微镜,分辨率优于10?.在英国,透射电子显微镜的研究始于1935年,1946年设计了第一批商业透射电子显微镜,导致了EM型电镜的系列生产。在荷兰,1944年研制成第一台电镜,后来生产了著名的Philips

EM和CM型透射电子显微镜。我国的透射电子显微镜研制始于20世纪50年代,1977年已作出了分辨率为3?的80万倍的透射电镜。

目前世界上生产透射电镜的主要是这三家电镜制造商:日本的日本电子(JEOL)和日立(Hitachi)以及美国的FEI(这家公司把荷兰的菲利浦电镜公司收购了)。他们生产的透

射电镜大致可分为三类。

(1)常规的TEM:加速电压为100~200kV。代表性产品有日本电子的JEM-2010,日立的H-8000,菲利浦的CM200,FEI的TEAI20.200kV透射电镜

的分辨率可达1.9?.

(2)中压TEM:加速电压为300~400kV。代表性产品有日本电子的JEM-3010、JEM-4000,日立的H-9500,FEI的TEAI F30。300kV透射电镜的分

辨率可达1.7?,400kV透射电镜的分辨率可达1.63?.

(3)高压TEM:加速电压为1000kV。代表性产品有JEM-1000,日立公司还制造了世界上最大的3000kV的透射电镜。目前1000kV的透射电镜最

高分辨率可达1?.

目前用的最多的透射电镜是200kV和300kV的电镜,高压电镜由于价格昂贵,

体积庞大,用得很少。

1949年以前,由于很难制备出能让电子束穿过的薄金属样品,开始用透射电镜直接观察试样。随后,荷兰的Bollnan和英国剑桥大学的赫什(Peter B.Hirsch)研究组进一步发展这一技术。特别是Hirsch研究组,发展了电子衍衬理论,可以解悉电子束

穿过试样形成的电子衍衬像,开创了用透射电镜直接观察试样的时代,为电子显微

镜在材料学的应用打下了基础。

20世纪70年代,美国亚利桑那州立大学的考利(John Cowley)和澳大利亚墨尔本大学的穆迪(Alex Moodie)建立了高分辨电子显微想的理论与技术,发展了高分辨电子显微学。20世纪80年代,发展了高空间分辨分析电子显微学,人们可采用高分辨技术、微衍射、电子能量损失谱、电子能谱仪等对很小X围内(约1nm)的区域进行电子像、晶体结构、化学成分的研究,将电子显微分析技术在材料学中的研究大大地拓展了。20世纪90年代,由于纳米科技的飞速发展,对电子显微分析技术的要求越来越高,进一步推动了电子显微学的发展。目前,透射电镜已发展到了球差校正

透射电镜的阶段。

早在1935年,Knoll在设计透射电子显微镜的同时,就提出了扫描电子显微镜的原理及设计思想。下面我们来关注一下扫描电子显微镜的发展历程。

三.扫描电子显微镜的发展历程

如果说光学显微镜处于“老年”、透射电镜处于“壮年”时代的话,那么扫描

电镜是刚进入“青少年”的时代。

扫描电子显微镜(scanning electron microscope,简称扫描电镜/SEM)的基本组成是透镜系统、电子枪系统、电子收集系统和观察记录系统,以及相关的电子系统。现在工人扫描电镜的概念最早是由德国的Knoll在1935年提出来的,1938年Von Ardenne 在透射电镜上加了个扫描线圈做出了扫描透射显微镜(STEM)。第一台能观察厚样品的扫描电镜是Zworykin制作的,它的分辨率为50nm左右。英国剑桥大学的Oatley

和他的学生McMullan也制作了他们的第一台扫描电镜,到1952年他们的扫描电镜的分辨率达到了50nm。到1955年扫描电镜的研究才取得较显著的突破,成像质量有明显提高,并在1959年制成了第一台分辨率为10nm的扫描电镜。第一台商业制造的扫描电镜是Cambridge Scientific Instruments公司在1965年制造的MarkⅠ“Steroscan”。Crewe将场发射电子枪用于扫描电镜,使得分辨率大大提高。1978年做出了第一台具有可变气压的商业制造的扫描电镜,到1987年样品腔的气压已可达到2700 Pa(20 Torr)。目前扫描电镜的发展方向是采用场发射枪的高分辨扫描电镜和可变气压的环境扫描电镜(也称可变压扫描电镜)。目前的高分辨扫描电镜可以达到1~2 nm,目前,最好的高分辨扫描电镜可在气压为4000 Pa(30 Torr)时仍保

持2 nm的分辨率。

由于扫描电镜的景深远比光学显微镜大,可以用它进行显微断口分析,且样品不必复制,可直接观察,非常方便。另外,扫描电镜的样品室的空间很大,可以装入很多探测器。因此,目前的扫描电镜已不仅仅是只用于形貌观察,它可以与许多其他分析仪器组合在一起,是人们能在一台仪器中进行形貌、微区成分和晶体结构等多种微观组织结构信息的同时分析,如果再采用可变气压样品腔,还可以在扫描电镜下做加热、冷却、加气、加液等各种实验,扫描电镜的功能大大扩展。这也是为什么扫描电镜得到如此普遍应用的原因之一。

下面我们来对比一下扫描电镜与光学显微镜和透射电镜的特点:看是什么优点使

扫描电子显微镜应用如此广泛:

(1)景深大、图像富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。由于扫描电镜是利用电子束轰击样品后所悉放的

二次电子成象,它的有效景深不受样品的大小与厚度的影响;而透射电镜是利用穿透电子成象,它的有效景深直接受样品厚度的限制。

(2)图像的放大X围大、分辨率也比较高。光学显微镜的有效放大倍数为一千倍左右,透射电镜的放大倍数为几百倍到一百万倍,扫描电镜可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大X围。扫描电镜的分辨率介于光学显微镜(2000?)与透射电镜(2—3?)之间,可达60?(有的可达30?),而且,一旦聚焦好了之后,可以任意改变

放大倍数而不需要重新聚焦。

(3)样品制备过程简单,不需进行超薄切片,有的甚至不需要进行任

何处理就可以直接观察。

(4)观察样品的尺寸可大至120×80×50毫米,而透射电镜的样品只能

装在直径2毫米或3毫米的铜网上。

(5)样品可以在样品室中做三度空间的平移和旋转,因此,可以从各种角度对样品进行观察,有的甚至可以在观察过程中对样品进行显微解剖。

(6)电子束对样品的损伤与污染程度很少。扫描电镜中打在样品上的电子束流很小,电子束的直径为50?至几百?,束的能量较小(加速电压可小至2千伏),电子束不是固定照射在样品的某一区域而是以点的形式在样品表面做光栅状扫描,因此,由电子书照射所引起的样品的损失与污染也较小。

(7)在观察形貌的同时,还可利用从样品发出的其他信号作微区成分

分析或进行晶体学分析。

(8)扫描电镜显示的图像有立体感,使人似如亲临微观世界的现场。

(9)安装X射线能谱仪(EDS、WDS)到扫描电镜上面可以同时快速、有效获取同一区域上的形貌、晶型和组成信息。

由于扫描电镜具有上述这些特点,因此,它不仅在许多重要学科的科学研究中

而且在工农业生产部门也得到广泛的应用。

扫描电子显微镜了解完后,我们看一下由透射电子显微镜与扫描电子显微镜结合产生的扫描透射电子显微镜(STEM)的发展历程:

四.扫描透射电子显微镜(STEM)的发展历程:许多年以来,扫描电子显微镜(SEM)就已经是生物学工作者熟悉的一种有价值的工具,它的分辨率比光学显微镜高40多倍,而在高倍时的焦深远大于光学显微镜(可高达几千倍)。人们用它已经积累起大量的有关表面精细结构的有价值的资料。因为扫描式显微镜中,当纤细的聚焦束以光栅方式扫描整个物体时,像便按时间顺序逐点的建立,分辨率主要取决于聚焦束的最小尺寸实际上探针电流必须大于10ˉ11A,如果采用平常的加热式钨丝源,分辨率被限制在5 nm左右。自从普通的透射电子显微镜(TEM)能达到的分辨率比扫描电子显微镜搞一个数量级以来,直至最近还没怎么打算构建扫描透射电子显微镜(STEM)。尽管知道用场发射阴极做电子光源的亮度高一万到一百万倍还不久,然而早已就尝试(大约20年前)(Grewe,Wall

和Langmore,1970;Crewe 和Wall,1970)。当前市售的STEM商品仪器的分辨率优于

0.5 nm。

知道扫描透射电子显微镜是什么会时候,我们再看一下它在行家眼里的定位和

发展前景:

就STEM仪器的价格昂贵而言,这首先意味着要对一些语言及早期结果作出评价还为时过早,看来这是一个缓慢的过程。其次,STEM怎么说也不会像TEM或SEM 那样普及。然而,有人预期STEM将在未来显微术的某几个方面做出相当大的贡献。首要的是在透过生物厚样品(多至0.5um甚至1um)方面,STEM的分辨率会大大超过有相同加速电压的TEM。虽然在这方面的性能似不能与1Mev的高压电子显微镜(HVEM)相媲美,但是STEM比HVEM的价格低廉,尺寸较小,而且操作和维护都大大简易,因此人们实际上会选上它。第二,在超薄切片或单个大分子的高分辨率显微术领域中,STEM的极限分辨本领虽不会超过TEM,然而在像的亮度、不受旋转影响、亮场像易于解悉以及仪器和样品的不稳定性对像记录的影响均较少等诸方面都有优越性。第三,STEM的暗场成像方式比TEM有效得多,因此在不染色的生物分子成像时具有较高的反差。第四,易于进行信号处理,这指的是容易采用像Z识别技术,譬如可见到生物分子中标记的单个重金属原子。第五,STEM还有清洁的超高真空,使污染大为减少,并能缩小辐射损伤,这个优点在未来的高分辨率研究生物分子时是一个日益重要的特征。也可能,STEM的最大长处是在于它进行显微分析的潜力。电子衍射、X射线能量分散显微分析和电子能量损失光谱学都能顺利的在同一台仪器上进行。不论哪种型式的STEM,其优点都比TEM多。所以,STEM在一般

的生物研究中虽然不会使TEM淘汰,然而我们深信,在行家云集之处,STEM将对

生物科学做出较大的贡献。

下面我们对上述内容做一总结及对电镜做一个展望:

五.总结及展望

电子显微镜是在1931年,由德国科学家Enest Ruska 和Max K –noll 首先发明的。虽然他们的第一台用电子束和电磁透镜组成的显微镜只将铜网放大了12倍,但是却揭开了用电子显微镜探索微观世界的新篇章。1986年,世界上第一台透射电镜的发明者E.Ruska与发明扫描隧道显微镜的科学家G.Binning和H.Rohrer 一起荣获诺贝尔物理奖。几十年来电子显微镜技术不断发展的历程,终于使人们确认了第一台电镜问世的重要作用,被誉为“本世纪最主要的发明之一”。

自世界上第一台电镜问世至今,电镜技术持续不断地发展了半个多世纪,无论在深度还是在广度上都取得了长足的进步。电镜无愧为“科学之眼”,为人类发现微观世界的奥秘和解悉生命现象的本质做出了贡献,成为发展现代生命科学的有利

工具之一。

几十年来,仪器更新的速度十分惊人,例如:第一台电镜的放大倍数只有12倍,而现在电镜已可以连续把样品放大到百万倍。电镜的进步主要表现在分辨力的提高和功能的增加上,电镜的最佳晶格分辨力已达0.1 nm,点分辨力已达0.2~0.3 nm。电镜的种类和功能也不断的增加,除了能揭示超薄切片和冷冻复性样品的超微结构的透射电镜外,又相继出现了能解释样品表面超微结构的扫描电镜;能同时观察样品的表面和内部的超微结构,甚至能观察单个原子像的高分辨力(小于0.1nm)的场

发射枪扫描透射电镜;能对样品中的某些化学元素进行综合分析(定性、定位、半定量和定量,灵敏度达10ˉ25g)的分析电镜;以及能观察活细胞的超高压(500kV~

3000kV)电镜等。

总之,电子显微镜以其高分辨本领和科学的直观性显示出无比的魅力,在众多领域,如:生物、医学、农林、养殖和材料科学研究方面得到了广泛的应用,发挥着不可忽视的作用。展望电镜技术的未来更是前景广阔。

电镜技术的应用与未来前景无比广阔,有许多新知识等待着人们去探究,有许多方法等待着人们去创造,有许多新问题等待着人们去解决。长江后浪推前浪,总有一代新人会在电子显微术的领域里努力探索,创造出更美好的未来。

参考书目与资料:1.分析电子显微学导论/戎咏华编著. -------:高等教育,2006.10 ISBN 7-04-01994-4

2.电子显微分析/章晓中编著.----:清华大学,2006.12(材料科学与工程系列)ISBN 7-302-14160-6

3.生物电子显微技术/X景强朴英杰蔡福筹孔宪扬等编著----XX大学,1987.12 ISBN 7-306-00048-9/Q.2

4.现代材料分析方法/X锐主编.----:化学工业,2007.7 高等学校教材(工程应用型)ISBN 978-7-122-00815-2

5.生物学中的电子显微镜技术/X丽霞程乃乾高信曾编著----大学出版(大学校内)1983.10 统一书号:13209.69

6.浅谈电子显微镜和亚细胞技术/傅湘琦编著----科学普及出版(白石桥紫竹院公园内)1980.8 统一书号:13051.1020

7.扫描电子显微镜入门/马金鑫X国凯编著责任编辑高小琪----科学出版1985.5 统一书号:13031.2906

8.显微术中的分析与定量方法/【英】G.A.米克H.Y.艾尔德主编管汀鹭译责任编辑赵甘泉----科学出版1983.8 统一书号:13031.2327

9.图解扫描电子显微镜----生物样品制备/【日】田中敬一永谷隆编辑李文镇应国华等译X允吉校责任编辑马素卿----科学出版1984年5月统一书号:13031.2576

10.生物电子显微术教程/陈力编著.----:师X大学1998.6 ISBN 7-303-04436-1

11.余老师课件

蔡司EVO18电镜专业技术说明

钨灯丝扫描电镜技术文件 仪器型号:EVO 18 Attachment-1/24

目录附件一、品牌介绍 附件二、设备用途 附件三、技术指标 附件四、供货范围 附件五、计划进度及培训 附件六、环境要求 附件七、质保及其它服务

附件一:聚焦·CARL ZEISS 世界可见光及电子光学的领导企业----德国蔡司公司始创于1846年。其电子光学前身为LEO(里奥),更早叫Cambridge(剑桥)和Zeiss。积扫描电镜领域40多年及透射电镜领域60年的经验,ZEISS电子束技术在世界上创造了数个第一: ?第一台静电式透射电镜(1949) ?第一台商业化扫描电镜(1965) ?第一台数字化扫描电镜(1985) ?第一台场发射扫描电镜(1990) ?第一台带有成像滤波器的透射电镜(1992) ?第一台具有Koehler照明的200kV 场发射透射电镜(2003) ?第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜(2003) CARL ZEISS其前瞻性至臻完美的设计融合欧洲至上制造工艺造就了该品牌在光电子领域无可撼动的王者地位。自成立至今,一直延续不断创新的传统,公司拥有广泛的专有技术,,随着离子束技术和基于电子束的分析技术的加入、可为您提供钨灯丝扫描电镜、场发射扫描电镜、双束显微镜(FIB and SEM)、透射电子显微镜等全系列解决方案。。其产品的高性能、高质量、高可靠性和稳定性已得到全世界广大用户的信赖与认可。作为全球电镜标准缔造者的CARL ZEISS将一路领跑高端电镜市场为您开创探求纳米科技的崭新纪元。 Carl Zeiss SMT下属的纳米技术系统部在北京,上海,广州,鞍山设有营销公司和维修服务站,致力于蔡司电镜的技术咨询,销售和售后服务工作。

显微镜的研究和发展历史及功用

显微镜的研究和发展历史及功用 1590年,荷兰ZJansen(詹森)和意大利人的眼镜制造者已经造出类似显微镜的放大仪器。 1611年,Kepler(克卜勒):提议复合式显微镜的制作方式。 1665年,RHooke(罗伯特胡克):「细胞」名词的由来便由胡克利用复合式显微镜观察软木的木栓组织上的微小气孔而得来的。 1674年,AVLeeuwenhoek(列文虎克):发现原生动物学的报导问世,并于九年后成为首位发现「细菌」存在的人。 1833年,Brown(布朗):在显微镜下观察紫罗兰,随后发表他对细胞核的详细论述。 1838年,Schlieden andSchwann(施莱登和施旺):皆提倡细胞学原理,其主旨即为「有核细胞是所有动植物的组织及功能之基本元素」。 1857年,Kolliker(寇利克):发现肌肉细胞中之线粒体。 1876年,Abbe(阿比):剖析影像在显微镜中成像时所产生的绕射作用,试图设计出最理想的显微镜。 1879年,Flrmming(佛莱明):发现了当动物细胞在进行有丝分裂时,其染色体的活动是清晰可见的。 1881年,Retziue(芮祖):动物组织报告问世,此项发表在当世尚无人能凌驾逾越。然而在20年后,却有以Cajal(卡嘉尔)为首的一群组织学家发展出显微镜染色观察法,此举为日后的显微解剖学立下了基础。 1882年,Koch(寇克):利用苯安染料将微生物组织进行染色,由此他发现了霍乱及结核杆菌。往后20年间,其它的细菌学家,像是Klebs 和Pasteur(克莱柏和帕斯特)则是藉由显微镜下检视染色药品而证实许多疾病的病因。

1886年,Zeiss(蔡司):打破一般可见光理论上的极限,他的发明--阿比式及其它一系列的镜头为显微学者另辟一新的解像天地。 1898年,Golgi(高尔基):首位发现细菌中高尔基体的显微学家。他将细胞用硝酸银染色而成就了人类细胞研究上的一大步。 1924年,Lacassagne(兰卡辛):与其实验工作伙伴共同发展出放射线照相法,这项发明便是利用放射性钋元素来探查生物标本。 1930年,Lebedeff(莱比戴卫):设计并搭配第一架干涉显微镜。 另外由Zernicke(卓尼柯)在1932年发明出相位差显微镜,两人将传统光 学显微镜延伸发展出来的相位差观察使生物学家得以观察染色活细胞上的种种细节。 1941年,Coons(昆氏):将抗体加上萤光染剂用以侦测细胞抗原。 1952年,Nomarski(诺马斯基):发明干涉相位差光学系统。此项发明不仅享有专利权并以发明者本人命名之。

电子显微镜的景深和显微镜的分辨率

电子显微镜的景深和显微镜的分辨率 显微镜由于电子的波动性,当它通过小孔光阑时会发生衍射现象。衍射结果表现为每个物点形成的像是一个圆斑(周围的副光环可忽略不计)。定义这个衍射圆斑的半径为衍射像差。在像方或物方可分别表示为: (Ar&ff),=0.611/a(1一22a) (1rdff)o=0.61A/ao(1一22b) 式中各符号的意义同前。可以看出加大光阑孔径角as,可以减小衍射差。但实际工作中还应注意这样会带来的不利影响。 景深和焦探(11) 景深就是在保持像清晰的前提下,可允许物面在轴上的移动距离,或者说可允许物上不同部位处的凹凸差。根据图1-10,理想情况下物点P成像在Q点.如果物面在P点前后P’P"之间移动,则在Q看到的物有一定横向宽度。如果透镜有各种像差。该系统实际存在一个对物的可分辨极限(分辨率8)。显微镜价格只要P’P,,间平面上的物点宽度小于或等于s,则在Q处的成像效果与P点处几何物点造成的像斑是相同的,即其清晰度相同。因此可允许的物在轴上最大距离PP"称景深Do,它由下式定出: D0二 (1一23) 式中d一电子光学系统对物的分辨率; ao一电子束的物方有效孔径角. 对于100kV的电镜,偏光显微镜如果分辨率为lnm,物镜孔径角为5X10-1rad,则景深Do=200nm.这表示样品厚度或表面凹凸起伏不超过200nm时,能得到均匀清晰的图像.由此可见景深也常常成为对样品厚度的限制因素之一。

把景深这一特性转换到像方便可得到焦深Df。它就是为了得到清晰度相同的像,可允许的图像显示或记录平面的轴向位移量。参照(1一23)可得: Df=B;/a(1一24) 式中S;一像方的分辨率;a;一电子束的像方有效孔径角。 显微镜像方分辨率S;受观察荧光屏的分辨率所限制。通常荧光屏的分辨率为505m。如电镜最高放大倍数M=10`X,电子束孔径角ao=5X10-’rad,则最长焦深(D1),o,==100M。即使在最低放大倍数M=10’X,相应的ao=1X10-’rad时,最低焦深(Df).二50cm。可见电镜的焦深值很大.这就说明了在透射电镜中为什么我们只对荧光屏调焦,而把像记录在其下方的电子感光板或其上方的35mm胶片上时,总能得到清晰的像。 本文由广州深华实验室仪器设备整合发布

电子显微镜技术在生物医学领域的应用

2012年1月内蒙古科技与经济Januar y2012 第2期总第252期Inner M o ngo lia Science T echnolo gy&Economy N o.2T o tal N o.252电子显微镜技术在生物医学领域的应用X 孙计桃 (内蒙古医学院基础医学院电镜中心,内蒙古呼和浩特 010059) 摘 要:电子显微镜在临床研究和疾病诊断中作出了巨大的贡献,并不断开辟着生物医学研究的新领域,主要从细胞、亚细胞的形态结构上阐明疾病的发生、发展及转归规律,丰富了传统病理学的知识。 通过对亚细胞结构和病原体的观察,可以诊断一些肿瘤疾病、心血管疾病、肝病、肾病、血液疾病、细菌、病毒、寄生虫疾病等。随着电镜技术的不断改进以及与多种研究手段相结合,电子显微镜将在生物医学领域应用会更加广泛。 关键词:电子显微镜;临床研究;疾病诊断;应用 中图分类号:T N16∶R318 文献标识码:A 文章编号:1007—6921(2012)02—0127—02 电子显微镜包括扫描电子显微镜和透射电子显微镜两种类型,利用透射电子显微镜可以观察样品内部超微结构,利用扫描电子显微镜可以观察样品表面形貌,立体感强,在生物医学领域应用较多的是透射电子显微镜。透射电子显微镜的发明为人类在医学科学研究领域做出了巨大的贡献,早在20世纪40年代电子显微镜就在医学上开始发挥其作用,在病毒学、细胞生物学、组织学、病理学、分子生物学及分子病理学都有应用[1-2]。笔者参考相关文献对电子显微镜技术在肿瘤诊断、病毒和病毒性疾病、系统性疾病等研究领域的应用做一概述,说明其是现代临床研究和疾病诊断中不可缺少的重要工具之一。1 电子显微镜技术在医学领域应用特点 随着科学技术的发展,电子显微镜放大倍数已从第一台电镜的十几倍提高到现在的百万倍,因此在生物医学领域利用高性能的电子显微镜观察细胞中各种细胞器正常的和病理的超微结构,诸如内质网、线粒体、高尔基体、溶酶体、细胞骨架系统等,对探明病因和治疗疾病有很大帮助。通过研究细胞结构和功能的关系,也可以研究细胞的通讯与运输、分裂与分化、增殖与调控等生命活动的规律,电子显微镜也可结合各种制样技术观察病毒、细菌、支原体、生物大分子等的超微结构,是现代生物医学研究不可替代的工具。 2 电子显微镜技术在肿瘤诊断中的应用 电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2L m,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。因此,透射电子显微镜突破了光学显微镜分辨率低的限制,成为了诊断疑难肿瘤的一种新的工具。有研究报道,无色素性肿瘤、嗜酸细胞瘤、肌原性肿瘤、软组织腺泡状肉瘤及神经内分泌肿瘤这些在光镜很难明确诊断的肿瘤,利用电镜可以明确诊断[3-5]。 电镜主要是通过对超微结构的精细观察,寻找组织细胞的分化标记,确诊和鉴别相应的肿瘤类型。细胞凋亡与肿瘤有着密切的关系,电镜对细胞凋亡的研究起着重要的作用,因此利用电镜观察细胞的超微结构病理变化和细胞凋亡情况,将为肿瘤的诊断和治疗提供科学依据。 3 电子显微镜技术在肿瘤鉴别诊断中的应用透射电子显微镜观察的是组织细胞、生物大分子、病毒、细菌等结构,能够观察到不同病的病理结构,也可以鉴别一些肿瘤疾病,有研究报道电子显微镜技术通过超微结构观察可以区分癌、黑色素瘤和肉瘤以及腺癌和间皮瘤;可区别胸腺瘤、胸腺类癌、恶性淋巴瘤和生殖细胞瘤;可区别神经母细胞瘤、胚胎性横纹肌瘤、Ew ing氏肉瘤、恶性淋巴瘤和小细胞癌;可区别纤维肉瘤、恶性纤维组织细胞瘤、平滑肌肉瘤和恶性神经鞘瘤以及区别梭形细胞癌和癌肉瘤(杨光华,1992)[6-10] 。 4 电镜在肾活检病理诊断中应用 肾穿活检对了解疾病发生、发展及选择治疗方法是十分重要的,可以提高诊断的准确性。目前采用的方法有免疫组化和电子显微镜检查,电子显微镜检查可以弥补光学显微镜分辨率不高的缺陷,可观察到光镜所看不到的成分的超微结构病理变化,特别是上皮细胞、系膜、肌膜细胞和间质的改变,确定有无电子致密物沉着及其沉着部位。Sieg el等曾报道,经对213例肾病活检资料分析,发现有11%的病例需要用电镜作出正确诊断,有36%病例肾的超微结构改变对光镜诊断提供确诊或亚分类,如遗传性肾炎,此病肾小球的组织学特征无特殊改变,唯电镜检查才能作出准确诊断[11]。 5 电镜在代谢性疾病诊断中的应用 随着科学技术的进步,电镜的应用越来越广泛,已有研究报道,电镜在肝脏代谢性疾病、软组织系统疾病诊断中的作用值得肯定。Mierau等(1997)认为 ? 127 ? X收稿日期:2011-12-25

扫描电子显微镜的早期历史和发展趋势

扫描电子显微镜的早期历史和发展趋势 扫描电子显微镜(SEM)的基本原理在20世纪30年代到40年代初由Knoll, 德国的von Ardenne和美国的Zworykin,Hillier等人确立。扫描电镜的研究在英国剑桥大学电机工程学系Charles Oatley博士学位的一系列项目中复苏。在剑桥大学的McMullan和Smith的早期研究之后,SEM的第一次产业应用在加拿大纸浆和造纸研究所实现。不久之后,在美国的Westinghouse,SEM被应用于集成电路,并在英国和日本实现了扫描电镜的商业化。截至目前,SEM及其他显微和微分析技术在世界范围内发展,并被应用于越来越多的领域。 关键词:扫描电子显微镜(SEM),成像技术,表面形貌,成分衬度,电子通道花样(ECP),电子背散射花样(EBSP)。 Oatley描述了SEM早期历史和直至其第一次商业化的发展状况。第一台商业SEM在英国和日本制造。SEM的历史也被许多作者描述过。商用SEM性能的提高和操作的简便已经很出色并有望继续进步。 Knoll用仪器得到了四个非常重要的实验结果Fig.1:(i)他从固态多晶样品中得到了样品的吸收电流像Fig.2.(ii) 这张照片显示的晶粒间取向依赖衬度是由电子穿隧效应的对比差异引起的。(iii)他测量了不同材料的二次电子(SE)加背散射电子(BSE)系数是入射电子能量E0的函数,并且证明当SE+BSE系数为1时,有第二个交叉点,此时E0约为 1.5keV。样品的充电最小化并且保持稳定。(iv)根据一个早期关于定量电压衬度的译文,测量了束电子对非导电颗粒充电后颗粒的电势。 Figure 3 是由von Ardenne提出的产生二次电子的电子散射模型,模型表明初始束展宽;大角度散射;扩散;BSE逃逸以及每个阶段的二次电子激发。他提出了两种高分辨率SE图像。第一种(现在称为SE-I图像的详细讨论见Peters)E0等于数十电子伏,此时电子的穿透深度(几个微米)比二次电子的逃逸深度大很多倍(几个纳米)。SE-I激发是在束电子入射点的一个局部的区域内发散,这个范围比BSE小。他提出SE-I能提供一个高分辨率的SE图像(特殊情况除外)。他的第二个观点(现在称为低压SEM)是将E0减小到1keV,此时穿透深度达到束电子直径。 Zworykin给出了最早的二次电子图像。这些工作者也建立了一台密封的场发射(FE)SEM,并且为X射线微区分析和电子能量损失能谱仪(EELS)奠定了基础。当时人们热衷于似乎会更加成功的透射电镜(TEM),他们在SEM方面的工作没有继续。

透射电子显微镜的结构及成像

透射电子显微镜的结构及成像 913000730018鲁皓辰一、实验目的 1)了解透射电子显微镜的基本结构; 2)熟悉透射电子显微镜的成像原理; 3)了解基本操作步骤。 二、实验内容 1)了解透射电子显微镜的结构; 2)了解电子显微镜面板上各个按钮的位置与作用; 3)无试样时检测像散,如存在则进行消像散处理; 4)加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像; 5)进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。 三、实验仪器设备与材料 JEM-2100F型TEM透射电子显微镜 四、实验原理 图1JEM-2100F型透射电子显微镜 一)透射电镜的基本结构 透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。 1)照明系统 照明系统主要由电子枪和聚光镜组成,电子枪发射电子形成照明光源,聚光

镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。2)成像系统 成像系统由物镜、中间镜和投影镜组成。 3)观察记录系统 观察记录系统主要由荧光屏和照相机构组成。 二)主要附件 1)样品倾斜装置(样品台) 样品台是位于物镜的上下极靴之间承载样品的重要部件,见图2,并使样品在极靴孔内平移、倾斜、旋转,以便找到合适的区域或位向,进行有效观察和分析。 2)电子束的平移和倾斜装置 电镜中是靠电磁偏转器来实现电子束的平移和倾斜的。图3为电磁偏转器的工作原理图,电磁偏转器由上下两个偏置线圈组成,通过调节线圈电流的大小和 方向可改变电子束偏转的程度和方向。 图3电磁偏转器的工作原理图

电子显微镜的发展及现状

电子显微镜的发展及现状 20130125001 李智鹏 2014/10/8

电子显微镜的发展及现状 摘要:本文综述了电子显微镜的发展,电子显微镜的主要分类,它们在生活当中的应用以及国内显微镜的现状。 关键词:电子显微镜发展应用现状 1、引言 显微镜技术的发展,是其他科学技术发展的先导,在17世纪60年代出现的光学显微镜,引发了一场广泛的科技进步, 促进了细胞学和细菌学的发展。使人类的观测范围进入微观世界,导致了一大批新的领域进入人类的研究范围,促进了许多学科的创立和发展。 三百年来,光学显微镜巳经发展到了十分完善的地步。而我们知道,分辨率极限的量级为入/a带,对于光学显微镜,最短可见光波长约为400。人,最大数值孔径约1。4,故只能获得亚微米量极的分辨率。于是,人们开始寻找较短波长的光源,X射线波长为几个埃,Y射线波长更短,但它们都很难直接聚焦,所以不能直接用于显微镜。[1] 20世纪30年代出现的电子显微镜技术,更进一步拓宽了人类的观测领域,同样导致了大批新学科、新技术的出现.可以说,现代科学技术的研究工作,已很大程度依赖于电子显微镜技术的使用,尤其是在纳米技术、材料技术、生命科学技术等研究方面,没有电子显微镜技术的帮助,它们几乎是无法进行的.随着科学技术的不断进步,电子显微镜技术的应用越来越广泛,同时电子显微镜技术本身也在不断快速发展.从最初的电子显微镜开始,已经逐步发展出扫描电子显微镜、扫描隧道电子显微镜、原子力电子显微镜、扫描离子电导显微镜、扫描探针电子显微镜等.这些先进的仪器现已广泛地应用于物理学、化学、材料科学和生命科学领域的研究和检测工作中.在纺织科技研究工作和纺织材料及纺织品检测过程中也得到了广泛的应用[2]。本文仅对电子显微镜技术在出土古代纺织品检测方面的应用作一初步探讨。电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[3]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[4]。 2、电子显微镜的发展过程 20世纪30年代,德国科学家诺尔(M. knoll)和卢斯卡(E. Ruska)在电子光学的基础上,研制出了世界上第一台透射式电子显微镜(Transmission ElectronMicroscope,TEM,简称透射电镜),成功地得到了用电子束拍摄的铜网像,尽管放大倍数只有12倍,但它为以后电镜的发展和应用奠定了基础.此后经过科学家们半个多世纪的努力和改进,透射电镜的分辨本领现已达到了0. 1nm~0. 2nm,几乎能分辨所有的原子.此后又相继出现了能直接观察样品表面立体结构的扫描电子显微镜(Scanning ElectronMicroscope, SEM,简称扫描电镜),其分辨率为3nm~6nm和能进行活体观察的超高压电镜,实现了人们直接观察生物大分子结构和重金属原子图像的愿望[5]。 2.1扫描式电子显微镜扫描式电子显微镜中的电子束,在样品表面上动态地扫描,以 一定速度,逐点逐行地扫描样品的表面.样品逐点地发出带有形态、结构和化学组分信息的二次电子,这些电子由检测器接收处理,最后在屏幕上显示形态画面.图像为间接成像,其加速电压为1kV~30kV. 2.2扫描隧道显微镜(ScanningTunnelingMicroscope,STM)G.Binnig和H.Rohrer在 1981年研制成功扫描隧道显微镜,并因此获得1986年诺贝尔物理奖.扫描隧道显微镜(STM)是利用导体针尖与样品之间的隧道电流,并用精密压电晶体控制导体针尖沿样品表面扫描,从而能以原子尺度记录样品表面形貌的新型仪器.其分辨率已达到1nm~2nm,

电子显微镜简介

电子显微镜简介 人类的肉眼是认识客观世界的重要工具。但因受分辨能力的限制,在300年前光学显微镜尚未出世之前,人类对世界的认识只能停在肉眼水平。光学显微镜的诞生提供了一把金钥匙,为我们打开了微观世界知识宝库的第一道大门,从而出现了组织学、细胞学、细胞病理学等前所未有的新学科。然而,光学显微镜因受照明光波波长的限制,其分辨能力也有限。自1932年德国Max Knolls 和Ernst Ruska发明了电子显微镜,为我们打开了微观世界知识宝库的第二道大门。目前电镜不仅可以观变一般细胞的超微结构,而且还可以探讨其分子结构;从一般超微结构的定性观,走向定量分析;从透射电镜超薄切片的平面观察,进入扫描电镜三维空间的立体表面观变和元素分析,使人们的认识不断深化。 一、分辨率和放大倍数 电镜的分辨率是指分辩二点间最小距离的能力。德国理论光学家Ernst Abbe证实光学显微镜分辨率的极限为照明光源波长的一半,如照明光源的平均波长为5000A(1A=10-10m)光学显微镜分辨率的极限则为2500A(0.25μm=250nm)。电镜利用波长极短的电子束为光源,其分辨率可达2-2.5A(0.2-0.25nm),比光镜高1000倍,比肉眼高一百万倍。 二、透射电镜(transmission electron microscope)的结构与原理 (一)光学透镜与电子透镜 1.透镜:光镜以可见光作光源,经玻璃透镜(凸或凹)使光线会聚或发散,形成放大的实像或虚像。电镜则以电子束为光源。电子具有波动性和粒子性,经过电磁透镜时,在电场或磁场作用下,可以改变其前进的轨道。因而,可利用电场或磁场控制电子运动的轨迹,使之产生偏转、聚集或发散。 2.电磁透镜:根据轴对称的弯曲磁场对电子束能起聚焦的作用的原理制成。磁场范围比焦距小得多的轴对称磁场透镜称为短磁透镜。短磁透镜的焦距与磁场强度的平方呈反比。磁场强度越强,焦距越短、放大倍数越大。短磁透镜的磁场强度则与透镜励磁线圈的匝数呈反比。近代高辨率电镜透镜,在线圈的内侧有高精度加工的非常轴对称的纯铁或铁钴合金高导磁材料制成的“极靴”,线圈外包有铁壳屏罩。当线圈通过电流时,就会在极靴间隙产生轴对称磁场。这种短磁透镜的焦距等于极靴间隙宽度。“极靴”内孔越小、上下“极靴”间隙越小,透镜的放大率越大。因此,“极靴”是电镜的关键部分,对电镜的分辨率起着决定性作用。只要改变透镜线圈的是电流,就能相应地改变透镜的焦距和放大率。 (二)电镜成像原理 电子显微镜以电子束为光源。由热阴极发射的电子,在几十至几百千伏加速电压作用下,经聚光镜聚焦成束,以较高速度投射到很薄的样品上,并在与样品中的原子发生碰撞时,改变方向,产生立体角发散。散射角的大小与样品的密度和厚度有关:质量、厚度越大者,电子散射角也越大,通过的电子被样品后面小孔光栏挡住的就越多,像的亮度较暗;质量、厚

扫描电子显微镜技术应用与研究

扫描电子显微镜技术应用与研究 摘要:本文从金属晶体理论和扫描电子显微镜的原理出发,阐述了的定义和性质。通过对金属模块和焊条的二次电子成像,论证了分辨率高,能反映物体更多的层次结构等优点。最后,讨论了二次电子在电子制造业中的应用。 关键词:扫描电子显微镜金属晶体二次电子成像电子束 Abstract:This article is based on the theory of metal crystal, configuration and working theory of the scanning electron microscope. It is expounded the definition and nature of secondary electron image. Through the secondary electron image of metal and the welding rod, it is proved the secondary electron resolution to be likely high, could reflect merits and so on object more hierarchical. Finally we discussed the secondary electron in the electronic manufacturing applications. Key words: scanning electron microscope, metal crystal, secondary electron image electron beam 前言 随着现代科学技术的飞跃发展,各种新型材料的不断涌现.材料的检测技术也正在朝着科学、先进、简便、精确、自动化的方向发展.材料组织结构和性能的检测已成为一门多学科、跨学科的综合性技术.材料性能的检测既有传统的见手段又有高度现代化的研究手段.面对新技术和新材料的快速发展,过去传统的常规性能检测遇到了极大的挑战.一方面由于采用现代化的电子技术、光学技术、声学技术等新技术以及随之发展的各种高科技的设备,触进了材料检测技术的不断进步.另外一方面,为了适应新材料和新技术的发展不断不断修改检测标准,使常规检验和深入研究紧密的结合起来. 而在材料组织的形貌观察中,主要是依靠显微技术,利用二次电子成像来分析材料的组织结构,已成为当今检测的主要趋势.扫描电子显微镜和透射电子显微镜则把观察的尺度推广到亚微米和微米以下的层次.现代的显微镜的分辨率可达到0.2nm甚至更高.在借助显微技术和其他一些分析系统可以把材料组合子形貌比较准确的分析出来.

(完整word版)扫描电镜的综述及发展..

扫描电镜的综述及发展 1 扫描电镜的原理 扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。 扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小(直径一般为1~5nm)的电子束(相应束流为10-11~10-12A)。在末级透镜上方扫描线圈的作用下,使电子束在试样表面做光栅扫描(行扫+帧扫)。入射电子与试样相互作用会产生二次电子、背散射电子、X射线等各种信息。这些信息的二维强度分布随着试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等等),将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图像[1]。如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储。 扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。机构组成 扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。 真空系统 真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。 真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。

新一代电子显微镜的发展趋势及应用

新一代电子显微镜的发展趋势及应用 特点 微观结构专业组 新一代电子显微镜的发展趋势及应用特点 一、高性能场发射枪电子显微镜日趋普及和应用。 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。 常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于 1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率。 球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm 提高到0.12nm甚至于小于0.1nm.

利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。 聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。 在球差校正的同时,色差大约增大了30%左右.因此,校正球差的同时,也要同时考虑校正色差. 三、电子显微镜分析工作迈向计算机化和网络化。 在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。 不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等。以实现对电镜的遥控作用. 四、电子显微镜在纳米材料研究中的重要应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之 2-3mm。所以,要分辩出每个原子的位置,需要0.1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以 及其结构与性能之间关系的研究成为人们十分关注的研究热点。 利用电子显微镜,一般要在200KV

扫描电镜的应用及发展

扫描电镜的新发展 陈散兴 扫描电镜的原理 扫描电镜( Scanning Electron Microscope, 简写为SEM) 是一个复杂的系统, 浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式, 随着扫描电镜的发展和应用的 拓展, 相继发展了宏观断口学和显微断口学。 扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集 成细小( 直径一般为1-5 nm)的电子束(相应束流为10- 11-10- 12A)。在末级透镜上方扫描线圈的作用下, 使电子束在试样表面做光栅扫描( 行扫+ 帧扫)。入射电子与试样相互作用会产生二次电子、背散射电子、X 射线等各种信息。这些信息的二维强度分布随试样表面的特征而变( 这些特征有表面形貌、成分、晶体取向、电磁特性等等) , 将各种探测器收集到的信息按顺序、成比率地转换成视频信号, 再传送到同步扫描的显像管并调制其亮度, 就可以得到一个反应试样表面状况 的扫描图像。如果将探测器接收到的信号进行数字化处理即转变成数字信号, 就可以由计算机做进一步的处理和存储。 扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察, 因而在设计上突出了景深效果, 一般用来分析断口以及未经人工处理的自然表面。扫描电镜的主要特征如下: ( 1) 能够直接观察大尺寸试样的原始表面;( 2) 试样在样品室中的自由度非 常大;( 3) 观察的视场大;( 4) 图像景深大, 立体感强;( 5) 对厚块试样可得到高分 辨率图像;( 6) 辐照对试样表面的污染小;( 7) 能够进行动态观察( 如动态拉伸、压缩、弯曲、升降温等) ;( 8) 能获得与形貌相对应的多方面信息;(9) 在不牺牲扫描电镜特性的情况下扩充附加功能, 如微区成分及晶体学分析。 近代扫描电镜的发展主要是在二次电子像分辨率上取得了较大的进展。但对不导电或导电性能不太好的样品还需喷金后才能达到理想的图像分辨率。随着材料科学的发展特别是半导体工业的需求, 要尽量保持试样的原始表面, 在不做 任何处理的条件下进行分析。早在20 世纪80 年代中期, 便有厂家根据新材料( 主要是半导体材料) 发展的需要, 提出了导电性不好的材料不经过任何处理 也能够进行观察分析的设想, 到90 年代初期, 这一设想就已有了实验雏形, 90 年代末期, 已变成比较成熟的技术。其工作方式便是现在已为大家所接受的低真空和低电压, 最近几年又出现了模拟环境工作方式的扫描电镜, 这就是现代扫 描电镜领域出现的新名词/ 环扫0, 即环境扫描电镜。

显微镜发展史

一滴水中的世界—显微镜的发展历程及趋势 摘要:本文主要介绍了从古至今显微镜的发展历程,以及各类显微镜的特点以及研究领域,特别是对于显微镜的优缺点进行了对比分析,最后就目前显微镜的发展状况以及将来的发展局势,结合实际特点的情况下提出了一些较为可行的设想,文章主要采取了文献研究的方法。关键词:光学显微镜人机交互隧道扫描 一、显微镜的发展历程 一花一世界,一叶一菩提。即是再微小的事物也有其内部的一片天地。从三千大千世界到微观原子。许久以前,我们的祖先已然展现了对微观世界不断探究的萌动。从西方先哲到中方佛陀,从球面放大规律,到隧道扫描的精妙。人类对微观世界的不懈探究造就了一代又一代革命性的研究成果,无论是细胞学说的建立,DNA双螺旋横空出世,还是如今原子级别的探究,显微镜正以其先驱者的形象不断开拓着人类的视野,架起了宏观到微观的桥梁。 就其历史而言,最早的显微镜是16世纪末期在荷兰制造出来的。发明者可能是一个叫做札恰里亚斯·詹森的荷兰眼镜商。1590年,在天朗气清的清晨,享受玩乐的詹森恰好将两片凸玻璃片装到一个金属管子里,无意间发现通过这个管子看到的事物要比平时大很多,于是他将这个消息告诉了他的父亲,不过由于当时纯粹是好玩,并没有将之运用到科学领域。再加上其放大倍数不高,被称作“跳蚤镜”。紧接着德国天文学家开普勒提出了复合式显微镜的制作方法,但并没有付诸实践。后来的意大利科学家伽利略。1610年前后,他通过显微镜对于一种昆虫的复眼进行了描述。1665 年,胡克制作了当时最为先进的显微,他用一个半球形单透镜作为物镜,一个平凸透镜作为目镜。镜筒是完全可以拉伸的,整个长度达到了6英寸。镜底有一个带有球形聚光器的照明灯,可以在昏暗条件下仍旧进行观测,已经初具现代显微镜的形态。荷兰亚麻织品商人安东尼·凡·列文虎克通过自己亲手磨制的透镜观察到了很多前所未见的微小生物。1673 ~1677 年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。九年后,他成为首位发现“细菌”的人。之后的布朗,施莱登和施旺,寇利克等人都借助于显微镜在细胞学说方面取得了丰硕的研究成果。不久以后,恩斯特·卡尔·阿贝以显微镜为中心,提出两个重要理论:①几何光学中的正弦条件,确定

11-2 JY T 010-1996分析型扫描电子显微镜方法通则

MV_RR_CNJ_0010分析型扫描电子显微镜方法通则 1.分析型扫描电子显微镜方法通则的说明 编号JY/T 010—1996 名称(中文)分析型扫描电子显微镜方法通则 (英文)General rules for analytical scanning electron microscopy 归口单位国家教育委员会 起草单位国家教育委员会 主要起草人林承毅 万德锐 批准日期 1997年1月22日 实施日期 1997年4月1日 替代规程号无 适用范围本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。 定义 主要技术要求 1. 2. 方法原理 3. 仪器 4. 样品 5. 分析步骤 6. 分析结果表述 是否分级无 检定周期(年) 附录数目无 出版单位科学技术文献出版社 检定用标准物质 相关技术文件 备注 2.分析型扫描电子显微镜方法通则的摘要 本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。 2 定义 2.1二次电子 secondary electron 在入射电子的作用下,从固体样品中出射的,能量小于50eV的电子,通常以SE表示。 2.2背散射电子 backscattered electron 被固体样品中的原子反射回来的入射电子,包括弹性背散射电子和非弹性背散射电子,通常以BSE表示。它又称为反射电子(Reflected Electron),以RE表示。其中弹性背散射电子完全改变了入射电子的运动方向,但基本上没有改变入射电子的能量;而非弹性背散射电子不仅改变了入射电子的运动方向,在不同程度上还损失了部分能量。 2.3 放大倍数 magnification 扫描电镜的放大倍数是指其图像的线性放大倍数,以M表示。如果样品上长度为L s直线

(完整版)扫描电子显微镜的发展及展望

扫描电子显微镜的发展及展望 1、分析扫描电镜和X射线能谱仪 目前,使用最广的常规钨丝阴极扫描电镜的分辨本领已达 3.5nm左右,加速电压范围为0.2—30kV。扫描电镜配备X射线能谱仪EDS后发展成分析扫描电镜,不仅比X射线波谱仪WDS分析速度快、灵敏度高、也可进行定性和无标样定量分析。EDS发展十分迅速,已成为仪器的一个重要组成部分,甚至与其融为一体。但是,EDS也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。X射线波谱仪分辨率则高得多,通常为5—10eV,且可在室温下工作。1972年起EDAX公司发展了一种ECON系列无窗口探测器,可满足分析超轻元素时的一些特殊需求,但Si(Li)晶体易受污染。1987年Kevex 公司开发了能承受一个大气压力差的ATW超薄窗,避免了上述缺点,可以探测到B,C,N,O等超轻元素,为大量应用创造了条件。目前,美国Kevex公司的Quantifier,Noran公司的Extreme,Link公司的Ultracool,EDAX公司的Sapphire等Si(Li)探测器都属于这种单窗口超轻元素探测器,分辨率为129eV,133eV等,探测范围扩展到了5B—92U。为克服传统Si(Li)探测器需使用液氮冷却带来的不便,1989年Kevex公司推出了可不用液氮的Superdry探测器,Noran公司也生产了用温差电制冷的Freedom探测器(配有小型冷却循环水机),和压缩机制冷的Cryocooled探测器。这两种探测器必须昼夜24小时通电,适合于无液氮供应的单位。现在使用的大多还是改进的液氮冷却Si(Li)探测器,只需在实际工作时加入液氮冷却,平时不必维持液氮的供给。最近发展起来的高纯锗Ge探测器,不仅提高了分辨率,而且扩大了探测的能量范围(从25keV扩展到100keV),特别适用于透射电镜:如Link的GEM型的分辨率已优于115eV(MnKα)和65eV(FKα),Noran的Explorer Ge探测器,探测范围可达100keV等。1995年中国科学院上海原子核研究所研制成了Si(Li)探测器,能量分辨率为152eV。中国科学院北京科学仪器研制中心也生产了X射线能谱分析系统Finder-1000,硬件借鉴Noran公司的功能电路,配以该公司的探测器,采用Windows操作系统,开发了自己的图形化能谱分析系统程序。 2、X射线波谱仪和电子探针仪 现代SEM大多配置了EDS探测器以进行成分分析。当需低含量、精确定量以及超轻元素分析时,则可再增加1到4道X射线波谱仪WDS。Microspec公司的全聚焦WDX-400,WDX-

电子显微镜技术

显微分析技术 摘要:透射电子显微镜、扫描电子显微镜以及扫描探针显微镜已经成为了分析纳米材料的重要手段之一。本文简要的介绍了透射电子显微镜、扫描电子显微镜以及扫描探针显微镜的发展以及应用。 引言 纳米科技是在20世纪80年代后才逐渐发展起来的前沿性、交叉性的新型科学领域,纳米材料的性能与其微观结构有着重要的关系,因此,纳米材料微观结构的表征对于认识纳米材料,推动纳米材料的应用有着深远的意义。 自16世纪出现了光学显微镜以后,把正常人眼睛仅能分辨约0.2mm 细节的能力,延伸到可以看细菌和微生物。20世纪30年代,科学家利用电子源制造出了扫描电子显微镜,其分辨率远远超出了光学显微镜。1932年M.Knoll和E.Ruska 研制出了第一台透射电子显微镜实验装置(TEM),1938年,V on.Ardence将扫描线圈加到透射电子显微镜上(TEM),制成了第一台扫描透射电子显微镜(STEM),放大倍数8000X,分辨率在500~1000 ?之间直到1952年,C.W.Qatley 和McMullan 在剑桥(Cambridge )制成了第一台现代的SEM,分辨率达到500?,很大程度的提高了人类认识微观世界的能力。但是,后来人们发现,当显微镜的放大率提高到1000-1500倍时,受光的衍射效应影响,图像将变得不再清晰。1982年国际商业机器公司苏黎世实验室的葛·宾尼(Gerd Binnig)博士和海·洛雷尔(Heimich Rohrer)博士及其同事们共同研制成功了世界第一台新型的表面分析仪器——扫描隧道显微镜(简称STM)。它的出现使人类第一次能够实时的观察单个原子在物质表面的排列状态和表面电子行为有关的物理、化学性质,为科学家提供了一种前所未有的直接观察单原子、单分子的手段,从而从根本上改变了人类对微观(纳米)世界的认识水平。STM的探针是由针尖与样品之间的隧道电流的变化决定的,因此要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构对于非导电的物质则要求样品覆盖一层导电薄膜,但导电薄膜的粒度和均匀性难以保证,且导电薄膜掩盖了物质表面的细节为了克服

扫描电镜的发展特点及在纺织材料研究中的应用

扫描电镜的发展特点及在纺织材料研究中的应用 0 前言 当今,随着电子源、扫描以及图像采集和处理系统等的发展,扫描电子显微镜(ScanningElectronMicroscope,简写为SEM)已成为纺织、生物学、医学、冶金、机械加工、材料、半导体制造、微电路检查,甚至月球岩石样品分析等领域的主要研究手段。同时它还在向复合型方向发展,即和X射线能谱分析技术(简称EDS)进行结合,成为研究分析物品表面结构与微区化学成分的最有效的工具。 当前产业用纺织品已广泛应用于工业、农业、环境保护、生物工程、化学化工、医疗卫生以及汽车等领域,其应用范围不断扩大,大大拓展了新的应用领域,开拓出新的市场和高新技术的特殊产品,如电子纺织材料、智能纺织材料、细胞组织支架材料和纤维织物柔性[1]显示器等。因此,利用先进的扫描电镜等工具研究纺织产品极其材料的化学与机械物理性能创造产业用纺织品材料就显得至关重要。可以说,扫描电镜的未来有着广阔的发展与应用前景。 1 扫描电镜和X射线能谱仪原理 扫描电镜:其场深大约三百倍于光学显微镜,适用于表面形貌观察,特别是粗糙表面的观察和分析,图像富有立体感、真实感、易于识别和解释。放大倍数范围大,一般为50~20000倍,对于相组成的非均匀材料便于低倍下的普查和高倍下的观察分析。它具有相当的分辨率,可达2~6nm。扫描电子显微镜主要是利用二次电子成像,由聚光镜和物镜构成的电子光学系统[2],把电子枪发射出来的电子聚集成为一束极细的电子束,并聚焦于样品的表面,同时按顺序对样品表面进行逐行扫描[3]。用检测器收集从样品表面发射出来的二次电子,经视频放大形成图像信号,再经显像管显示。所获得的图像可以直接进行观察,也可以照相或者存储记录,它还可对试样进行成分、晶格、阴极发光、感应电导等多方面分析。 X射线能谱仪:电子束轰击样品时,产生弹性散射和非弹性散射两类物理过程,当两者相互作用发生具有能量交换的非弹性散射时会产生二次电子、俄歇电子、特征X射线、连续X 射线,以及在可见光和紫外、红外波段的长波长电磁辐射。X射线能谱分析就是取出样品所产生的X射线作为信号进行分析的。分析这些X射线的能量就可知道组成样品的元素,即可实现对样品的定性分析;根据X射线能量不同的强度就可知道各种非导体与半导体的含量,即实现对样品的定量分析。由于电子显微镜具有很高的空间分辨率,它可以捕捉能谱分析仪在微米和亚微米尺度下的粒子,同时在与计算计配合后,通过线扫描也就可以获得直观的微区元素分布数据。 2 扫描电镜和X射线能谱仪的发展特点 扫描电镜的设计思想早在1935年便已提出,但受各种技术条件的限制,进展一直很慢。只是在近20年,扫描电镜才在提高分辨率方面取得了较大进展。现在,使用最常规扫描电镜分辨率可达3.5nm左右。上世纪90年代中期,它与高速发展的计算机技术对接,实现了电脑控制和信息处理。之后,扫描电镜在二次电子像分辨率、非导体与半导体的扫描成像上取得了突破。特别是针对过去非导体与半导体材料需喷金后才能电描的技术改进 为在低真空和低电压下的电镜扫描,为产业用纺织品的出新提供了良好的检测手段与保证。 目前,使用最广的常规钨丝阴极扫描电镜的分辨率为3.5nm左右,加速电压范围为0.2~30kV。扫描电镜配备X射线能谱仪后发展成分析扫描电镜。它比X射线波谱仪分析速度快、灵敏度高、还可进行定性和无标样定量分析。但是,这种分析型扫描电镜也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。所以未

相关文档
最新文档